Convenções:

- Dado um inteiro positivo n, o conjunto de todas as matrizes $n \times n$ com entradas reais será denotado por $M_n(\mathbb{R})$.
- \bullet Se A é uma matriz, a matriz transposta de A será denotada por A^{t} .
- Coordenadas de pontos estão dadas em relação a um sistema ortogonal.
- A norma (ou comprimento) de um vetor \vec{u} será denotada por $||\vec{u}||$.
- Se $T: \mathbb{R}^n \to \mathbb{R}^m$ e $S: \mathbb{R}^m \to R^p$ são funções, define-se a função composta de S com T como sendo a função $S \circ T: \mathbb{R}^n \to \mathbb{R}^p$ dada por $(S \circ T)(v) = S(T(v))$, para todo $v \in \mathbb{R}^n$.
- **Q1.** Considere a reta r: $\begin{cases} x=m+2+\lambda\\ y=1+\lambda\\ z=1+nz \end{cases} \quad (\lambda\in\mathbb{R}), \ \text{em que } m,n\in\mathbb{R}. \ \text{Se a}$

distância entre r e o plano de equação x+2y+3x-6=0 é $\frac{\sqrt{14}}{7},$ então m+n é igual a

- (a) 0 ou -4
- **(b)** 2 ou -4
- (c) 0 ou 2
- (d) 0 ou -2
- (e) 2 ou -2

Q2. Se \vec{u} e \vec{v} são vetores tais que $\|\vec{u}\| = 1$, $\|\vec{u} + \vec{v}\| = \sqrt{3}$, e o ângulo entre \vec{u} e \vec{v} mede $\pi/3$ radianos, então o valor de $\|\vec{v}\|$ é

- (a) 1
- (b) $\sqrt{3}$
- (c) $\sqrt{2}/2$
- (d) 1/2
- (e) $\sqrt{3}/2$

Q3. Considere o plano π de equação x+y+z=0 e seja r a reta perpendicular a π tal que B=(3,-1,4) seja o ponto simétrico do ponto A=(2,1,3) com relação a r. Se P=(a,b,c) é o ponto de encontro entre r e π , então -2a+b+2c é igual a

- (a) -2
- **(b)** 0
- **(c)** 2
- (d) 1
- (e) -1

Q4. Assinale a afirmação **FALSA** a respeito de uma matriz $A \in M_n(\mathbb{R})$.

- (a) A e sua transposta A^{t} possuem os mesmos autovalores.
- (b) Se A é diagonalizável, então A possui n autovalores distintos.
- (c) Se A é diagonalizável, então sua transposta $A^{\rm t}$ também é diagonalizável.
- (d) Se A é diagonalizável e invertível, então sua inversa A^{-1} também é diagonalizável.
- (e) Se A possui n autovalores (reais) distintos, então A é diagonalizável.

Q5. Sejam $a,b \in \mathbb{R}$ e seja $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ a transformação matricial induzida pela matriz $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$. Assinale a afirmação **FALSA**.

- (a) Se $a^2 + b^2 = 1$, então T é uma isometria.
- (b) A imagem, por T, do quadrado unitário tem área 1, quaisquer que sejam $a,b\in\mathbb{R}.$
- (c) Se a imagem, por T, do quadrado unitário tem área 1, então T é uma isometria.
- (d) Se T é uma isometria, então $a^2 + b^2 = 1$.
- (e) Se T é uma isometria, a imagem, por T, do quadrado unitário tem área 1.

Q6. Considere as seguintes afirmações a respeito de vetores $\vec{u}, \vec{v}, \vec{w}$:

- (I) Se $\vec{u} \wedge \vec{v} \neq \vec{0}$ e $\vec{w} \wedge \vec{u} = \vec{0} = \vec{w} \wedge \vec{v}$, então $\vec{w} = \vec{0}$.
- (II) Se $\vec{u} \neq \vec{0}$, $\vec{u} \cdot \vec{v} = 0$ e $\vec{u} \wedge \vec{v} = \vec{0}$, então $\vec{v} = \vec{0}$.
- (III) $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$ é uma combinação linear de \vec{u} e \vec{v} .

É correto o que se afirma em

- (a) (I), (II) e (III).
- (b) (I) e (II), apenas.
- (c) (II) e (III), apenas.
- (d) (I) e (III), apenas.
- (e) (II), apenas.

Q7. Se P = (a, b, c) é o ponto de encontro entre as retas

$$r: \begin{cases} x+y=3 \\ y+z=5 \end{cases}$$
 e $s: -x+3=y=z-1,$

então a+b+c é igual a:

- (a) 8
- **(b)** 6
- **(c)** 5
- (d) 7
- (e) 4

Q8. Se T é a rotação, em \mathbb{R}^2 , em torno da origem, de ângulo $\frac{\pi}{3}$ radianos no sentido anti-horário e $S\colon \mathbb{R}^2 \to \mathbb{R}^2$ é a transformação tal que $S\circ T$ é a reflexão em relação à reta $y=\frac{\sqrt{3}}{3}x$, então S é a reflexão em relação à reta

