3^a Lista de Exercícios de MAT2458 Escola Politécnica – 2^o semestre de 2014

- 1. Verdadeiro ou falso? Justifique suas respostas.
 - a. Existe uma transformação linear $T: P_3(\mathbb{R}) \to M_2(\mathbb{R})$ cuja matriz em relação às bases canônicas é a matriz identidade.
 - **b.** Se $T: P_8(\mathbb{R}) \to P_8(\mathbb{R})$ é definida por T(p) = p', então existe uma base de $P_8(\mathbb{R})$ tal que a matriz de T em relação a esta base é inversível.
 - c. Se $T: \mathbb{R}^3 \to M_2(\mathbb{R})$ é uma transformação linear injetora então para qualquer base de \mathbb{R}^3 a matriz de T em relação a esta base é inversível.
 - **d.** Se V é um espaço vetorial de dimensão finita e $T:V\to V$ é um operador linear, então T é sobrejetor se, e somente se, existe uma base de V tal que a matriz de T em relação a esta base é inversível.
- 2. Determine a matriz do operador derivação $\mathcal{D}: P_4(\mathbb{R}) \to P_4(\mathbb{R})$ definido por $\mathcal{D}(p) = p'$, relativamente à base $\{1, x, x^2, x^3, x^4\}$ de $P_4(\mathbb{R})$.
- 3. Considere os subespaços vetoriais U e V de $C^{\infty}(\mathbb{R})$ cujas bases são respectivamente $B = \{\cos x, \sin x\}$ e $C = \{e^x \cos x, e^x \sin x, e^{2x} \cos x, e^{2x} \sin x\}$. Determine as matrizes dos operadores de derivação $f \in U \mapsto f' \in U$ e $f \in V \mapsto f' \in V$ com respeito às bases B e C, respectivamente.
- 4. Qual é a matriz, relativamente à base canônica, do operador $T:\mathbb{R}^2\to\mathbb{R}^2$ tal que T(2,3)=(2,3) e T(-3,2)=(0,0)?
- 5. Seja $T:\mathbb{R}^2\to\mathbb{R}^2$ o operador linear cuja matriz em relação à base $B=\{(-1,1),(0,1)\}$ é:

$$[T]_B = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}.$$

Considere as seguintes afirmações:

- (I) T(x,y) = (x,3x+y), para todos $x,y \in \mathbb{R}$;
- (II) a imagem pela transformação T da parábola $\{(x,y)\in\mathbb{R}^2:y=x^2\}$ é a parábola $\{(x,y)\in\mathbb{R}^2:y=x^2-2x\}$;
- (III) o vetor (2,3) pertence à imagem de T.

Assinale a alternativa correta:

- a. apenas as afirmações (I) e (III) são verdadeiras;
- b. apenas a afirmação (I) é verdadeira;
- c. todas as afirmações são verdadeiras;
- d. apenas as afirmações (II) e (III) são verdadeiras;
- e. todas as afirmações são falsas.
- 6. Considere o subespaço S de \mathbb{R}^3 gerado pelas colunas da matriz $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}$. Obtenha números reais a, b, c de modo que

$$S = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}.$$

7. Considere as transformações lineares $T: \mathbb{R}^{n+1} \to P_n(\mathbb{R})$ e $S: P_n(\mathbb{R}) \to \mathbb{R}^{n+1}$ definidas por $T(a_0, a_1, \dots, a_n) = a_0 + a_1 x + \dots + a_n x^n$ e $S(p) = (p(0), p(1), \dots, p(n))$. Determine as matrizes de $S \circ T$ e de $T \circ S$ com respeito às bases canônicas apropriadas.

- 8. Sejam F e G operadores lineares em \mathbb{R}^3 tais que F(x,y,z)=(x,2y,y-z), para todo $(x,y,z)\in\mathbb{R}^3$, e tais que a matriz do operador 2F-G em relação à base $B=\left\{(0,1,0),(1,1,0),(0,0,1)\right\}$ seja $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$. Ache a matriz que representa o operador F^2+G^2 com respeito às bases B e $C=\left\{(1,0,1),(0,1,0),(0,1,1)\right\}$.
- 9. Sejam $T, S \colon \mathbb{R}^3 \to \mathbb{R}^3$ operadores lineares tais que

$$T(x,y,z) = (x+2y,y+2z,3z), \quad x,y,z \in \mathbb{R}, \quad [S \circ T]_{\operatorname{can}} = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 3 & 2 \\ 0 & 3 & 6 \end{bmatrix}.$$

O traço da matriz $[S]_{can}$ (ou seja, a soma dos elementos da diagonal principal de $[S]_{can}$) é igual a (a) 1; (b) 2; (c) 3; (d) 4; (e) 5.

