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A Simple Sequentially Rejective Multiple Test Procedure 

STURE HOLM 

Chalmers University of Technology, Goteborg 

Received December 1977, revised September 1978 

ABSTRACT. This paper presents a simple and widely ap- 
plicable multiple test procedure of the sequentially rejective 
type, i.e. hypotheses are rejected one at a tine until no further 
rejections can be done. It is shown that the test has a prescribed 
level of significance protection against error of the first kind 
for any combination of true hypotheses. The power properties 
of the test and a number of possible applications are also 
discussed. 

Key words: multiple test, simultaneous test 

1. Introduction 

The statistical problems arising in applications often 
involve a number of detail problems, i.e. there are 
often a number of interesting parameters to be esti- 
mated and/or a number of interesting hypotheses to 
be tested. In some cases these detail problems may 
be treated separately without any connection to each 
other. But in most cases the detail problems are con- 
nected to each other and the totality of solutions to 
the detail problems are used to get a general picture. 
In this latter case the statistician is faced with a 
multiple statistical inference problem, where he has 
to take into consideration that the different detail 
problems should be treated simultaneously. 

Multiple statistical inference has been a vital re- 
search area within statistical inference theory the 
past 50 years, and methods have been proposed for 
several situations of practical interest. A good presen- 
tation of the earlier main results is given by Miller 
(1966). The multiple statistical inference methods are 
separated into two main types, multiple confidence 
interval methods and multiple test methods. 

For multiple test procedures there has been sug- 
gested several types of properties, which the tests 
should have in order to give satisfactory protection 
against wrong decisions. Some of those are based on 
decision theoretic conceptions, while others are based 
on probabilities of making wrong decisions. In this 
paper we will study multiple test procedures and we 
will use the most common type of protection against 
error of the first kind by requiring the tests to have a 
small probability of rejecting any true hypotheses. 

The methodological motivation and exact definition 
is the following. 

Let the (detail) hypotheses in a multiple test prob- 
lem be denoted by H1, H12, ..., Hn and the alternatives 
to those by K., K2, ..., K,. A (non-randomized) mul- 
tiple test procedure is a rule assigning to each out- 
come a set of rejected hypotheses (which might be 
empty). This means that there are also n critical 
regions C1, C2, ..., Cn consisting of those outcomes 
for which the corresponding hypotheses are rejected. 

In a test of a single null hypothesis H1 against an 
alternative K1 the size of the test is defined as the 
supremum of the probability of the critical region C1 
when the hypothesis H11 is true. This probability of 
error of the first kind is always kept at (or below) a 
small predetermined level a. The philosophical rea- 
son for this is that when we have made a 'discovery' 
by rejecting the null hypothesis we can quite safely 
claim that the null hypothesis is not true, because if 
it was true, we should have accepted it with a 
probability of at least 1 -oc. This also implies that 
we do not make any 'discovery' by accepting the null 
hypotheses, because we do not have such a protec- 
tion against errors of the second kind. 

In a multiple test of a number of hypotheses 
H,, H12, ..., Hn there are a lot of possible combina- 
tions of null hypotheses. If we want to make our 
'discoveries' in form of rejected null hypotheses to 
be safely claimed, we must keep the probability of 
rejecting any true null hypotheses small, how many 
and which the true hypotheses may be. Thus we are 
led to the following definition 

Definition. A multiple test procedure with critical 
regions C1, C2, ..., Cn for testing hypotheses Hi, 
H2, ..., H,, is said to have a multiple level of signifi- 
cance a (for free combinations) if for any non-empty 
index set I' {1, 2, 3, ..., n} the supremum of the 
probability P( u iE C2) when Hi are true for all i eI 
is smaller than or equal to a. 

