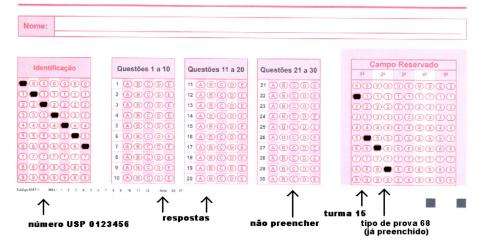
MAT2457 - Álgebra Linear para Engenharia I

Prova 2 - 15/05/2013

Nome:	NUSP:
Professor:	Turma:

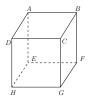
Instruções

- (1) A prova tem início às 7:30 e duração de 2 horas.
- (2) Não é permitido deixar a sala sem entregar a prova.
- (3) Todo material não necessário à prova (mochilas, bolsas, calculadoras, agasalhos, bonés, celulares, livros, etc.) deve ficar na frente da sala.
- (4) Sobre a carteira devem permanecer apenas lápis, caneta, borracha e documento de identidade com foto.
- (5) É permitida a entrada na sala até as 8:00 e não é permitida a saída da sala antes das 8:40.
- (6) As respostas devem ser transferidas para a folha óptica durante as 2 horas de prova (não há tempo extra para o preenchimento da folha óptica).
- (7) Só destaque o gabarito do aluno (última folha) quando for entregar a prova. Não esqueça de anotar o tipo de prova no gabarito do aluno (para que você possa depois conferir suas respostas com o gabarito oficial).
- (8) A folha óptica deve ser preenchida com caneta esferográfica azul ou preta.
- (9) Para o correto preenchimento da folha óptica siga o exemplo abaixo.



Nas questões nas quais um sistema de coordenadas em E^3 não estiver especificado, deve-se levar em conta que todas as coordenadas estão dadas em um sistema de coordenadas de E^3 de base ortonormal e positiva.

Questão 1. Considere o cubo representado na figura abaixo e o sistema de coordenadas $\Sigma = (A, \{\overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD}\})$ em E^3 .



Então, uma equação geral do plano que passa pelo ponto B e é paralelo aos vetores \overrightarrow{GA} e \overrightarrow{HF} é dada por

a.
$$x - 2y + z - 1 = 0$$

b.
$$2x - y - z - 2 = 0$$

c.
$$-x + 2y - z - 2 = 0$$

d.
$$x - 2y + z - 2 = 0$$

e.
$$2x - y - z - 2 = 0$$

Questão 2. Fixada uma orientação em V^3 , dados $\vec{u}, \vec{v} \in V^3$, pode-se afirmar que

a.
$$(-\vec{u} + 2\vec{v}) \wedge (-\vec{u} - 3\vec{v}) = 2\vec{u} \wedge \vec{v}$$
.

- **b.** se $\{\vec{u}, \vec{v}\}$ é linearmente independente, então $\{\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}\}$ é uma base positiva de V^3 .
- **c.** $\|\vec{u} \wedge \vec{v}\|^2 + (\vec{u} \cdot \vec{v})^2 = \|\vec{u}\|^4 \|\vec{v}\|^4$.
- **d.** se \vec{u} é ortogonal a \vec{v} , então $\vec{u} \wedge \vec{v} = \vec{0}$.
- **e.** $\vec{u} \wedge \vec{v} = \vec{0}$ se, e somente se, $\vec{v} = -\vec{u}$.

Questão 3. Sejam $A, B, C \in E^3$ os vértices de um triângulo. Suponha que $\|\overrightarrow{AB}\| = \|\overrightarrow{BC}\|$ e que a mediana relativa à base AC esteja contida na reta dada pelas equações $\frac{x+1}{2} = 1 - y = z$. Se A = (1,2,3), então as coordenadas do vetor \overrightarrow{AC} são

- **a.** (1,3,2)
- **b.** (-2, -2, 2)
- **c.** (0, -4, -4)
- **d.** (0,2,2)
- **e.** (2,4,2)

Questão 4. Considere fixada uma orientação em V^3 e seja E uma base ortonormal positiva de V^3 . Se $\vec{a}=(-1,0,1)_E$, $\vec{b}=(1,-2,1)_E$ e \vec{x} é um vetor tal que $\vec{x} \wedge \vec{a}=\vec{b}$, então a soma das coordenadas de \vec{x} com respeito à base E é igual a

- **a.** −1
- **b.** 1
- **c.** 2
- **d.** 3
- **e.** 0

Questão 5. Sejam $A,B,C,D \in E^3$ vértices de um tetraedro tais que $\|\overrightarrow{AB}\| = \|\overrightarrow{AC}\| = 2$ e $\|\overrightarrow{AD}\| = 3$. Se o ângulo no vértice A do triângulo ABC mede $2\pi/3$ radianos e a reta AD faz um ângulo de $\pi/3$ radianos com o plano ABC, então o volume do tetraedro ABCD é igual a

- **a.** $\sqrt{6}/2$
- **b.** $3\sqrt{3}$
- **c.** 1
- **d.** $\sqrt{6}$
- **e.** 3/2

Questão 6. Considere os planos

$$\pi_1: x + y + 3z = 1$$
 e $\pi_2: x - z = 1$.