- (a) $y = -\frac{\sqrt{3}}{3}x$
- **(b)** $y = \sqrt{3}x$
- (c) x = 0
- (d) y = x
- (e) $y = \frac{1}{2}x$

Q9. Considere o plano π : x-2y+2z-5=0. Sejam \vec{u} e \vec{v} vetores tais que \vec{u} é paralelo a π , \vec{v} é ortogonal a π e $\vec{u}+\vec{v}=(2,3,-1)$, então a soma das coordenadas de \vec{u} é igual a

- (a) -2/3
- **(b)** 4
- (c) 14/3
- (d) 2
- (e) 10/3

Q10. A respeito da matriz $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, é correto afirmar que

- (a) os únicos autovalores de A são 1 e 2.
- **(b)** A possui um único autovalor.
- (c) A tem exatamente dois autovalores distintos e é diagonalizável.
- (d) A tem três autovalores distintos.
- (e) A tem exatamente dois autovalores distintos e não é diagonalizável.

Q11. A respeito da matriz $A=\begin{bmatrix} a & -1 \\ 1 & 2 \end{bmatrix}$, em que $a\in\mathbb{R}$, é correto afirmar que

- (a) se A é diagonalizável, então a > 4.
- (b) se a = 3, então A é diagonalizável.
- (c) se a = 0, então A é diagonalizável.
- (d) se a > 4, então A é diagonalizável.
- (e) se A é diagonalizável, então $a \leq 0$.

Q12. Seja A uma matriz $n \times n$ e suponha que a única solução do sistema AX = 0 seja a solução nula. Assinale a alternativa **FALSA**.

- (a) A matriz transposta A^t de A tem determinante não nulo.
- (b) Se R é uma matriz escalonada obtida a partir de A por operações elementares sobre linhas, então R não tem linhas nulas.
- (c) Se B é uma matriz $n \times n$ tal que BA = 0, então B = 0.
- (d) 0 é um autovalor de A.
- (e) Para todo $b \in \mathbb{R}^n$, o sistema AX = b tem uma única solução.

Q13. Assinale a afirmação **FALSA** a respeito da matriz $A = \begin{bmatrix} 0 & a & 0 \\ 1 & 0 & 0 \\ 0 & 1 & a \end{bmatrix}$, em que $a \in \mathbb{R}$.

- (a) Se a = 1/2, então A é diagonalizável.
- (b) Se A é diagonalizável, então a > 0.
- (c) Se a = 0, então 0 é um autovalor de A, de multiplicidade 3.
- (d) Se $0 \le a < 1/2$, então A é diagonalizável.
- (e) Os autovalores de A são as raízes reais do polinômio $(x^2 a)(x a)$.

Q14. Dado que

$$\begin{bmatrix} 3 & 1 & 0 \\ -6 & 2 & 0 \\ 8 & 8 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 0 \\ 0 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 0 \\ -6 & 2 & 0 \\ 8 & 8 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

a solução geral do sistema de equações diferenciais

$$X'(t) = \begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 0 \\ 0 & 4 & 1 \end{bmatrix} X(t)$$

é

(a)
$$X(t) = c_1 e^{-2t} \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} + c_3 e^t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 $(c_1, c_2, c_3 \in \mathbb{R})$

(b)
$$X(t) = c_1 e^{-t} \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 6 \\ 2 \\ 0 \end{bmatrix} + c_3 e^t \begin{bmatrix} 8 \\ 8 \\ 1 \end{bmatrix}$$
 $(c_1, c_2, c_3 \in \mathbb{R})$

(c)
$$X(t) = c_1 e^{-t} \begin{bmatrix} 3 \\ -6 \\ 8 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 2 \\ 8 \end{bmatrix} + c_3 e^t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 $(c_1, c_2, c_3 \in \mathbb{R})$

(d)
$$X(t) = c_1 e^{-2t} \begin{bmatrix} 3 \\ -6 \\ 8 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 2 \\ 8 \end{bmatrix} + c_3 e^t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 $(c_1, c_2, c_3 \in \mathbb{R})$

(e)
$$X(t) = c_1 e^{-t} \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} + c_3 e^t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 $(c_1, c_2, c_3 \in \mathbb{R})$

Q15. Considere o plano π de equação ax+by+cz-12=0, em que $a,b,c\in\mathbb{R}$. Sabendo que B=(-1,6,5) é o ponto simétrico do ponto A=(1,2,3) em relação a π , pode-se afirmar que a+b+c é igual a

- **(a)** 0
- **(b)** -2
- (c) 4
- (d) 2
- (e) -4

Q16. Sejam $a, b \in \mathbb{R}$. A respeito do sistema

(*)
$$\begin{cases} x - 2y + z = 3\\ 2x + y - 2z = 2b\\ -5y + 2az = 7\\ 4x - 3y = 5 \end{cases}$$

é correto afirmar que

- (a) se $b \neq -1/2$ e a = 2, então (*) tem infinitas soluções.
- (b) se a=2 e $b\in[0,1]$, então (*) uma única solução.
- (c) se a = b = 1/2, então (*) tem uma única solução.
- (d) se $a \neq 2$ e $b \in [0,1]$, então (*) tem solução.
- (e) se b=-1/2 e $a\neq 2$, então (*) tem infinitas soluções.