The words 'for free combinations' are put into the 
definition in order to underline that all subsets of 
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null hypotheses could appear as the set of true hypo- 
theses. There might be situations in which all sub- 
sets are not allowed for some reason, for instance 
situations where the truth of two hypotheses implies 
the truth or falseness of a third hypothesis. It is to 
be observed that a multiple level of significance ac for 
some restricted combinations imposes fewer condi- 
tions on the test procedure than a multiple level of 
significance a for free combinations, i.e. a test proce- 
dure with multiple level of significance x for free 
combinations has a multiple level of significance a 
for any type of restricted combinations. 

In our setting the basic hypotheses H1, H2, ..., H. 
are minimal in the sense of Gabriel (1969). This 
means that if o,, con, ..., on are the parameter sets 
where the hypotheses H1, H2, ..., Hn are true than 
the only (secondary) hypotheses to be tested are the 
hypotheses that the parameter belongs to intersec- 
tions nf EI co, of sets coi for different index sets 
Ic- {1, 2, ..., n}. 

We will exclusively discuss a type of multiple test 
procedures, which may be called sequentially rejec- 
tive because basic hypotheses are rejected one at a 
time according to certain rules. Thus we do not make 
separate tests of all the (secondary) hypotheses that 
the parameter belongs to intersections nflI wi for 
different Ic {1, 2, ..., n}. We always consider such 
(secondary) hypotheses to be rejected as soon as any 
of the included basic hypotheses are rejected. 

A test procedure is called coherent if it prevents 
the contradiction of rejecting a hypothesis without 
also rejecting all other hypotheses implying it. It is 
called consonant if it avoids dissonances consisting 
in rejecting a hypothesis and not rejecting any other 
hypotheses implied by it. (See Gabriel, 1969, pp. 229 
and 231.) The sequentially rejective tests are coherent 
and consonant by their very definition. 

In many applications there are logical implica- 
tions among the basic hypotheses i.e. some combina- 
tions of falseness of different basic hypotheses are 
not allowed because there are no possible parameter 
points corresponding to those combinations. Then 
we do not want the multiple test procedure to end 
up with a statement that the parameter belongs to 
such an empty set. This requirement has to be 
studied separately for each kind of logical implica- 
tion. We will consider only the type of logical im- 
plications arising when we have two-sided alterna- 
tives for some parameters, and want to make one- 
sided statements. 

The sequentially rejective multiple tests are not 
completely new. Tests of the same type are discussed 
by Naik (1975, p. 522), and the consonant closed 
procedures discussed by Marcus et al. (1976, p. 656) 
are equivalent to sequentially rejective tests. Marcus 
et al. (1976) give one particular example of such a 

test in an analysis of variance situation, and indicate 
that others can be constructed. But they do not seem 
to have thought of the simple and general procedure 
we present in the next section, because that procedure 
can easily be used to make one-sided rejections, 
which they have posed as a difficult problem. Our 
test is based on the simple Boole inequality and can 
be applied to any parametric or non-parametric 
model, but yet it has good power properties. It will 
be shown by examples that it may have considerably 
higher power than classical multiple test procedures. 
It also has surprisingly small loss of power compared 
to the special sequentially rejective tests (or equi- 
valent consonant closed tests) that can be constructed 
in different parametric models, for instance analysis 
of variance models. 

2. A simple sequentially rejective test 

In this section we will present a simple sequentially 
rejective test, which is based on the Boole inequality. 
The use of the Boole inequality within multiple in- 
ference theory is usually called the Bonferroni tech- 
nique, and for this reason we will call our test the 
sequentially rejective Bonferroni test. 

When the n hypotheses H,, H2, ..., Hn are tested 
separately by using tests with the level ac/n it follows 
immediately from the Boole inequality that the prob- 
ability of rejecting any true hypotheses is smaller 
then or equal to ac. This constitutes then a multiple 
test procedure with the multiple level of significance 
a for free combination, the classical Bonferroni 
multiple test procedure. 