10. Se $T: P_1(\mathbb{R}) \to P_2(\mathbb{R})$ é a transformação linear cuja matriz em relação às bases $B = \{1, 1+t\}$ de $P_1(\mathbb{R})$ e $C = \{2+t^2, t+t^2, 1-t^2\}$ de $P_2(\mathbb{R})$ é:

$$[T]_{BC} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \\ 1 & 3 \end{pmatrix}$$

então T(1+2t) é igual a:

- **a.** $1 + 7t^2$:
- **b.** $3+4t-2t^2$;
- **c.** $5+4t-t^2$;
- **d.** $-1 + 4t + 5t^2$;
- **e.** $9-6t^2$.
- 11. Sejam $T:\mathbb{R}^3 \to P_2(\mathbb{R})$ e $G:P_2(\mathbb{R}) \to \mathbb{R}^3$ transformações lineares tais que

$$[T]_{BC} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \quad e \quad [G]_{CB} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & 2 \end{bmatrix},$$

onde:

$$B = \{(1,1,0), (0,1,0), (0,1,1)\} \quad e \quad C = \{1,1+x,x+x^2\}.$$

- (a) Determine bases para $\ker(G \circ T)$ e $\ker(T \circ G)$.
- (b) Seja $H = 3(T \circ G) + I$. Determine $[H]_{DC}$, onde $D = \{1, x, x^2\}$.
- 12. Sejam $a, b \in \mathbb{R}$ e $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ a transformação linear cuja matriz em relação às bases canônicas de $P_2(\mathbb{R})$ e \mathbb{R}^3 é:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & -1 \\ a & 0 & b \end{bmatrix}.$$

- (a) não existem a e b que tornem T injetora;
- (b) T é bijetora para quaisquer $a, b \in \mathbb{R}$;
- (c) T é bijetora para quaisquer $a, b \in \mathbb{R}$ com $a \neq b$;
- (d) não existem $a, b \in \mathbb{R}$ que tornem T sobrejetora;
- (e) T é bijetora se a = b.
- 13. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear tal que $T^2 = T$. Prove que T = 0 ou T = Id ou existe uma base B de \mathbb{R}^2 tal que

$$[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

14. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear não nulo tal que $T^2 = 0$. Prove que existe uma base B de \mathbb{R}^2 tal que

$$[T]_B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

- 15. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ definido por T(x, y, z, w) = (-y, x y, z, -w). Mostre que $T^6 = \text{Id}$ e determine T^{-1} .
- 16. Mostre que se $A \in M_2(\mathbb{R})$ então seu polinômio característico é dado por

$$p_A(t) = t^2 - a_1 t + a_0$$

- onde $a_0 = \det(A)$ e $a_1 = \operatorname{traco}(A)$.
- 17. Mostre que se $A \in M_n(\mathbb{R})$ é diagonalizável, então a matriz A^m é diagonalizável qualquer que seja o número natural $m, m \geq 1$.
- 18. Exiba uma matriz A não diagonalizável tal que a matriz A^2 seja diagonalizável.

Sugestão:
$$\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

19. Mostre que o operador linear $T: C(\mathbb{R}) \to C(\mathbb{R})$ dado por

$$T(u(x)) = \int_0^x u(s)ds$$

não tem autovalores.

- 20. Seja T um operador linear com autovalores 0, 1, 2 e 3. Assinale a alternativa contendo uma afirmação FALSA:
 - (a) 5, 6, 9 e 14 são autovalores de $5\text{Id} + T^2$;
 - (b) T é inversível e 0, 1, $\frac{1}{2}$ e $\frac{1}{3}$ são autovalores de T^{-1} ;
 - (c) $0, 1, 4 e 9 são autovalores de <math>T^2$;
 - (d) 0, 1, 8 e 27 são autovalores de T^3 ;
 - (e) 0, 3, 6 e 9 são autovalores de 3T.
- 21. Mostre que se λ é um autovalor do operador linear $T:V\to V$ e n é um número natural, então:
 - (a) λ^n é um autovalor de T^n .
 - (b) Se f(t) é um polinômio qualquer então $f(\lambda)$ é um autovalor de f(T).
- 22. Sejam V um espaço vetorial, $T:V\to V$ um operador linear, u um autovetor de T associado ao autovalor λ e v um autovetor de T associado ao autovalor μ . Pode-se afirmar que:
 - (a) u + v é autovetor de T se e somente se $\mu = \lambda$ e $u + v \neq 0$;
 - (b) se $\lambda = \mu$ então $\lambda u + v$ não é um autovetor de T;
 - (c) se $\lambda \neq \mu$ então u e v podem ser linearmente dependentes;
 - (d) se $\lambda \neq \mu$ então, para todo $\beta \in \mathbb{R}$, $3u + \beta v$ é autovetor de T associado ao autovalor $3\lambda + \beta \mu$;
 - (e) se $\lambda = \mu$ então u v é autovetor de T associado ao autovalor 0.
- 23. Seja V um espaço vetorial de dimensão finita e seja $T:V\to V$ um operador linear invertível. Prove que:
 - (a) Se λ é um valor próprio de T então $\lambda \neq 0$.
 - (b) λ é um valor próprio de T se, e somente se $\frac{1}{\lambda}$ é um valor próprio de T^{-1} (onde T^{-1} é o operador inverso de T).
 - (c) Se λ é um valor próprio de T, a multiplicidade algébrica de λ é igual à multiplicidade algébrica de $\frac{1}{\lambda}$.
- 24. Seja $A = \begin{bmatrix} 2 & 4 \\ 3 & 13 \end{bmatrix}$. Calcule $A^n, n \in \mathbb{N}$.

