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Bayesian Statistics is typically taught, if at all, after a prior exposure to frequentist statis-
tics. It is argued that it may be appropriate to reverse this procedure. Indeed, the emergence
of powerful objective Bayesian methods (where the result, as in frequentist statistics, only
depends on the assumed model and the observed data), provides a new unifying perspective
on most established methods, and may be used in situations (e.g. hierarchical structures)
where frequentist methods cannot. On the other hand, frequentist procedures provide
mechanisms to evaluate and calibrate any procedure. Hence, it may be the right time
to consider an integrated approach to mathematical statistics, where objective Bayesian
methods are first used to provide the building elements, and frequentist methods are then
used to provide the necessary evaluation.

INTRODUCTION
A comparative analysis of the undergraduate teaching of statistics through the

world shows a clear imbalance between what it is taught and what it is later needed; in
particular, most primers in statistics are exclusively frequentist and, since this is often
their only course in statistics, many students never get a chance to learn important
Bayesian concepts which would have improved their professional skills. Moreover, too
many syllabuses still repeat what was already taught by mid last century, boldly ignoring
the many problems and limitations of the frequentist paradigm later discovered.

Hard core statistical journals carry today a sizeable proportion of Bayesian papers
(indeed a recent survey of Bayesian papers indexed in the Scientific Citation Index shows
an exponential growth), but this does not yet translates into comparable changes in the
teaching habits at universities. History often shows important delays in the introduction
of new scientific paradigms into basic university teaching, but this inertia factor is not
sufficient to explain the slow progress observed in the introduction of Bayesian methods
into mainstream statistical teaching. When the debate flares up, those who prefer to
maintain the present situation usually invoke two arguments: (i) Bayesian statistics is
described as subjective, and thus inappropriate for scientific research, and (ii) students
must learn the dominant frequentist paradigm, and it is not possible to integrate both
paradigms into a coherent, understandable course.

The first argument only shows lack of information from those who voice it: objective
Bayesian methods are well known since the 60’s, with pioneering landmark books by
Jeffreys (1961), Lindley (1965), Zellner (1971), Press (1972) and Box and Tiao (1973),
and reference analysis, whose development started in late 70’s (see e.g. Bernardo Smith,
1994, §5.4, and references therein), provides a general methodology which includes and
generalizes the pioneering solutions.

The second argument is however much stronger: any professional who makes use of
statistics needs to know frequentist methods, not just because of their present prevalence,
but because they may be used to analyse the expected behaviour of any methodology. And,
indeed, it is not easy to combine into a single course the basic concepts of two paradigms
which are often described as mutually incompatible. The purpose of this presentation is
to suggest an integrated approach, where objective Bayesian methods are used to derive a
unified, consistent set of solutions to the problems of statistical inference which occur in
scientific investigation, and frequentist methods (designed to analyse the behaviour under
sampling of any statistical procedure) are used to establish the behaviour under repeated
sampling of the proposed objective Bayesian methods.
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AN INTEGRATED APPROACH TO THEORETICAL STATISTICS
The central idea of our proposal is to use objective Bayesian methods to derive

statistical procedures which directly address the problems of inference commonly found in
scientific investigation, and to use frequentist techniques to evaluate the behaviour of those
procedures under repeated sampling. For instance, to quote one of the simplest examples,
if data consists of a random sample of size n from a normal N(x |µ, σ), with mean x̄
and standard deviation s, the interval x̄ ± tα/2 s/

√
n− 1 is obtained from an objective

Bayesian perspective as a credible region to which (given the data) the population mean
µ belongs with (rational) probability 1− α. In our experience, this type of result—which
describes what may said about the quantity of interest given available information—is
precisely the type of result in which scientists are genuinely interested. Moreover, the
frequentist analysis of that region estimator shows that, under repeated sampling, regions
thus constructed would contain the true value of µ for 100(1−α)% of the possible samples,
thus providing a valuable calibration of the objective Bayesian result. The correspondence
between the objective credible regions and the frequentist confidence regions (which is
exact in this example) is nearly always approximately valid for sufficiently large samples.

A particular implementation of an integrated programme in theoretical statistics
along these lines is described below. This has been tested for three consecutive years
in teaching a course on Mathematical Statistics (which is compulsory to all third year
undergraduate students of both the degrees in Mathematics and in Statistical Sciences)
at the Universitat de València, in Spain.