The separate tests in the classical Bonferroni 
multiple test are usually performed by using some test 
statistics, which we will denote here by Y,, Y2, ..., Yn. 
We suppose now that this is the case, and also that 
these test statistics have a tendency of obtaining 
greater values when the corresponding hypothesis is 
not true. The critical level Sk(Y) for the outcome y of 
the test statistic Yk is then equal to the supremum of 
the probability P(Yk >y) when the hypothesis Hk is 
true. Defining now the obtained levels Rl, R2, ..., Rn 
by 

Rk = dk(Yk) 

the classical Bonferroni test can be performed by 
comparing all the obtained levels R&, R2, ..., Rn with 
a/n. 

The sequentially rejective Bonferroni test will also 
be defined by the obtained levels. Denoting by R('1 < 
R'2' 6 ... <R(n, the ordered obtained levels and by 
H"), H , ..., H'() the corresponding hypotheses, 
the procedure can most easily be described by scheme 
1, where ac, 0 <La < 1, is a fixed number. 
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Scheme I 

The test is performed by starting at the top of the 
scheme and going down step by step until no further 
rejection can be done. This can happen either by 
accepting all remaining hypotheses or rejecting the 
last hypothesis H(n). 

Theorem 1. The sequentially rejective Bonferroni test 
described by scheme I has the multiple level of sig- 
nificance a for free combinations. 

Proof. Let I be the set of indexes of the true hypo- 
theses. By the Boole inequality we then have 

P Rf >- for all i e 
m 

=1-P(R<- for some iEl) 

where m is the number of elements in I. But if the 
event 

{Ri >- for all i e I} 
m 

occurs then 

.R(n + i-M)> ?:,. 
m 

and the sequentially rejective test stops in the step 
n +1 - m or earlier. This implies however that all 
hypotheses corresponding to obtained levels Ri > 
ac/m will be accepted and this set of hypotheses in- 
cludes the set of true hypotheses. O 

In the sequentially rejective Bonferroni test the 
obtained levels are compared to the numbers 

ac ac ac 
n' n-I' ' 

whereas in the classical Bonferroni test they are 
compared to a/n. This means that the probability of 
rejecting any set of (false) hypotheses using the classi- 
cal Bonferroni test is smaller than or equal to the 
same probability using the sequentially rejective 
Bonferroni test based on the same test statistics. The 
classical Bonferroni test has been used mainly in 
situations where no other (more special) multiple test 
procedure is available. It can always be replaced by 
the corresponding sequentially rejective Bonferroni 
test without loosing any probability of rejecting false 
hypotheses. Except in trivial non-interesting cases 
the sequentially rejective Bonferroni test has strictly 
larger probability of rejecting false hypotheses and 
thus it ought to replace the classical Bonferroni test 
at all instants where the latter usually is applied. 

The power gain obtained by using a sequentially 
rejective Bonferroni test instead of a classical Bon- 
ferroni test depends very much upon the alternative. 
It is small if all the hypotheses are 'almost true', but 
it may be considerable if a number of hypotheses are 
'completely wrong'. If m of the n basic hypotheses 
are 'completely wrong' the corresponding levels at- 
tain small values, and these hypotheses are rejected 
in the first m steps with a big probability. The 
other levels are then compared to ac/k for k = n -m, 
n-rm-l, n-rm -2, ..., 2, 1, which is equivalent to 
performing a sequentially rejective Bonferroni test 
only on those hypotheses that are not 'completely 
wrong'. 

A very simple example will indicate how big the 
power gain may be. Suppose that Yk, k = 1, 2, ..., 10 
are independent and normally distributed with para- 
meters Ilk and 1 for k = 1, 2, ..., 10 and that we want 
to test the hypotheses Hk: k = 0 against the alterna- 
tives Ilk >0 for k = 1, 2, ..., 10 at a multiple level of 
significance 0.05. If four of the Puk's are equal to 0.0, 
four of them are equal to 6.0 and the remaining two 
are equal to 3.0, the classical Bonferroni test rejects 
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both the latter hypotheses with probability 0.439, 
while the sequentially rejective Bonferroni procedure 
rejects both with probability 0.565. 