Sugestão: Lembre-se de que $(M^{-1}BM)^n=M^{-1}B^nM$ para todo $n\in\mathbb{N}.$

- 25. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear com autovetores $v_1 = (1, -1)$ e $v_2 = (1, 1)$ correspondendo respectivamente aos autovalores $\lambda_1 = \frac{1}{2}$ e $\lambda_2 = 2$. Seja v = (5, 1). Calcule $T^{10}(v)$.
- 27. Verifique se cada uma das matrizes abaixo é ou não diagonalizável. Quando for diagonalizável, determine uma matriz invertível M tal que $M^{-1}AM$ seja uma matriz diagonal.

- 28. Seja $A \in M_n(\mathbb{R})$, onde $n \geq 2$. Assuma que a soma dos elementos de qualquer linha de A seja igual a 1. Assinale a alternativa correta:
 - (a) A pode não possuir autovalores reais;
 - (b) 1 e 0 são necessariamente autovalores de A;
 - (c) A possui algum autovalor real, mas pode ser que nem 1 nem 0 sejam autovalores de A;
 - (d) 1 é necessariamente autovalor de A, mas 0 pode não ser;
 - (e) 0 é necessariamente autovalor de A, mas 1 pode não ser.
- 29. Seja $T:\mathbb{R}^3\to\mathbb{R}^3$ uma transformação linear cuja matriz em relação às bases $B=\{(1,1,0),(1,0,0),(0,1,1)\}$ e $C=\{(0,1,0),(1,1,0),(1,0,1)\}$ é dada por

$$\left[\begin{array}{ccc} 0 & -3 & 2 \\ -1 & 1 & -1 \\ 0 & 0 & -1 \end{array}\right]_{B\ C}.$$

- a. Encontre os autovalores e autovetores de T.
- **b.** É T diagonalizável?
- 30. Sejam V um espaço vetorial de dimensão 3, $T:V\to V$ um operador linear e B uma base de V tal que:

$$[T]_B = \begin{bmatrix} -a & 0 & -a \\ 0 & b & 0 \\ -3a & c & a \end{bmatrix},$$

onde $a, b, c \in \mathbb{R}$. Assinale a alternativa correta:

- (a) se $b \neq a = 0$ então T não é diagonalizável;
- (b) se $|b| \neq 2|a|$ e $a \neq 0$ então T é diagonalizável;
- (c) se $a \neq 0$ e b = 2a = c então T é diagonalizável;
- (d) se a = b = 0 e $c \neq 0$ então T é diagonalizável;
- (e) se c=0 e $b=-2a\neq 0$ então T não é diagonalizável.
- 31. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ uma transformação linear com polinômio característico indicado por $p_T(t)$. Verifique se T é diagonalizável em cada um dos seguintes casos:
 - (a) $p_T(t) = t^4 1$
 - (b) $p_T(t) = t^3(t+1)$, e dim ker(T) = 2.
 - (c) $p_T(t) = t^2(t^2 4)$, e dim ker(T) = 2.

