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Abstract

In Low Order-Value Optimization (LOVO) problems the sum of the r smallest values of a
finite sequence of q functions is involved as the objective to be minimized or as a constraint.
The latter case is considered in the present paper. Portfolio optimization problems with a
constraint on the admissible Value at Risk (VaR) can be modeled in terms of a LOVO prob-
lem with constraints given by Low Order-Value functions. Different algorithms for practical
solution of this problem will be presented. Using these techniques, portfolio optimization
problems with transaction costs will be solved.
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1 Introduction

In the present contribution we consider optimization problems where Low Order-Value functions
appear as constraints. We will report an application to portfolio optimization with transaction
costs and Value-at-Risk constraints. A related problem in which a Low Order-Value function
with smooth constraints is minimized was considered in a recent paper [11], where suitable
algorithms were given and several applications were surveyed.

Portfolio optimization problems deal with allocation of wealth among different assets, in
general, risky assets or combination of one risk-free asset and a number of risky ones. The
objective is to select a combination that maximizes the expected future gain with a tolerable
level of risk or to find a portfolio with the smallest risk among all portfolios that have at least
some specified value of future expected gain. Modeling and measuring risk, as well as estimating
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future gains, are nontrivial tasks and considerable amount of research has been dedicated to these
topics (see, for example, [40]). Three mainstream risk measures are currently in use: portfolio
variance, dating back to the pioneering work of Markowitz [31], Value at Risk (VaR) [27] and
Conditional Value at Risk (CVaR) [39]. Their mutual relationships are analyzed in [24] and
all three have advantages and disadvantages. More general risk measures are discussed in [15].
Some recent articles dealing with portfolio selection and risk measures can be found, for example,
in [21, 22, 34] and the references therein.

In this paper we will deal with VaR and portfolios composed of stocks. Current regulations
for financial industry formulate risk requirements in terms of VaR and, therefore, VaR is a
standard tool for risk management. By definition, VaR is the percentile of loss distribution
given a confidence level α. The α-VaR of a financial instrument is the lowest amount such that
the loss is less than or equal to it with probability α. Regulations usually require that the
available capital should be a multiple of VaR. A comprehensive overview of VaR properties and
its applications in risk management is given in [27].

The optimization problem which yields a portfolio with maximal gain and satisfies constraints
on VaR is considered in [20, 23], where some algorithms are suggested. The problem is difficult
due to the complicated geometry of the feasible set. In this paper we will include transaction
costs in the portfolio optimization problem. These costs are inevitably present in real life and
can significantly decrease portfolio yield. Several papers deal with portfolio optimization with
transaction costs using different risk measures. In [16, 30, 32, 35] transaction costs are modeled
as linear or piecewise linear functions.

Transaction costs can be divided into two types - fixed costs and impact costs. Fixed costs
are fees and taxes, being in general proportional to the transaction value. Due to the rapid
development of electronic trading in the last two decades and the large number of participants,
fixed costs may not be a dominant part of the total costs, especially for large institutional
investors. On the other hand they are still significant for small investors and thus need to be
included into a realistic model. Describing impact costs is a far more complicated issue and there
is no general agreement about the proper model in the literature. An impact cost is a deviation
from the equilibrium price caused by one’s own trading activity. If we are buying a large amount
of one particular stock then we are obviously increasing the demand and thus increasing the price
of that stock. It is difficult to distinguish between the price changes caused by one’s trading
activity and changes caused by noise. Large financial institutions use proprietary models to
measure the impact. Although based on academic work, these models are not publicly available.
Different model approaches were published in [4, 5, 18, 29]. In this work we will adopt the
market impact model proposed in [4, 5].

Let us describe now the main features of the Order-Value Optimization tool. Assume that
the functions fi : IR

n → IR, i = 1, . . . , q, are given. For all x ∈ IRn let i1(x), . . . , iq(x) be such
that:

fi1(x)(x) ≤ fi2(x)(x) ≤ . . . ≤ fiq(x)(x) (1)

and
{i1(x), . . . , iq(x)} = {1, . . . , q}.

See [7, 8, 10, 11, 12]. Let J be a non-empty subset of {1, . . . , q}. The Order-Value function [33]
associated with J is defined by

fJ(x) =
∑

j∈J

fij(x)(x).
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Let us give a few examples: If J = {q}, we have that fJ(x) =
∑

j∈J fij(x)(x) = fiq(x)(x).
Therefore, by (1), fJ(x) = max{f1(x), . . . , fq(x)} in this case. If J = {1}, we have fJ(x) =
fi1(x)(x). Then, by (1), fJ(x) = min{f1(x), . . ., fq(x)}.