The great advantage with the sequentially rejective 
Bonferroni test (as well as with the classical Bon- 
ferroni test) is its flexibility. There are no restrictions 
on the type of tests, the only requirement being that 
it should be possible to calculate the obtained level 
for each separate test. Further there are no problems 
in including in the analysis only the a priori interest- 
ing hypotheses, while more special multiple tests 
usually include all hypotheses of a certain kind. But 
when there exist logical implications among the 
hypotheses problems arise which we have to take in- 
to consideration. 

Let as before wl, w02, Ct3, ..., on denote the para- 
meter sets where the hypotheses H1, H2, H3, ..., Hn 
are true. Then there exists a logical implication as 
soon as there is some index set Isuch that nieiC Oi = 
b. In words this means that some combination of 

falseness of the different hypotheses is not possible, 
and the natural condition is of course that we should 
not end up the multiple test with a statement that the 
true parameter point is in an empty set. Each type of 
logical implication requires a special analysis of the 
properties of the test statistics in order to ensure that 
the test can not end up with such statements. The 
only type of logical implication we will consider is 
the one arising in connection with two-sided rejec- 
tions. 

Let y be a (one-dimensional) parameter and sup- 
pose that H1: y < yO and H2: y > y2o are basic hypo- 
theses in a multiple test problem. Then C a,l n C co2 = 
b and both these hypotheses should not be rejected 

in the multiple test procedure. It is natural to use the 
same test statistic to test both hypotheses and since 
we have the convention of rejecting the hypotheses 
for high values of the test statistics we should have 
Y2= - Y1. Now for the outcomes Yi of Y1 and y= 
-Yl for Y2 the obtained levels ail(yi) and A2(Y2) satisfy 

Y2)UP P(Y2 > Y2) 
V>Yo 

> sup P(Y2 > Y2) = sup (1 -P(Y2 < Y2)) 
V=YO Y=Yo 

= sup (1 - P(Y1 > y1)) 
Y=Yo 

= 1 - inf P(Y1 < y1) 
Y='Yo 

> 1 - inf P(Y1 > y1) 
Y=VYo 

> 1 -sup P(Y1 > y1) 
V=Yo 

> 1-sup P(Y1 > Ay1)1 l(y) 
V?Yo 

This means that for any outcomes Yi and Y2 ̀ Y1 
of Y1 and Y2 at least one of the obtained levels 
Mi(Y,) and d2(Y2) is >, and thus both hypotheses 
H1 and H2 can not be rejected in a sequentially rejec- 
tive Bonferroni test (or a classical Bonferroni test) 
for any multiple level of significance cx 6 i. 

If there are a number of pairs of one-sided hypo- 
theses and no logical implications beside those with- 
in the pairs all illogical statements will still be avoided 
if the same statistics with opposite signs are used 
within the pairs and the multiple level of significance 
oc is smaller than or equal to 1. These tests are also 
coherent and consonant. 

3. Applications and extensions 

The sequentially rejective Bonferroni test can be ap- 
plied in all situations where the classical Bonferroni 
test is usually applied. And it ought to replace the 
classical Bonferroni test in these cases because it 
gives only slightly more complicated computations 
and a non-negligable increase of power. It should 
however be noted that the sequentially rejective Bon- 
ferroni test can not be used to construct smaller con- 
fidence sets than those constructed by the classical 
Bonferroni test. This is so because the confidence 
set consists of the parameter points that would not 
be rejected as true parameter points in separate single 
tests. And when a confidence set is constructed from 
multiple tests it consists of the parameter points for 
which none of the detail hypotheses are rejected, 
which is in fact a special construction of a single test 
from a multiple test. If the sequentially rejective Bon- 
ferroni test is used in this way it is equivalent to the 
classical Bonferroni test. 