- 32. Sejam U um espaço vetorial de dimensão 5, $T: U \to U$ um operador linear e $p(t) = -t(t+1)^3(t+2)$ seu polinômio característico. Assinale a alternativa VERDADEIRA:
 - (a) $\dim(\ker(T)) \geq 2$;
 - (b) $\dim(\ker(T)) = 1$, $\dim(\ker(T+2I)) = 1$ e $\dim(\ker(T+I)) = 3$;
 - (c) T é sobrejetor;
 - (d) T não é diagonalizável pois $\dim(U) = 5$ e p possui apenas três raízes reais;
 - (e) T é diagonalizável se, e somente se, existem $v_1, v_2, v_3 \in U$, linearmente independentes, tais que $T(v_1) = -v_1, T(v_2) = -v_2$ e $T(v_3) = -v_3$.
- 33. Sejam V um espaço vetorial de dimensão n > 4, $T: V \to V$ um operador linear com polinômio característico $p(t) = (1-t)(2-t)^3(3-t)^{n-4}$. Assinale a alternativa FALSA: O operador T é diagonalizável se, e somente se,
 - (a) $\dim(\text{Im}(T 3I)) \dim(\ker(T 2I)) = 1;$
 - (b) $V = \ker(T I) + \ker(T 2Id) + \ker(T 3I);$
 - (c) $\dim(\operatorname{Im}(T-I)) + \dim(\operatorname{Im}(T-2I)) + \dim(\operatorname{Im}(T-3I)) = n;$
 - (d) $\dim(\ker(T-I)) + \dim(\ker(T-2I)) + \dim(\ker(T-3I)) = n;$
 - (e) $\dim(\ker(T-2I)) + \dim(\ker(T-3I)) = n-1$.
- 34. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear tal que todo vetor não nulo é um autovetor de T. Escreva então $Te_i = \alpha_i e_i$, onde $\alpha_i \in \mathbb{R}$ para i = 1, 2, 3 e can $= \{e_1, e_2, e_3\}$ é a base canônica de \mathbb{R}^3 .
 - (a) Calcule $T(e_1 + e_2 + e_3)$.
 - (b) Mostre que $\alpha_1 = \alpha_2 = \alpha_3$.
 - (c) Prove que existe um número $\alpha \in \mathbb{R}$ de modo que o polinômio característico de T seja

$$p_T(t) = (t - \alpha)^3.$$

- (d) Conclua que $T=\alpha \mathrm{Id}$ onde Id é o operador identidade.
- 35. Sejam V um espaço vetorial de dimensão finita e $T:V\to V$ um operador linear. Suponha que $\lambda\neq\mu$ sejam autovalores de T. Considere as seguintes afirmações:
 - (I) se dim(V) dim $(V(\lambda))$ = 1 então T é diagonalizável;
 - (II) se $\dim(V) = \dim(V(\lambda)) + \dim(V(\mu))$ então T é diagonalizável;
 - (III) T é diagonalizável se e somente se $\dim(V) = 2$.

- (a) apenas as afirmações (I) e (II) são verdadeiras;
- (b) apenas a afirmação (II) é verdadeira;
- (c) apenas as afirmações (I) e (III) são verdadeiras;
- (d) todas as afirmações são verdadeiras;
- (e) apenas as afirmações (II) e (III) são verdadeiras.
- 36. Seja V um espaço vetorial de dimensão finita e seja $T:V\to V$ um operador linear tal que posto(T)=1. Prove que ou T é diagonalizável ou T^2 é o operador nulo.
- 37. Seja V um espaço vetorial de dimensão finita e seja $T:V\to V$ um operador linear tal que $T^2=T$.
 - (a) Prove que se λ é um autovalor de T então $\lambda = 0$ ou $\lambda = 1$.
 - (b) Prove que $V = \ker(T) \oplus \operatorname{Im}(T)$ e conclua que T é diagonalizável.
- 38. Seja $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ o operador linear tal que $T(M) = M^t$, onde $M \in M_n(\mathbb{R})$ e M^t é a transposta de M. Prove que T é diagonalizável.

- 39. Seja $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ definida por T(f(t)) = f(t+1) para todo $f(t) \in P_n(\mathbb{R})$. É T diagonalizável? Por que?
- 40. Seja $B = \{v_1, v_2, v_3, v_4\}$ uma base do espaço vetorial V e seja $T: V \to V$ o operador linear dado por

$$[T]_B = \left[\begin{array}{rrrr} 2 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & -4 & 3 \end{array} \right].$$

- (a) Mostre que os subespaços $[v_1, v_2]$ e $[v_3, v_4]$ são invariantes sob T.
- (b) Verifique que T não tem autovetores.
- 41. Seja $B = \{e_1, e_2, e_3, e_4\}$ uma base de um espaço vetorial V e seja $T: V \to V$ um operador linear tal que:

$$[T]_B = \begin{bmatrix} -1 & 0 & -2 & 2\\ 0 & -1 & 0 & 1\\ 0 & 0 & 1 & 0\\ 2 & 1 & 1 & -1 \end{bmatrix}.$$

Considere as seguintes afirmações:

- (I) o subespaço $[e_1, e_2, e_4]$ é invariante por T;
- (II) o subespaço $[e_2, e_4]$ é invariante por T;
- (III) o subespaço $[e_1, e_3]$ é invariante por T.