When J = {r}, fJ(x) may be interpreted as the Value-at-Risk (VaR) Order-Value function
associated with “portfolio” x, scenarios {1, . . . q}, loss functions f1, . . . , fq and confidence level
α = r/q (see [7, 8, 12]). (In general r < q and r ≈ q.) Similarly, when J = {r + 1, . . . , q}, the
function fJ(x)/(q − r) corresponds to the “coherent” risk function CVaR (Conditional Value-
at-risk) [39].

The Low Order-Value function introduced in [10, 11] corresponds to J = {1, . . . , r}. The
problem of minimizing fJ in this case has interesting applications to parameter estimation,
hidden pattern problems, protein alignment and general structure alignment [10, 11, 33].

In this paper we are concerned with optimization problems in which there is a “VaR-
constraint” of the form

fir(x)(x) ≤ c. (2)

In the most typical situation one wishes to minimize the average loss associated with some
investment subject to the condition that the VaR that corresponds to the optimal decision
must not exceed the tolerance c. By (1), we have that (2) is equivalent to the “LOVO (Low
Order-Value Optimization) constraints”:

fij(x)(x) ≤ c, j = 1, . . . , r. (3)

Without loss of generality (re-defining fi(x) ← fi(x) − c) we will assume that c = 0 in (2)
and (3). This means that, given r ∈ {1, . . . , q}, our problem will be:

Minimize f(x) subject to fir(x)(x) ≤ 0, h(x) = 0, g(x) ≤ 0, x ∈ Ω. (4)

The set Ω will be given by lower-level constraints of the form

h(x) = 0, g(x) ≤ 0.

Many times, Ω will take the form of an n-dimensional box:

Ω = {x ∈ IRn | ℓ ≤ x ≤ u}.

We will assume that the functions f : IRn → IR, fi : IR
n → IR, h : IRn → IRm, g : IRn → IRp, h :

IRn → IRm, g : IRn → IRp have continuous first derivatives on IRn.
By (1), problem (4) is equivalent to:

Minimize f(x) subject to fij(x)(x) ≤ 0, j = 1, . . . , r, h(x) = 0, g(x) ≤ 0, x ∈ Ω. (5)

The present paper deals with the practical solution of problem (5). We are especially interested
in large-scale cases, in which the number of assets n, the number of scenarios q, or both, are
large. Problem (4) is nonlinear if transaction costs are incorporated into the objective function.
Moreover, even in the linear case, its structure is not standard, so that its resolution needs the
invention of modern optimization methods.

Our contributions in the present research are the following:

1. We introduce Augmented Lagrangian methods for solving the main problem (4) employing
its equivalent formulation (5).
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2. Algorithms based on local subproblem solvers will be proved to converge to stationary
points of (5) and algorithms based on global optimization subproblem solvers will be
shown to possess global minimization properties.

3. Computer implementations of the introduced Augmented Lagrangian algorithms will be
provided and numerical experiments will be given.

4. The new algorithms will be applied to the optimization of portfolios with VaR constraints in
the presence of transaction costs. We will show that the Augmented Lagrangian approach
is a suitable tool for dealing with such problems. This approach deals well with large
number of variables and, especially, with large number of inequality constraints.

This paper is organized as follows: An outline of the new algorithms will be given in Sec-
tion 2. The smooth Augmented Lagrangian with lower-level constraints [6] will be recalled in
Section 3. The novel algorithms will be defined in Sections 4, 5 and 6. In Section 7 we will
present numerical experiments. Conclusions will be stated in Section 8.

Notation. We write K1⊂
∞
K2 to indicate that K1 is an infinite subsequence of indices contained

in K2. The symbol ‖ · ‖ denotes the Euclidean norm, although many times it may be replaced
by an arbitrary norm on IRn. For all v ∈ IRn, we denote v+ = (max{0, v1}, . . . ,max{0, vn})

T .
For all a ∈ IR we denote a2+ = (a+)