Seja r a reta dada pela interseção de π_1 e π_2 , e seja s a reta de equação $X=(3,0,1)+\lambda(2,1,2),\lambda\in\mathbb{R}$. Considere as seguintes afirmações abaixo.

- (I) π_2 e *s* são perpendiculares.
- (II) r e s são ortogonais.
- (III) π_1 e π_2 são perpendiculares.

Assinale a alternativa correta.

- a. Nenhuma das três afirmações é verdadeira.
- **b.** Apenas as afirmações (II) e (III) são verdadeiras.
- c. Todas as três afirmações são verdadeiras.
- d. Apenas a afirmação (II) é verdadeira.
- e. Apenas as afirmações (I) e (II) são verdadeiras.

Questão 7. Sejam $a,b,c,d \in \mathbb{R}$, com $a^2 + b^2 + c^2 \neq 0$, sejam $X_0,X_1 \in E^3$ e sejam $\vec{m},\vec{n},\vec{p} \in V^3$, com $\{\vec{m},\vec{n}\}$ linearmente independente e $\vec{p} \neq \vec{0}$. Considere os planos

 $\pi_1: ax + by + cz + d = 0$ e $\pi_2: X = X_0 + \lambda \vec{m} + \mu \vec{n}$ $(\lambda, \mu \in \mathbb{R})$

e a reta

$$r: X = X_1 + \lambda \vec{p} \quad (\lambda \in \mathbb{R}).$$

Considere as afirmações abaixo.

- (I) Se o vetor (a, b, c) é ortogonal aos vetores \vec{m} e \vec{n} , e $ax_0 + by_0 + cz_0 + d = 0$, onde $(x_0, y_0, z_0) = X_0$, então $\pi_1 = \pi_2$.
- (II) Se $[\vec{m}, \vec{n}, \vec{p}] = 0$, então a reta r está contida no plano π_2 .
- (III) Se $ap_1 + bp_2 + cp_3 = 0$, onde $(p_1, p_2, p_3) = \vec{p}$, e $ax_1 + by_1 + cz_1 + d = 0$, onde $(x_1, y_1, z_1) = X_1$, então a reta r está contida no plano π_1 .

Está correto o que se afirma em

- a. (I) e (II), apenas.
- **b.** (III), apenas.
- c. (I) e (III), apenas.
- **d.** (I), (II) e (III).
- e. (I), apenas.

Questão 8. Sejam E e F bases de V^3 tais que

$$F = \{(\alpha, \alpha, \alpha)_E, (0, \alpha, \alpha)_E, (0, 0, \alpha)_E\},\$$

em que α é um número real não nulo. Se $\vec{v} = (1, -1, 2)_F$, então a soma das coordenadas de \vec{v} com respeito à base E é igual a

- **a.** 4α
- **b.** 0
- **c.** 2α
- **d.** 3*α*
- **e.** *α*

Questão 9. As trajetórias de duas partículas que se movimentam em E^3 são retilíneas e suas posições no instante t são dadas pelas equações X=(1,1,0)+t(1,2,3) e X=(2,3,3)+t(3,2,1). Dizemos que *haverá colisão* se existir um instante t em que as partículas se encontram em um mesmo ponto X. Então, podemos afirmar que

- a. as trajetórias não se cruzam, pois são reversas.
- **b.** as trajetórias são as mesmas, mas não haverá colisão.
- c. as trajetórias não se cruzam, pois são paralelas e distintas.
- d. as trajetórias se cruzam, mas não haverá colisão.
- e. haverá colisão.

Questão 10. Considere os pontos A=(0,2,3), B=(1,2,4) e $C=(1,\frac{3}{2},\frac{7}{2})$ de E^3 e seja D o ponto da reta de equação X=A+t(0,1,3), $t\in\mathbb{R}$, tal que \overrightarrow{BD} seja ortogonal ao vetor (2,-1,1). Então, o volume do paralelepípedo de lados AB, AC e AD é

- **a.** 9/4
- **b.** 2
- **c.** 4
- **d.** 8/3
- **e.** 3/2

Questão 11. Considere as afirmações abaixo.

- (I) Se $E = \{\vec{u}, \vec{v}, \vec{w}\}$ e $F = \{\vec{v}, \vec{u}, -\vec{w}\}$ são bases de V^3 , então E e F têm a mesma orientação.
- (II) Fixada uma orientação em V^3 , se $E = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ é uma base ortonormal positiva de V^3 , então $F = \{\vec{e}_1 + \vec{e}_2, \vec{e}_1 \vec{e}_2, \vec{e}_3\}$ é uma base ortogonal negativa de V^3 .
- (III) Fixada uma orientação em V^3 , se $\vec{a}, \vec{b} \in V^3$ são tais que $\{\vec{a}, \vec{b}\}$ é linearmente independente, então $\{\vec{a}, \vec{b}, \vec{b} \land \vec{a}\}$ é uma base negativa de V^3 .