Assinale a alternativa correta:

- (a) todas as afirmações são verdadeiras;
- (b) apenas as afirmações (I) e (III) são falsas;
- (c) apenas as afirmações (II) e (III) são falsas;
- (d) todas as afirmações são falsas;
- (e) apenas as afirmações (I) e (II) são falsas.
- 42. No \mathbb{R}^4 com o produto interno usual considere o subespaço W = [(1,1,0,0,),(0,1,-1,1)].
 - (a) Determine bases ortonomais $B \in B'$ para $W \in W^{\perp}$ respectivamente.
 - (b) Sendo $T: \mathbb{R}^4 \to \mathbb{R}^4$ o operador linear dado por $T(v) = \operatorname{proj}_W(v)$, determine a matriz de T em relação à base $B \cup B'$.
 - (c) Quais são os autovalores de T? É T diagonalizável?
- 43. Sejam T um operador simétrico num espaço vetorial de dimensão finita V com produto interno e λ um valor próprio de T. Mostre que o subespaço $(V(\lambda)^{\perp})$ é invariante por T.
- 44. Considere \mathbb{R}^4 munido do produto interno usual e $T: \mathbb{R}^4 \to \mathbb{R}^4$ um operador linear satisfazendo as seguintes condições:
 - (I) os únicos valores próprios de T são 2 e -2;
 - (II) T é simétrico;
 - (III) V(2) = [(0, 1, 1, 0), (0, 0, 0, 1), (1, 0, 0, 1)].

Temos que T(3, -2, 2, 3) é igual a:

- (a) (6,4,4,6);
- (b) (-4, 6, 6, -4);
- (c) (6,4,-4,6);
- (d) (-6, -4, 4, 6);
- (e) (4, 6, 6, 4).

45. Considere \mathbb{R}^3 munido do produto interno usual e $T:\mathbb{R}^3\to\mathbb{R}^3$ um operador linear definido por

$$T(x, y, z) = (x - 2y, -2x + y, -z)$$
 $x, y, z \in \mathbb{R}$.

Assinale a alternativa correta:

- (a) T é simétrico;
- (b) o polinômino característico de T possui uma única raiz real;
- (c) T não é injetor;
- (d) T possui três valores próprios distintos;
- (e) T possui dois valores próprios distintos λ_1 e λ_2 tais que dim $V(\lambda_1) = 1$ e dim $V(\lambda_2) = 1$.
- 46. Seja V um espaço vetorial com produto interno <, >. Seja $T:V\to V$ um operador linear simétrico e seja λ um valor próprio de T. Prove que $V(\lambda)^{\perp}$ é invariante sob T.
- 47. Considere \mathbb{R}^4 munido do produto interno usual e $T: \mathbb{R}^4 \to \mathbb{R}^4$ um operador linear satisfazendo as seguintes condições:
 - (I) os únicos valores próprios de T são 2 e -2;
 - (II) T é simétrico;
 - (III) V(2) = [(0, 1, 1, 0), (0, 0, 0, 1), (1, 0, 0, 1)].

Calcule T(3, -2, 2, 3). (resposta (6, 4, -4, 6)).

48. No \mathbb{R}^4 com o produto interno usual seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ o operador linear dado por:

$$[T]_{\operatorname{can}} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right],$$

onde can é a base canônica de \mathbb{R}^4 .

- a) Mostre que T é diagonalizável.
- b) Ache uma base ortonormal B de \mathbb{R}^4 tal que $[T]_B$ seja diagonal.
- c) Ache uma matriz real invertível M tal que $M^{-1}[T]_{can}M$ seja diagonal.
- 49. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por:

$$T(x, y, z) = (4x + 2y + 2z, 6x + 2z, 12x + 4y + 2z).$$

- (a) Ache uma base de \mathbb{R}^3 formada por vetores próprios de T.
- (b) Considerando \mathbb{R}^3 com o produto interno usual mostre que $n\tilde{a}o$ existe uma base ortogonal formada por vetores próprios de T. (Se ortogonalizarmos a base encontrada em (a) $n\tilde{a}o$ obteremos uma base formada por vetores próprios de T. Por que?)
- 50. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear cujos valores próprios são 2, -3 e 0 e tal que V(-3) = [(1,1,1)] e V(2) = [(1,0-1)]. Seja

$$M = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

tal que $M^{-1}[T]_{\operatorname{can}}M$ (onde can indica a base canônica de \mathbb{R}^3) é diagonal.

- (a) Exiba $[T]_{can}$.
- (b) É T inversível? Justifique.
- (c) É v = (1, -2, 1) um vetor próprio de T? Justifique.

51. No \mathbb{R}^3 com o produto interno usual, seja $T:\mathbb{R}^3\to\mathbb{R}^3$ o operador linear dado por

$$T(x, y, z) = (x - 2y, -2x + y, -z).$$

- (a) Verifique que T é simétrico.
- (b) Determine uma matriz M tal que $M^{-1}[T]_{can}M$ seja diagonal.
- 52. Sejam U um espaço vetorial de dimensão f
nita munido de um produto interno, $T\colon U\to U$ um operador linear e u e v vetores próprios de T associados respectivamente a valores próprios distintos λ e μ . Considere as seguintes afirmações:
 - (I) se $\dim(U) = 3$ e $\dim(V(\lambda)) = 2$ então T é diagonalizível;
 - (II) se T é simétrico então $V(\lambda) = V(\mu)^{\perp}$;
 - (III) se $\langle u, v \rangle = 0$ então T é simétrico.