2. We denote #I the number of elements of the set I.

2 Outline of algorithms

Section 3 of the present paper will be devoted to reviewing convergence results of the Aug-
mented Lagrangian algorithms given in [6] and [17] for solving nonlinear programming prob-
lems. The standard constrained optimization problem will be defined in (6). Algorithm 3.1 is
Algorithm 2.1 of [6] with minor modifications and Algorithm 3.2 corresponds to the global op-
timization Augmented Lagrangian method given in [17]. The difference between Algorithm 3.1
and Algorithm 2.1 of [6] is that, in Algorithm 3.1 we update ρk+1 ≥ ρk when enough feasibility-
complementarity progress has been obtained at the last outer iteration, while in Algorithm 2.1
of [6] one choses ρk+1 = ρk in that case. Convergence results for the modified algorithm follow
exactly in the same way as in [6]. Both algorithms in Section 3 will be used as auxiliary tools in
the remaining sections of the paper. The difference between Algorithm 3.1 and Algorithm 3.2
corresponds to the difference between [6] and [17]. In the case of Algorithm 3.1 one employs
a local optimization algorithm for solving the Augmented Lagrangian subproblems, whereas in
Algorithm 3.2 one uses global subproblem optimization.

Sections 4, 5 and 6 will be dedicated to the solution of the main problem (5). In Section 4 two
algorithms will be introduced for that purpose, namely, Algorithms 4.1 and 4.2. Both incorporate
the constraints fij(x)(x) ≤ 0, j = 1, . . . , r, as “penalized” constraints in the definition of the
Augmented Lagrangian function. As a consequence, the objective function of each subproblem
is of LOVO type. This means that, for solving the non-smooth subproblems in Algorithm 4.1
we may use the method for minimizing LOVO functions introduced in [11]. On the other hand,
for solving the subproblems in Algorithm 4.2, we must use a global optimization algorithm. In
this case, convergence to global minimizers is guaranteed by the theory presented in [17].

In Section 5 we will introduce two different methods of Augmented Lagrangian type, namely,
Algorithms 5.1 and 5.2. Unlike Section 4, the algorithms introduced in Section 5 use smooth
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Augmented Lagrangian functions instead of LOVO-like Augmented Lagrangians as objective
functions of the subproblems. At the beginning of each outer iteration the indices i1(x), . . . , ir(x)
that define penalized constraints for the current subproblem are defined. These indices are fixed
throughout the execution of the outer iteration. The difference between Algorithm 5.1 and
Algorithm 5.2 is that, in the first, we require approximate local minimizers of the subproblems
whereas in Algorithm 5.2, ε-global optimizers are employed. As expected, there is a price to be
paid for using smooth problems: The convergence results proved in Section 5 are weaker than
the ones proved for Algorithms 4.1 and 4.2 in Section 4.

Finally, in Section 6 we will define a simple fixed-point algorithm that, at each iteration,
solves a smooth constrained optimization problem of type (6). This seems to be the most
obvious approach to the solution of (5) but its convergence properties are weaker than the ones
proved in Sections 4 and 5. The introduction of specific algorithms in Sections 3, 4 and 5
will be preceded by the definition of Conceptual Algorithms. In the Conceptual Algorithms we
require that each iterate xk should be an “approximate solution” of the Augmented Lagrangian
subproblem, without specifying the conditions that such solution should satisfy. Therefore, the
specific algorithms introduced in each section may be considered practical realizations of the
respective conceptual algorithms.

In other words, we will present two algorithms in each section, the first of which converges
to stationary points of the main problem (5) and the second has global minimization properties.
In Section 4 the objective functions of the subproblems are nonsmooth, since a new ordering
of the functions fi(x) is computed at each call to the Augmented Lagrangian function. In the
algorithms of Section 5 the quantities f1(x), . . . , fq(x) are sorted only at the beginning of each
outer iteration. Therefore, the objective functions of the subproblems are smooth. Finally, the
algorithms considered in Section 6 are of fixed-point type. At each fixed-point iteration a whole
smooth Nonlinear Programming solver is solved using Augmented Lagrangians and the same
set i1(x), . . . , iq(x) is used all along the fixed-point iteration.

3 Smooth Augmented Lagrangian algorithm

For completeness, in this section we recall the main algorithms presented in [6] and [17]. These
algorithms are based on the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian ap-
proach [25, 36, 38]. Let us assume that f : IRn → IR, h : IRn → IRm, g : IRn → IRp, h : IRn →
IRm, g : IRn → IRp are continuous functions. Algorithm 3.1 requires continuity of the gradients,
whereas Algorithm 3.2 does not. We wish to solve the problem

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0. (6)

The constraints h(x) = 0 and g(x) ≤ 0 are called “lower-level constraints”. In the case that the
lower-level constraints are given by an n-dimensional box, the algorithm defined in this section
corresponds to Algencan (the optimization method introduced in [6] and available at the Tango
project web page [41])

Given ρ > 0, λ ∈ IRm, µ ∈ IRp
+, x ∈ IRn, we define the PHR Augmented Lagrangian:

Lρ(x, λ, µ) = f(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2]
.

