(2,0) **Questão 1.** Seja S a superfície de equação $x^2-2xy-2y+z^2=1$ e seja $\gamma:\mathbb{R}\to\mathbb{R}^3$ uma curva diferenciável cuja imagem está contida em S, tal que $\gamma(2)=(2,2,3)$ e $\gamma'(2)\neq(0,0,0)$.

Considere ainda uma função $g: \mathbb{R}^3 \to \mathbb{R}$ de classe C^1 com $\nabla g(2,2,3) = (4,0,-4)$.

Sabendo que $t_0=2$ é ponto de mínimo da função $\phi(t)=g(\gamma(t))$, determine uma equação para a reta tangente à trajetória (imagem) de γ em $\gamma(2)$.

Solução:

Observemos que a superfície S é a superfície de nível 1 da função de classe C^1 dada por $f(x,y,z)=x^2-2xy-2y+z^2$.

Do fato de que a imagem de γ está contida em S resulta que $\nabla f(2,2,3)$ é ortogonal à S e, portanto, que $\nabla f(2,2,3)=(0,-6,6)$ é um vetor ortogonal a $\gamma'(2)$.

De outro lado, por ser $t_0=2$ ponto de mínimo da função diferenciável $\phi(t)=g(\gamma(t))$ em \mathbb{R} , resulta que $\phi'(2)=0$. Logo, pela regra da cadeia, obtemos que $\nabla g(\gamma(2))\cdot\gamma'(2)=0$, ou seja, $\nabla g(2,2,3)$ é também ortogonal a $\gamma'(2)$.

Desde que os vetores $\nabla f(2,2,3) = (0,-6,-6)$ e $\nabla g(2,2,3) = (4,0,-4)$ formam uma conjunto linearmente independente e cada um deles é ortogonal a $\gamma'(2) \neq (0,0,0)$, podemos concluir que $\gamma'(2)$ é paralelo ao vetor $\nabla f(2,2,3) \wedge \nabla g(2,2,3) = (24,24,24)$.

Portanto uma equação da reta tangente pedida é $(x, y, z) = (2, 2, 3) + \lambda(1, 1, 1)$, com $\lambda \in \mathbb{R}$.