Assinale a alternativa VERDADEIRA

- (a) somente as afirmações (II) e (III) são verdadeiras;
- (b) todas as afirmações sã o verdadeiras;
- (c) somente as afirmações (I) e (III) são verdadeiras;
- (d) somente as afirmações (I) e (II) são verdadeiras;
- (e) somente a afirmação (I) é verdadeira.
- 53. No \mathbb{R}^3 com o produto interno usual, determine uma base ortonormal B formada por vetores próprios do operador simétrico T cuja matriz em relação à base canônica é:

(a)
$$\begin{bmatrix} -3 & 1 & 1 \\ 1 & -1 & -3 \\ 1 & -3 & -1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -3 & 1 & 1 \\ 1 & -1 & -3 \\ 1 & -3 & -1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$

54. Considere o espaço vetorial \mathbb{R}^3 munido do seu produto interno canônico. Seja $T:\mathbb{R}^3 \to \mathbb{R}^3$ o operador linear cuja matriz em relação à base $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ é:

$$[T]_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Considere as seguintes afirmações:

- (I) T não é simétrico, mas é diagonalizável;
- (II) T é simétrico;
- (III) T não é diagonalizável.

- (a) apenas a afirmação (III) é verdadeira;
- (b) apenas a afirmação (II) é verdadeira;
- (c) apenas as afirmações (II) e (III) são verdadeiras;
- (d) todas as afirmações são falsas;
- (e) apenas a afirmação (I) é verdadeira.
- 55. No \mathbb{R}^3 com o produto interno usual, seja $T:\mathbb{R}^3\to\mathbb{R}^3$ um operador linear simétrico cujos autovalores são -2 e 3. Sendo V(-2) = Ker(T+2I) = [(1,1,1),(-1,0,1)], ache $[T]_{\text{can}}$, onde can é a base canônica de \mathbb{R}^3 .
- 56. Sejam V um espaço vetorial real de dimensão finita munido de um produto interno e $T:V\to V$ um operador linear. Considere as seguintes afirmações:
 - (I) se existe uma base ortogonal de V formada por autovetores de T então T é simétrico;

- (II) se T é simétrico e $u, v \in V$ são autovetores de T associados a um autovalor λ então u é ortogonal a v;
- (III) T é simétrico se e somente se T é diagonalizável.

Assinale a alternativa correta:

- (a) apenas as afirmações (I) e (III) são verdadeiras;
- (b) apenas a afirmação (III) é verdadeira;
- (c) apenas as afirmações (I) e (II) são verdadeiras;
- (d) apenas a afirmação (I) é verdadeira;
- (e) apenas a afirmação (II) é verdadeira.
- 57. Sejam E um espaço vetorial com produto interno e $T: E \to E$ um operador linear simétrico. Considere as seguintes afirmações:
 - (I) se B é uma base ortogonal de E então a matriz $[T]_B$ é simétrica;
 - (II) se λ_1 e λ_2 são autovalores distintos de T, A_1 e A_2 são conjuntos ortogonais de vetores de E tais que:

$$A_1 \subset \operatorname{Ker}(T - \lambda_1 I), \quad A_2 \subset \operatorname{Ker}(T - \lambda_2 I),$$

então a união $A_1 \cup A_2$ é um conjunto ortogonal;

(III) se B é uma base de E tal que a matriz $[T]_B$ é diagonal então B é ortonormal.

Assinale a alternativa correta:

- (a) todas as afirmações são verdadeiras;
- (b) apenas a afirmação (II) é verdadeira;
- (c) apenas as afirmações (I) e (II) são verdadeiras;
- (d) apenas a afirmação (I) é verdadeira;
- (e) apenas a afirmação (III) é verdadeira.
- 58. Seja V um espaço vetorial de dimensão finita e com produto interno. Seja W um subespaço de V e seja $T: V \to V$ definida por $T(v) = \operatorname{proj}_W(v)$, a projeção ortogonal de v em W.
 - (a) Prove que $T^2 = T$.
 - (b) Prove que $\operatorname{Ker} T = W^{\perp}$ e $\operatorname{Im} T = W$.

(c) Prove que existe uma base
$$\operatorname{ortonormal} B$$
 de V tal que $[T]_B = \begin{bmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 \end{bmatrix}$ onde o número de 1 's na diagonal é igual à dimensão de W .

de 1's na diagonal é igual à dimensão de W.