Conceptual Algorithm 3.0. Let εk ↓ 0, λ̄k ∈ [λmin, λmax]
m, µ̄k ∈ [0, µmax]

p for all k ∈ IN ,
ρ1 > 0, τ ∈ (0, 1), η > 1. For all k = 1, 2, . . . we compute xk ∈ IRn as an approximate solution
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of
Minimize Lρk(x

k, λ̄k, µ̄k) subject to h(x) = 0, g(x) ≤ 0. (7)

We define, for all i = 1, . . . , p,

V k
i = max

{
gi(x

k),
−µ̄k

i

ρk

}
.

If k = 1 or
max{‖h(xk)‖, ‖V k‖} ≤ τ max{‖h(xk−1)‖, ‖V k−1‖} (8)

we define ρk+1 ≥ ρk. Else, we define ρk+1 ≥ ηρk.

Algorithm 3.1. Proceed as in the Conceptual Algorithm 3.0, with xk defined in such a way
that there exist vk ∈ IRm and wk ∈ IR

p
+ satisfying:

‖∇Lρk(x
k, λ̄k, µ̄k) +∇h(xk)vk +∇g(xk)wk‖ ≤ εk,

‖h(xk)‖ ≤ εk, ‖g(x
k)+‖ ≤ εk,

and
wk
i = 0 whenever g

i
(xk) < −εk.

Remark. In [6], one defines ρk+1 = ρk if (8) holds and ρk+1 = ηρk otherwise. Here we adopt a
more general form, in which

ρk+1 ≥ ρk and ρk+1 ≥ ηρk, (9)

respectively. In this way, it will be easier to interpret the forthcoming methods in terms of
Algorithm 3.1.

The convergence properties of Algorithm 3.1 are stated in the following theorem.

Theorem 3.1. Assume that x∗ is a limit point of a sequence generated by Algorithm 3.1. Then,
one of the following three possibilities hold:

1. x∗ is a feasible point of (6).

2. x∗ is a Karush-Kuhn-Tucker (KKT) point of the problem

Minimize ‖h(x)‖2 + ‖g(x)+‖
2 subject to h(x) = 0, g(x) ≤ 0.

3. The constraints h(x) = 0 and g(x) ≤ 0 do not satisfy the Constant Positive Linear De-
pendence (CPLD) constraint qualification [13, 37] at x∗ 1.

If x∗ is a feasible point of (6) then one of the following two possibilities hold:

1. x∗ is a KKT point of problem (6).

2. The constraints h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0 do not satisfy the CPLD constraint
qualification at x∗.

1We say that CPLD condition is satisfied at x∗ if the linear dependence of gradients of active constraints with
non-negative coefficients corresponding to inequalities implies the linear dependendence of the same gradients in
a neighborhood of x∗
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Proof. See the proofs of Theorems 4.1 and 4.2 of [6]. Observe that the modifications (9) do not
interfere in the proof.

The global optimization counterpart of Algorithm 3.1 was defined in [17]. We state the global
Augmented Lagrangian method of [17] as Algorithm 3.2 below. The difference between these
two algorithms is that in Algorithm 3.2 the iterate xk is obtained as an εk-global minimizer of
the Augmented Lagrangian.

Algorithm 3.2. Proceed as in Algorithm 3.0, where xk ∈ Ω is such that

Lρk(x
k, λ̄k, µ̄k) ≤ Lρk(x, λ̄

k, µ̄k) + εk

for all x ∈ Ω.

The following theorem was proved in [17], where a comprehensive set of numerical experi-
ments using the α-BB algorithm [1, 2, 3, 14] for solving the subproblems were given.

Theorem 3.2. Assume that the feasible region of problem (6) is non-empty. Then, every limit
point of a sequence generated by Algorithm 3.2 is a global minimizer of (4).