Está correto o que se afirma em

- a. (III), apenas.
- **b.** (I), (II) e (III).
- c. (I) e (II), apenas.
- **d.** (I) e (III), apenas.
- e. (II) e (III), apenas.

Questão 12. Sejam A, B, C, D quatro pontos de E^3 tais que $\{\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\}$ seja linearmente independente. Seja \mathcal{P} o paralelepípedo de lados AB, AC e AD. Considere as afirmações abaixo.

- (I) O volume do paralelepípedo \mathcal{P} é igual à norma do produto vetorial de \overrightarrow{AB} por \vec{u} , onde $\vec{u} = (\overrightarrow{AC} \cdot \overrightarrow{AD}) \overrightarrow{AB}$.
- (II) A altura do paralelepípedo \mathcal{P} com relação à base ABC é igual a

$$\frac{|[\overrightarrow{DB},\overrightarrow{DA},\overrightarrow{DC}]|}{\|\overrightarrow{CB}\wedge\overrightarrow{CA}\|}.$$

(III) O vetor $(\overrightarrow{AB} \wedge \overrightarrow{AC}) \wedge \overrightarrow{AD}$ é paralelo ao plano ABC.

Está correto o que se afirma apenas em

- **a.** (II).
- **b.** (II) e (III).
- **c.** (I) e (II).
- **d.** (III).
- **e.** (I) e (III).

Questão 13. Sejam A=(2,-1,1) e B=(0,1,-1) pontos de E^3 , e seja C a interseção da reta de equação $X=(0,1,-1)+t(2,-1,0), t\in \mathbb{R}$, com o plano de equação x+y-z=4. Então, a medida da altura do triângulo ABC com respeito à base AB é igual a

- **a.** $\sqrt{38/3}$
- **b.** $2\sqrt{14/3}$
- **c.** $2\sqrt{2}$
- **d.** $\sqrt{8/3}$
- **e.** 1

Questão 14. Seja $m \in \mathbb{R}$, $m \neq 0$. Considere as retas r, s, t descritas abaixo.

$$r:\begin{cases} x-my+1=0\\ y-z-1=0 \end{cases}$$
; $s: x=\frac{y}{m}=z;$ $t: \frac{1-x}{2}=y=-z-1$

Assinale a alternativa FALSA.

- **a.** Existe um valor de m para o qual as retas r, s e t são paralelas a um mesmo plano.
- **b.** As retas s e t são reversas se, e somente se, $m \neq -2$.
- **c.** Se $m \neq 1$, então as retas r e s são reversas.
- **d.** Se m = 1, então as retas r e s são paralelas.
- **e.** As retas s e t são ortogonais se, e somente se, m=3.

Questão 15. Assinale a afirmação **FALSA** a respeito de vetores $\vec{u}, \vec{v}, \vec{w} \in V^3$, fixada uma orientação de V^3 .

- **a.** $[\lambda \vec{u}, \lambda \vec{v}, \lambda \vec{w}] = \lambda^3 [\vec{u}, \vec{v}, \vec{w}]$, qualquer que seja $\lambda \in \mathbb{R}$.
- **b.** $[\vec{u}, \vec{v}, \vec{w}] = [\vec{v}, \vec{w}, \vec{u}].$
- **c.** Se $\{\vec{u}, \vec{v}, \vec{w}\}$ é linearmente independente, então o volume do paralelepípedo determinado por \vec{u}, \vec{v} e \vec{w} é igual a $|[\vec{u}, \vec{v}, \vec{w}]|$.
- **d.** $(\vec{u} \wedge \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \wedge \vec{w}).$
- **e.** Se $\{\vec{u}, \vec{v}, \vec{w}\}$ é uma base ortogonal negativa de V^3 e $\|\vec{u}\| = 1$, $\|\vec{v}\| = 2$, $\|\vec{w}\| = 5$, então $[\vec{u}, \vec{v}, \vec{w}] = -5$.

Questão 16. Nesta questão considere coordenadas dadas com respeito a uma base ortonormal de V^3 . Seja $\vec{u} \in V^3$. Sabendo que $\|\vec{u}\| = 3$, \vec{u} é ortogonal aos vetores (1,0,-1) e (-1,1,3), e \vec{u} forma ângulo obtuso (isto é, de medida superior a $\pi/2$ radianos) com o vetor (0,0,1), se $x,y,z \in \mathbb{R}$ são tais que $\vec{u}=(x,y,z)$, então x+y-z é igual a

- **a.** $-\sqrt{6}$
- **b.** 0
- **c.** $-2\sqrt{6}$
- **d.** $2\sqrt{6}$
- **e.** $\sqrt{6}$

Gabarito do Aluno

Nome:						NUSP:
Tipo de prova:	_					
		a b	c	d	e	
	Questão					
	1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					