- (d) Prove que T é um operador simétrico.
- 59. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Seja $S \neq V$ um subespaço de V e seja $T:V\to V$ um operador linear simétrico. Considere a afirmação abaixo:

"Se
$$S$$
 é __(i)_ então S^\perp é __(ii)_ ".

A substituição de (i) e (ii), respectivamente, pelas expressões abaixo que forma uma afirmação FALSA é:

- (a) "invariante por T", "autoespaço de T";
- (b) "a imagem de T", "autoespaço de T";
- (c) "a imagem de T", "o núcleo de T";

- (d) "autoespaço de T", "invariante por T";
- (e) "o núcleo de T", "a imagem de T".
- 60. Seja V um espaço vetorial com produto interno \langle , \rangle e sejam $u, w \in V$ vetores não nulos. Defina $T: V \to V$ por $T(v) = \langle v, u \rangle w$ para todo $v \in V$. Prove que T é um operador simétrico se, e somente se $u \in w$ são vetores linearmente dependentes.
- 61. Estabeleça uma correspondência entre as equações
 - $(1) \ x^2 + 2y^2 1 = 0, \quad (2) \ x^2 + y^2 + 1 = 0, \quad (3) \ x^2 + 2xy + y^2 + x + y = 0,$

 - $(4) x^{2} y^{2} 1 = 0,$ $(7) x^{2} y^{2} = 0,$ (5) $x^2 + y^2 = 0$, (6) $x - y^2 = 0$, (8) $x^2 + y^2 - 1 = 0$, (9) $x^2 + 2xy + y^2 = 0$.

e os tipos de cônicas

- (a) conjunto vazio, (b) um ponto,
- (c) uma reta,

(f) elipse,

- (d) duas retas paralelas, (e) duas retas concorrentes,
- (g) hipérbole,
- (h) parábola,
- (i) circunferência.
- 62. Reconheça as seguintes cônicas dadas pelas suas equações em relação ao sistema de coordenadas (O, \vec{i}, \vec{j}) .
 - (a) $4x^2 4xy + 7y^2 + 12x + 6y 9 = 0$
 - (b) $x^2 2xy + y^2 2x 2y + 1 = 0$
 - (c) $x^2 + 4y^2 + 3\sqrt{3}xy 1 = 0$
 - (d) $7x^2 + 6xy y^2 + 28x + 12y + 28 = 0$
- 63. Reconheça as seguintes quádricas dadas pelas suas equações em relação ao sistema de coordenadas $(O, \vec{i}, \vec{j}, \vec{k})$.
 - (a) 2xy + z = 0
 - (b) $x^2 + y^2 2z^2 + 4xy 2xz + 2yz x + y + z = 0$
 - (c) $x^2 + y^2 + z^2 4yz = 1$
 - (d) $11x^2 + 11y^2 + 14z^2 + 2xy + 8xz 8yz 12x + 12y + 12z = 6$
- 64. Seja fixado um sistema de coordenadas ortogonal no plano. Considere a equação:

$$ax^2 - 2xy + ay^2 - 1 = 0,$$

onde a é um número real não nulo. Considere também as seguintes afirmações:

- (I) se 0 < a < 1 então a equação define uma hipérbole;
- (II) se a > 1 então a equação define uma elipse;
- (III) se a=1 então a equação define um par de retas paralelas.

- (a) apenas as afirmações (I) e (II) são verdadeiras;
- (b) todas as afirmações são verdadeiras.
- (c) apenas as afirmações (I) e (III) são verdadeiras;
- (d) apenas as afirmações (II) e (III) são verdadeiras;
- (e) todas as afirmações são falsas.

- 65. (a) Determine uma equação para a superfície formada pelos pontos P=(x,y,z) cuja distância até a origem é igual a $\sqrt{2}$ vezes a distância de P ao eixo Oz. Que superfície é essa? Reconheça a curva dada pela interseção dessa superfície com o plano y=1.
 - (b) Determine uma equação para a superfície formada pelos pontos P=(x,y,z) cuja distância ao ponto Q=(0,-1,-2) é igual a $\sqrt{2}$ vezes a distância de P à reta $r: \left\{ \begin{array}{l} z=2y\\ x=0 \end{array} \right.$

Determine uma equação reduzida da superfície. Que superfície é essa? Reconheça e encontre uma equação para a curva dada pela interseção dessa superfície com o plano z=0.

(c) Refaça (b), considerando
$$Q=(0,-1,-1)$$
 e $r:\left\{\begin{array}{ll}z=y\\x=0\end{array}\right.$

66. Seja dado $k \in \mathbb{R}$. A equação:

$$5x^2 + 9y^2 + 6z^2 + 4yz - 10x + 4y + 12z = k,$$

com incógnitas $x,\,y,\,z,$ não tem solução se:

(a)
$$k = -11$$
; (b) $k = -11$; (c) $k = 11$; (d) $k = 22$; (e) $k = -22$.