1. Foundations
Introduction to decision theory
Probability as a rational, conditional measure of uncertainty
Divergence and information measures

2. Probability models
Exchangeability and representation theorems
Likelihood function; properties and approximations
Sufficiency and the exponential family

3. Inference: Objective Bayesian methods
The learning process; asymptotic results
Elementary reference analysis
Point estimation as a decision problem
Region estimation: lowest posterior loss regions
Hypothesis testing as a decision problem

4. Evaluation: Frequentist methods
Expected behaviour of statistical procedures under repeated sampling
Risk associated to point estimators
Expected coverage of region estimators
Error probabilities of hypothesis testing procedures

It is argued that an integrated approach to theoretical statistics requires concepts
from decision theory. Thus, the first part of the proposed course includes basic Bayesian
decision theory, with special attention granted to the concept of probability as a rational
measure of uncertainty. Divergence measures between probability distributions are also
discussed in this module, and they are used to introduce the important concept of the
amount of information which the results from an experiment may be expected to provide.
In particular, the intrinsic discrepancy between two probability distributions p1 and p2

for a random vector x, defined as

δ{p1, p2} = min[ k{p1 | p2}, k{p2 | p1} ]

where k{pj | pi} is the Kullback-Leibler directed divergence of pj from pi, defined by

k{pj | pi} =
∫

X i

pi(x) log
pi(x)
pj(x)

dx,

is shown to play an important rôle. The discrepancy between two probability families
is defined as the minimum discrepancy between their elements. It immediately follows
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that the intrinsic discrepancy between alternative models for the observed data x is the
minimum likelihood ratio for the true model, thus providing a useful natural calibration
for this divergence measure.

The second module of the course is devoted to probability models. The concept
of exchangeability, and the intuitive content of the representation theorems, are both
described to provide students with an important mathematical link between repeated
sampling and Bayesian analysis. The definition and properties of the likelihood function,
the concept of sufficiency, and a description the exponential family of distributions com-
plete this module.

The third part of the proposed syllabus is a brief course on modern objective
Bayesian methods. The Bayesian paradigm is presented as a mathematical formulation
of the learning process, and includes an analysis of the asymptotic behaviour of posterior
distributions. Reference priors are presented as consensus priors designed to be always
dominated by the data, and procedures are given to derive the reference priors associated
to regular models. Point estimation, region estimation and hypothesis testing are all
presented as procedures to derive useful summaries of the posterior distributions, and
implemented as specific decision problems. The intrinsic loss function, based on the
intrinsic discrepancy between distributions, is suggested for conventional use in scientific
communication: the intrinsic loss δ{Θ0, (θ,λ)}, which is the loss to be suffered from using
a model in the familyM0 = {p(x | θ̃, λ̃), θ̃ ∈ Θ0, λ̃ ∈ Λ} as a proxy for the assumed model
p(x |θ,λ), is defined as the intrinsic discrepancy δ{px |θ,λ, M0} between the distribution
p(x |θ,λ) and the family of distributions in M0, so that

δ{Θ0, (θ,λ)} = inf
θ̃∈Θ0,λ̃∈Λ

δ
{

px |θ,λ, px | θ̃,λ̃

}
.

This intrinsic loss function is invariant under one-to-one reparametrizations, and hence
produces a unified set of solutions to point estimation, region estimation and hypothesis
testing problems which is consistent under reparametrization, a rather obvious requirement,
which unfortunately many statistical methods fail to satisfy. For details, see Bernardo and
Rueda (2002), and Bernardo (2005a, 2005b).

The last module of the course presents the frequentist paradigm as a set of methods
designed to analyse the behaviour under repeated sampling of any proposed solution to
a problem of statistical inference. In particular, these methods are used to study the
risk associated to point estimators, the expected coverage of region estimators, and the
error probabilities associated to hypothesis testing procedures, with special attention to
the behaviour under sampling of the objective Bayesian procedures discussed in the third
module. The evaluations are made using analytical techniques, when the relevant sampling
distributions are easily derived, and Monte Carlo simulation techniques when they are not.

Theoretical expositions are completed with hands-on tutorials, where students are
encouraged to analyse both real and simulated data at the computer lab using appropriate
software.

AN EXAMPLE: EXPONENTIAL DATA
To illustrate the ideas proposed, we conclude by summarizing the details of a

simple example, whose level of difficulty is typical of the course proposed.
Let x̄ be the mean of a random sample x = {x1, . . . , xn} from an exponential

distribution

p(x | θ) = Ex(x | θ) = θe−xθ, x > 0, θ > 0.

The (objective) reference prior in this problem is Jeffreys prior,

π(θ) =
√

i(θ) = θ−1,

where

i(θ) = −
∫
X

p(x | θ) ∂2

∂θ2
log p(x | θ) dx
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is Fisher information function. Using Bayes theorem, the corresponding reference posterior
is found to be the Gamma distribution π(θ |x) = Ga(θ |n, n x̄), which only depends on
the data x through the sufficient statistic {x̄, n}. For illustration, a random sample of
size n = 10 was simulated from an exponential distribution with θ = 2, which yielded
x̄ = 0.608; the resulting reference posterior is represented in the lower panel of Figure 1.