The great advantage of the sequentially rejective 
Bonferroni test (as well as the classical Bonferroni 
test) is its computational simplicity, which arises 
from the reduction of the distributional problems to 
one dimension when the Boole inequality is used. The 
same computational simplicity is obtained when the 
test statistics are independent. It is easily seen that 
a sequentially rejective procedure with multiple level 
of significance a can be constructed by replacing the 
comparison constants c/n, cx/(n -1), ..., c/1 in the 
sequentially rejective Bonferroni test by 1 - (1 - c)11', 
1 - (1 - c)1/(nl1)' ..., 1 - (1 - cc)1, which are greater. 
This means that we get a more powerful test, but the 
increase in power is not very big. Among the 
numerous possible applications of the sequentially 
rejective Bonferroni test we will next mention a few. 

The problem of comparing several treatments with 
one control have been studied by several authors. 
For the case of normally distributed observations the 
multiple test procedure suggested by Dunnett (1955) 
is commonly used. It requires the same number of 
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observations for all treatments, and it is based on 
the assumption that the variance is the same for the 
control and all treatments. Marcus et al. (1976) have 
proposed a closed test procedure, which is a refine- 
ment of the Dunnett procedure and which is more 
powerful. Their procedure is equivalent to a sequenti- 
ally rejective procedure presented in Holm (1977). 

The sequentially rejective Bonferroni test can also 
be used in this situation although it is of course less 
powerful than the refined Dunnett test. In most cases 
the difference is however not very big. In order to 
illustrate this we consider the case of comparing 9 
treatments with one control based on four observa- 
tions for the control and for each treatment. The re- 
fined Dunnett test then consists in successively com- 
paring the ordered individual t-statistics for com- 
paring one treatment with the control with the 
numbers 

1.70, 1.99, 2.15, 2.25, 2.33, 2.40, 2.45, 2.50, 2.54, 

while the sequentially rejective Bonferroni test con- 
sists in successively comparing the same statistics 
with the numbers 

1.70, 2.04, 2.23, 2.36, 2.46, 2.54, 2.60, 2.66, 2.71. 

In the classical Dunnett test they are all compared 
to 2.54. 

There are two different variations of this problem, 
where the sequentially rejective Bonferroni test can 
easily be applied, whereas the classical and the re- 
fined Dunnett test can not so easily be applied. One 
is the case of non-equal sample sizes. Then the classi- 
cal Dunnett type of test requires much computation, 
because tables are not available. The corresponding 
closed procedure requires even more computation, 
since a number of critical values of classical Dunnett 
test statistics are needed. The sequentially rejective 
Bonferroni test requires only a number of critical 
values of ordinary t statistics. 

The other variation is the case where one-sided 
rejections are wanted. This is easily obtained by using 
a sequentially rejective Bonferroni test and introduc- 
ing two one-sided hypotheses for each comparison of 
a treatment with the control. 

For comparison of a number of treatments with 
one control in the case of non-normal distribution a 
many-one-rank test can be used. Such a test can be 
refined to a corresponding sequentially rejective test 
(equivalent to a corresponding closed test) with a 
higher power. See Holm (1977). If the number of 
observations are not the same for all treatments and 
the control, computational problems arise since 
tables are not available. These difficulties are avoided 
if a sequentially rejective Bonferroni test is used, 
since a table for the ordinary two-sample Wilcoxon 
test statistic is the only table needed for this test. 

In the analysis of contingency tables the distribu- 
tional problems connected with the construction of 
simultaneous tests are so big that the only possibility 
in practice is to use the Bonferroni technique. See 
e.g. Haberman (1974) chapter four. In such cases the 
power would be higher if the sequentially rejective 
Bonferroni test was used instead of a classical Bon- 
ferroni test. Other fields where big computational 
problems call for the use of Bonferroni technique are 
time series analysis and analysis of multidimensional 
distributions. 