RESPOSTAS

- 1. **a.** Sim;
 - b. Não;
 - c. Não;
 - d. Sim.

$$2. \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

3.
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 e $\begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$.

- $4. \ \begin{pmatrix} \frac{4}{13} & \frac{6}{13} \\ \frac{6}{13} & \frac{9}{13} \end{pmatrix}.$
- 6. Considere, por exemplo, a = -1, b = -1 e c = 1.
- 7. Ambas as matrizes são iguais a $\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & n & n^2 & \cdots & n^n \end{pmatrix}.$
- $8. \begin{pmatrix} 0 & 2 & 0 \\ 12 & 9 & -10 \\ 1 & 0 & 10 \end{pmatrix}.$
- 24. $\frac{1}{13}\begin{bmatrix} 12+14^n & -4+4\times14^n \\ -3+3\times14^n & 1+12\times14^n \end{bmatrix}$
- 25. $(2^{-9} + 3 \times 2^{10}, -2^{-9} + 3 \times 2^{10})$
- 26. As respostas vão variar. Uma tal M é $M=\begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$.
- 27. (a) É diagonalizável. As respostas para M vão variar. Uma tal M é $M=\begin{bmatrix}0 & -2 & -2 & 0\\0 & 0 & 2 & 0\\0 & 1 & 0 & 2\\1 & 3 & 3 & 1\end{bmatrix}$.
 - (b)Não é diagonalizável. (c)Não é diagonalizável.
 - (d)É diagonalizável. As respostas para M vão variar. Uma tal M é $M=\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -2 & 0 \end{bmatrix}$.
- 29. (a)autovalores:-1 e 3;V(-1) = [(1,1,0),(1,1,1)] e V(3) = [(-1,1,0)]. (b) Sim.

42. (a)
$$B = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0), (\frac{1}{\sqrt{10}}, \frac{-1}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{-2}{\sqrt{10}})\} \in B' = \{(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, 0), (\frac{1}{\sqrt{15}}, \frac{-1}{\sqrt{15}}, \frac{2}{\sqrt{15}}, \frac{3}{\sqrt{15}})\}$$

47.
$$T(3, -2, 2, 3) = (6, 4, -4, 6)$$

48. (b)
$$\{(1,0,0,0),(0,\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}}),(0,\frac{-1}{\sqrt{6}},\frac{2}{\sqrt{6}},\frac{-1}{\sqrt{6}}),(0,\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})\}$$
 (c) As respostas vão variar. Use (b) para montar uma tal matriz M . Uma outra matriz M é

$$M = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & -1 & -1 & 1 \end{array} \right].$$

49. (a)
$$\{(1,0,-3),(0,-1,1),(1,1,2)\}$$

50. (a)
$$[T]_{\text{can}} = \begin{bmatrix} 0 & -1 & -2 \\ -1 & -1 & -1 \\ -2 & -1 & 0 \end{bmatrix}$$

51. As respostas vão variar. Uma tal matriz
$$M$$
 é $M=\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{array}\right].$

53. (a)
$$\{(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}), (\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}})\}$$

(b) $\{(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}})\}$

55.
$$[T]_{\text{can}} = \frac{1}{6} \begin{bmatrix} -7 & -10 & 5 \\ -10 & 8 & -10 \\ 5 & -10 & -7 \end{bmatrix}$$

65. (a) é um cone. Equação:
$$z^2 = x^2 + y^2$$
. A curva é uma hipérbole com equação $z^2 - x^2 = 1$.

(b) é um cone. Equação:
$$5x^2 + 3y^2 - 3z^2 - 8yz - 10y - 20z = 25$$
.

Equação reduzida:
$$x^{\prime\prime 2}+y^{\prime\prime 2}-z^{\prime\prime 2}=0$$

A curva é uma elipse com equação $15x^2 + 9(y - \frac{5}{3})^2 = 100$.

(c) é um cone. Equação:
$$x^2 - 2yz - 2z - 2y = 2$$
.

equação reduzida:
$$x''^2 + y''^2 - z''^2 = 0$$

A curva é uma parábola com equação $x^2 - 2y = 2$.

Múltipla Escolha:

```
Ex. 5. (a);
              Ex. 9. (a).
                              Ex. 10. (b).
                              12. (c).
20. (b).
         22. (a).
                    28. (d).
                              30. (b).
32. (e).
          33. (c).
                    35. (a).
                              41. (c).
44. (c).
          45. (a).
52. (e).
          54. (e).
                    56. (d)
                              57. (b).
59. (a).
         64. (b).
                    66. (e).
```