The intrinsic loss is additive for independent observations. As a consequence, the
loss from using model p(x | θ̃) as a proxy for p(x | θ) (whose value is independent of the
parametrization chosen) is δ{θ̃, θ |n} = n δ1{θ̃, θ}, with

δ1{θ̃, θ} =
{

(θ/θ̃)− 1− log(θ/θ̃), if θ ≤ θ̃

(θ̃/θ)− 1− log(θ̃/θ), if θ > θ̃.

The reference posterior expectation of δ{θ̃, θ |n}, which measures the expected discrepancy
of p(x | θ̃) from the true model p(x | θ), is the intrinsic statistic function

d(θ̃ |x) =
∫ ∞

0
δ{θ̃, θ |n}π(θ |x) dθ,

whose exact value is represented in the top panel of Figure 1. The value θ∗(x) which
minimizes d(θ̃ |x) is the Bayes estimator which corresponds to the intrinsic discrepancy
loss, or intrinsic point estimator. General results on (i) the invariance of δ{θ̃, θ} with
respect to monotone transformations of the parameter, and (ii) the asymptotic normality
of posterior distributions, yield the approximation

d(θ̃ |x) ≈ 1
2

[
1 + n δ{θ̃, θ∗(x)}

]
, θ∗(x) ≈ x̄−1e−1/(2n).

Thus, the intrinsic estimator θ∗(x) is smaller than the mle θ̂(x) = x̄−1. With the simulated
data mentioned above, this is θ∗ = 1.569 represented in both panels of Figure 1 with a big
dot. The approximation yields 1.565, and the mle is 1.645.

An intrinsic p-credible region is a p-credible region which contains points of lowest
posterior expected loss. Hence, this is of the form

Cp ≡ {θ̃; d(θ̃ |x) ≤ k(p)} and such that
∫

C(p)
π(θ |x) dθ = p.

For instance, C0.95 here consists of those parameter values with expected loss below 1.496,
what yields the interval C0.95 = [0.923, 2.658], shaded in the right panel of Figure 1.
Moreover, the sampling distribution of x̄ (given θ and n) is p(x̄ | θ, n) = Ga(x̄ |n, n θ),
a Gamma distribution with mean θ−1, and the sampling distribution of t(x) = x̄ θ
is p(t | θ, n) = Ga(t |n, n); but this is also the posterior distribution of φ(θ) = x̄ θ,
π(φ | x̄, n) = Ga(φ |n, n). Hence the expected frequentist coverage of the Bayesian p-credible
region Cp(x) is ∫

{x∈Cp}
p(x | θ) dx = p, ∀ θ > 0.

More generally, the frequentist coverage of all reference posterior p-credible regions in the
exponential model is exactly p and, therefore, they are also exact frequentist confidence
intervals for θ.

In a hypothesis testing situation, the intrinsic k-rejection region Rk consists of
those θ̃ values such that d(θ̃ |x) > k, on the grounds that, given x, the posterior ex-
pectation of the average log-likelihood ratio against them would be larger than k. For
instance, with the data described (see the top panel of Figure 1), the values of θ̃ smaller
than 0.513 or larger than 4.771 yield values of the intrinsic statistic function larger than
k = log(100) ≈ 4.6, and would therefore be rejected using this conventional threshold, since
the average log-likelihood ratio against them is expected to be larger than log(100).
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Figure 1. Intrinsic objective Bayesian inference for an exponential parameter

Notice that, since the intrinsic loss δ{θ̃, θ} is invariant under reparametrization, the
intrinsic statistic function (the posterior intrinsic loss d(θ̃ |x) from using θ̃ instead of the
true value of the parameter) is also invariant. Thus, if φ(θ) is a one-to-one transformation
of θ, the intrinsic estimate of φ is φ∗ = φ(θ∗), the intrinsic p-credible region of φ is φ(Cp),
and the k-rejection region for φ is φ(Rk).

If prediction is desired, the reference (posterior) predictive distribution of a future
observation x is

p(x |x) = p(x | x̄, n) =
∫ ∞

0
Ex(x | θ) Ga(θ |n, n x̄) dθ = x̄n

(
n

x̄ n + x

)n+1

,

which, as one would expect, converges to the true model Ex(x | θ) as n →∞. In particular,
the (reference posterior) probability that a future observation x is larger than, say, t is

Pr[x > t | x̄, n] =
∫ ∞

t
p(x | x̄, n) =

(
x̄ n

x̄ n + t

)n

(1)

which, as one would expect, converges to the true (conditional) predictive probability,

Pr[x > t | θ] =
∫ ∞

t
Ex(x | θ) dx = e−t θ, (2)

as n →∞. Notice, however, that the conventional plug-in predictive probability

Pr[x > t | x̄, n] ≈ e−t θ̂,

5



ICOTS-7, 2006: Bernardo

which could obtained by using in (2) some point estimate θ̂ of θ, may generally be very
different from the correct value (1) and, hence, this would be seriously inappropriate for
small sample sizes.
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