(2,0) **Questão 1.** Seja S a superfície de equação $x^2-3xy+8y+2(z-1)^2=8$ e seja $\gamma:\mathbb{R}\to\mathbb{R}^3$ uma curva diferenciável cuja imagem está contida em S, tal que $\gamma(1)=(1,1,0)$ e $\gamma'(1)\neq(0,0,0)$. Considere ainda uma função $g:\mathbb{R}^3\to\mathbb{R}$ de classe \mathcal{C}^1 com $\nabla g(1,1,0)=(2,-2,0)$.

Sabendo que $t_0=1$ é ponto de mínimo da função $\phi(t)=g(\gamma(t))$, determine uma equação para a reta tangente à trajetória (imagem) de γ em $\gamma(1)$.

Solução:

Observemos que a superfície S é a superfície de nível S da função de classe C^1 dada por $f(x,y,z)=x^2-3xy+8y+2(z-1)^2$.

Do fato de que a imagem de γ está contida em S resulta que $\nabla f(1,1,0)$ é ortogonal à S e, portanto, que $\nabla f(1,1,0) = (-1,5,-4)$ é um vetor ortogonal a $\gamma'(1)$.

De outro lado, por ser $t_o=2$ ponto de mínimo da função diferenciável $\phi(t)=g(\gamma(t))$ em \mathbb{R} , resulta que $\phi'(1)=0$. Logo, pela regra da cadeia, obtemos que $\nabla g(\gamma(1)\cdot\gamma'(1)=0$, ou seja, $\nabla g(1,1,0)=(2,-2,0)$ é também ortogonal a $\gamma'(1)$.

Desde que os vetores $\nabla f(1,1,0) = (-1,5,-4)$ e $\nabla g(1,1,0) = (2,-2,0)$ formam uma conjunto linearmente independente e cada um deles é ortogonal a $\gamma'(1) \neq (0,0,0)$, podemos concluir que $\gamma'(1)$ é paralelo ao vetor $\nabla f(1,1,0) \wedge \nabla g(1,1,0) = (-8,-8,-8)$.

Portanto uma equação da reta tangente pedida é $(x, y, z) = (1, 1, 0) + \lambda(1, 1, 1)$, com $\lambda \in \mathbb{R}$.