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We present some ideas on how to teach Robust Regression. We motivate the importance of robust 
estimation using a real data set and briefly discuss why diagnostic procedures based on the least 
squares estimates do not guarantee the detection of outlier observations. We also introduced 
regression M-estimates and discuss why they require an estimate of the error scale. Finally we 
introduce the class of S-estimates to obtain a robust estimate of the error scale.  
 
WHY ROBUST ESTIMATES? 

To motivate the introduction of robust estimates for regression we start by pointing out 
the shortcoming of the least squares estimates 

Let us consider the linear regression model 
niuxy ii ,...,1,' =+= θ  

xi=( xi1,...,xip) ∈ Rp, where xi and ui are independent.  
Least squares (LS) estimates are defined by 
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where  
iii xyr ')( θθ = . 

The students probably know that these estimates are optimal when the ui’s are normal. It 
is well known that in this case the LS estimate is the maximum likelihood estimate (MLE). 
However, a few atypical observations (outliers) can have a large influence on the LS-estimate. 
Even one outlier can take the LS-estimate beyond any bound. The sensitivity to outliers of the LS 
estimate is illustrated with the following example. 

We consider an experiment on the speed of learning of rats. Times were recorded for a rat 
to go through a shuttlebox in successive attempts. If the time exceeded 5 seconds, the rat received 
an electric shock for the duration of the next attempt. The data consist of the number of shocks 
received by the rat and the average time for all attempts between shocks.  
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Figure 1: Shock data- LS fits with all data (LS) and omitting points 1-2-4. (LS-) 
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Figure 1 show two lines fitted using the LS estimate, one using the full set of data and the 
second the line obtained after deleting the outlying observations 1, 2 and 4. We observe that that 
after deleting these three observations the LS line fits much better the bulk of the data. 

One common belief is that the outliers have large LS residuals, and that therefore they 
can be detected looking at residuals plots. The next Figure shows the QQ plot of the standardized 
residuals for the learning experiment. We observe that the observations 1 and 2, which are 
outliers, do not have significant large residuals. 
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Figure 2: Residuals QQ-plot for the shock data 
 

As we have seen in the shock example, a small number of outliers may have a large 
influence on the LS estimate. This motivates the introduction of the concept of robust estimates. 
A robust estimate is an estimate that is not much influenced by a small percentage of outliers. 
That is, a robust estimate does not try to fit all the observations; it only tries to fit the bulk of the 
data. 
 
M-ESTIMATES 

The first class of robust estimates that we present here is the class of M-estimates, 
introduced by Huber (1964) for the location model and Huber (1973) for the regression model. M-
estimates of regression are defined by 
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where ρ(u) is an even function, non-decreasing for positive u.  
To have robustness properties, the function ρ should increase slower than u² and in this 

way give less weight to outliers. For example 
( ) | |u uρ =   

This is least absolute value (LAV) or L1-estimate. However a shortcoming of this 
estimate is that the asymptotic efficiency of this estimate for normal errors is (2/π)=0.637 which 
is a rather low value. It would be convenient to combine robustness with efficiency under the 
regression model with normal errors. For this purpose Huber (1964) proposed to take ρ in the 
following family 
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which is quadratic as the square function used for the LS estimate when |u| is small and is linear 
like the absolute value function for large |u|. 
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These functions may be considered as intermediate functions between |u| and u². One 
common feature of the ρ functions corresponding to the LAV estimate and those of the family 
ρH(u) is that they are convex and that ψ=ρ′ is bounded and non-decreasing.  

However we will show in the class with simulated and real examples that convex ρ-
functions with bounded ψ define M-estimates, which are only robust, when the outliers have low 
leverage. Low leverage outliers are those outliers where the vector of independent variables is not 
an outlier.  

To obtain estimates which are robust against low and high leverage outliers it is required 
that ρ be bounded. One family of bounded ρ functions is the bisquare family proposed by Tukey  
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Differentiating S(θ) we obtain the estimating equation of M-estimates 
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where ψ=ρ′. For ρ convex, ψ is non-decreasing and when ρ is bounded ψ is redescending. 
The problem of solving the estimating equation is equivalent to the minimization problem 

when ρ is convex. However, if ρ is bounded, the estimating equation may have many solutions 
corresponding to local minima and maxima. This will considerably complicate the computation of 
these estimates. Yohai (1987) study a class of robust M-estimates based on a bounded ρ function, 
which are simultaneously highly robust and highly efficient under normal errors. 

The M-estimates that we have presented are not scale equivariant, i.e., they are not 
independent of the system of units. In order to get scale equivariance, the definition of M-
estimates should be modified. Then we define the M-estimates by 
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where sn is an estimate of the scale of the residuals and if we want to keep the M-estimate robust, 
sn should be a robust estimate too.  

The next problem that we are going to address is how to obtain a robust residual scale 
estimate. One way of doing this is using a robust estimate that does not require a previous scale. 
In the next section we introduce a class of estimates with this property 
  
ESTIMATES BASED ON A ROBUST SCALE  

One class of estimates that do not require a previous scale is the class of estimates based 
on the minimization of a residual scale. Given a sample u1,...,un, a scale estimate measures the 
largeness of the sample independent of the sign of their elements. They should satisfy the 
following properties: 

S(u1,...,un)≥0, S(u1,...,un)=S(|u1 ,...,|un|), S(λu1,...,λun)=|λ| S(u1,...,un) 
 

The square root mean squares scale is defined by 
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Observe that The LS- estimate can also be defined by  
0

1( ( ),... ( ))n nS r rθ θ =minimum 
Estimates defined by 

1( ( ),... ( ))n nS r rθ θ =  minimum 
where Sn is an arbitrary scale are called estimated based on a scale. To obtain a robust regression 
estimate we should use a robust scale. 

Given a sample u1,...,un, an M-estimate of scale Sn(u1,...,un) is defined by the value sn 
satisfying 
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where ρ(u) is even, non-decreasing for u>0 and bounded. Generally b is defined by b=Eφ(ρ(u)), 
where φ is the N(0,1) distribution. That makes s consistent to the standard deviation for normal 
data. Observe that if ρ(u)=u², then the M-scale coincides with 0

nS . 
Rousseeuw and Yohai (1984) defined S-estimates of regression by 

1( ( ),... ( ))n nS r rθ θ =minimum, 
where Sn is an M-scale corresponding to a function ρ. 

One important fact is that an S-estimate is also an M-estimate. In fact, let θ be the S-
estimate corresponding to ρ and b. Put 

1( ( ),... ( ))n n ns S r rθ θ=   
then the S-estimate has the property of minimizing 
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Therefore the S-estimates can be thought as self-scaled M-estimates whose scale is 
estimated simultaneously with the regression parameters.. 

Figure 3 show four lines for the shock data: The LS estimate based on all the 
observations, the LS after omitting observations 2 and 4. An L1 estimate and an M-estimate based 
on a ρ function belonging to the bisquare family. We observe that the L1 and the M estimates are 
close to the LS estimate after deleting the outlier observations 
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Figure 3: Shock data - The LS estimate with all observations (LS), the LS estimate after deleting 

observations 1, 2 and 4 (LS-), the L1 estimate (L1) and the M estimate with ρ in the bisquare family and 
efficiency 0.95 (M) 
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