In all these cases as well as in others it may happen 
that some hypotheses are more important than the 
others, which may imply the use of higher levels of 
significance for the most important hypotheses and 
smaller levels of significance for the less important 
hypotheses when the Bonferroni technique is ap- 
plied. At a first glance it seems to be impossible to 
obtain such an arrangement with the sequentially 
rejective Bonferroni test. But this is not true, since 
it is possible to generalise Theorem 1 to the case of 
different weights by slightly changing the procedure. 

Let as before H1, H2, ..., Hn, be the hypotheses to 
be tested and R1, R2, ..., Rn be the obtained levels of 
some suitable test statistics for those hypotheses. 
Further let cl, c2, ..., cn be positive constants in- 
dicating the importance of the hypotheses in the 
sense that the constants corresponding to more im- 
portant hypotheses are greater then those corre- 
sponding to less important hypotheses. The precise 
meaning of these constants will be made clear later. 
Now introduce the statistics Sk = Rklck for k = 1, 2, 
n, let S S') 1SS21 < ... <S(') be the ordered statistics 
in this series, let H(l), H', ..., H'n) be the corre- 
sponding hypotheses and let C c'2, ..., c (n) be the 
corresponding constants. Then a generalized sequen- 
tially rejective Bonferroni test can be described by 
scheme 2 on the next page. 

Theorem 2. The generalized sequentially rejective Bon- 
ferroni test described by scheme 2 has the multiple 
level of significance oc for free combinations. 

Proof. Let I be the set of indexes for the true 
hypotheses. By the Boole inequality we have 

P(Si >- 
M 

for all i e I) 
JCI 

= 1 - P(Si < E for some i E I) 

j6I 

ciac 
=1-P(RA i for some iEI) 

jeI 

ci-c 
>l_2Ei 

= 
1-a. 

{eI *~c 
jeI 
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Is s n 
Ec(k) 

k=l Accept H('), H(2), H (n) 

Yes No 

t ' I Stop 

Reject H"' 

. 

Is ,,(2) a 
E c (k)@ 

k-2 Accept Hf'), Hff H)(n) 

Yes No 
f I ~~~~~Stop 

Reject H(2) 

Is . S(3) < a ? 
E c(k) 

k=3 N Accept H'3', H(4) H(n)- 

s , ' y ~~~Stop 

Reject 11" 

Yes No Accept l 

t 
I 

> LStop 
Reject H"3 
Stop 

Scheme 2 

Now suppose that the event 

St > - for all i e I} 

JEI 

occurs, and let v be the smallest order number in the 
series S(1)< (2)<... <S (n) attained by the variables 
{St: iE I}. Then 

S(y) > - -x 
c 

fI na c(l 
J=v 

which implies that the procedure will stop in step v 
or earlier and that all true hypotheses will be ac- 
cepted. E 

From the definition of the generalized sequentially 
rejective Bonferroni test and the proof of Theorem 2 
it can easily be seen what role is played by the 
constants cl, c2, ..., cn. At each step in the procedure 
the obtained levels for the not yet rejected hypotheses 

are compared to parts of a, which are proportional 
to the corresponding constants. Compared to the 
'ordinary' sequentially rejective Bonferroni test this 
implies an increase of power for alternative to hypo- 
theses with high values of ck at the cost of decrease 
of power for alternatives to hypotheses with small 
values of Ck, which is the reason of introducing the 
generalized test. When all Ck are equal the generalized 
test reduces to the ordinary test. 

The previous discussion indicates a good way of 
handling multiple test problems in complicated ap- 
plications. One can start by choosing a number of 
relevant hypotheses, then assign to every hypothesis 
a suitable test statistic, whose one-dimensional distri- 
bution is known exactly or approximately, and finally 
direct the power towards the most important hypo- 
theses by choosing proper constants in a generalized 
sequentially rejective Bonferroni test. Of course it is 
also a desire to have the different test statistics exactly 
or approximately independent not for computational 
reasons but because a good experimental design 
requires the different hypotheses to be tested by 
variables 'not related to each others'. 
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