4 Algorithm with LOVO subproblems

In [11] an Augmented Lagrangian method (C-LOVO) was defined to minimize a Low Order-
Value function with smooth constraints. Essentially, C-LOVO consists of applying Algencan to
the problem, “ignoring” the fact that first derivatives may not be defined. Every cluster point of
a sequence generated by C-LOVO is feasible or stationary for the sum of squares of infeasibilities.
Moreover, any feasible cluster point satisfies Karush-Kuhn-Tucker (KKT) conditions, provided
that the constraints fulfill the Constant Positive Linear Dependence (CPLD) constraint qualifi-
cation [13, 37]. This state of facts makes it desirable to solve LOVO-constrained problems like
(5) by means of a sequence of constrained problems with Low Order-Value objective function.
In this section we introduce an algorithm with those characteristics. The algorithm will be, as
C-LOVO, of Augmented Lagrangian type. Moreover, at each outer iteration, a subproblem will
be approximately solved using C-LOVO.

Given ρ > 0, λ ∈ IRm, µ ∈ IRp
+, ν ∈ IR+, x ∈ IRn, we define the LOVO Augmented

Lagrangian function Lρ(x, λ, µ, ν) by:

Lρ(x, λ, µ, ν) = f(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2

+
r∑

j=1

(
fij(x)(x) +

ν

ρ

)2

+

]
. (10)

For computing (10), given x ∈ IRn we need to compute the r smallest values of {f1(x), . . . , fq(x)}.
Therefore, this sorting procedure must be performed each time we need to evaluate the Aug-
mented Lagrangian (10). This is the main difference between the algorithms given in this section
and the ones given in Sections 5 and 6, in which sorting of f1(x), . . . , fq(x) is less frequent.

At each (outer) iteration, the algorithms introduced in this section (approximately) minimize
Lρ(x, λ, µ, ν) subject to x ∈ Ω. Let us justify why we employ the objective function Lρ, given
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by (10), instead of the (perhaps more intuitive) “Augmented Lagrangian” L̃ρ associated with
problem (4). In this case, we would have:

L̃ρ(x, λ, µ, ν) = f(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2

+

(
fir(x)(x) +

ν

ρ

)2

+

]
. (11)

The key point is that minimizing the nonsmooth function Lρ is easier than minimizing L̃ρ. In
fact, if , given x, one finds a trial point z such that

Φx(z) ≡ f(z)+
ρ

2

[∥∥∥∥h(z)+
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(z)+

µ

ρ

)

+

∥∥∥∥
2

+
r∑

j=1

(
fij(x)(z)+

ν

ρ

)2

+

]
< Lρ(x, λ, µ, ν), (12)

then, automatically,
Lρ(z, λ, µ, ν) < Lρ(x, λ, µ, ν).

Note that indices ij(x), i = 1, . . . , r, are fixed in the definition of Φx(z), in contrast with
the indices in the definition of Lρ(x, λ, µ, ν) in (10), that depend on the variable x. Hence,
obtaining (12) is not difficult because it amounts to find a descent direction for the smooth
function Φx(z). As a consequence, suitable global convergence properties are obtained [11]. On
the other hand,

f(z) +
ρ

2

[∥∥∥∥h(z) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(z) +

µ

ρ

)

+

∥∥∥∥
2

+

(
fir(x)(z) +

ν

ρ

)2

+

]
< L̃ρ(x, λ, µ, ν)

does not imply
L̃ρ(z, λ, µ, ν) < L̃ρ(x, λ, µ, ν). (13)

In this case, the fact that ir(z) is, in general, different than ir(x) inhibits the fulfillment of the
desirable property (13). These observations also support the use of (5) instead of (4). The fact
that LOVO problems are easier to solve than OVO problems [7, 8] is exploited in [11].

The derivatives of Lρ with respect to x may not exist at the points x in which the set of
indices that define the r smallest values of fi(x) is not univocally defined. However, to simplify
the notation, we write:

∇Lρ(x, λ, µ, ν) = ∇f(x)+
ρ

2

{
∇

(∥∥∥∥h(x)+
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x)+

µ

ρ

)

+

∥∥∥∥
2)

+
r∑

j=1

∇

[(
fij(x)(x)+

ν

ρ

)2

+

]}
.

Conceptual Algorithm 4.0. The parameters that define the algorithm are: τ ∈ [0, 1), η > 1,
λmin < λmax, µmax > 0. At the first outer iteration we use a penalty parameter ρ1 > 0
and safeguarded Lagrange multipliers estimates λ̄1 ∈ IRm, µ̄1 ∈ IRp

+, ν̄1 ∈ IR+ such that
λ̄1
i ∈ [λmin, λmax], i = 1, . . . ,m, ‖µ̄1‖∞ ≤ µmax and ν̄1 ≤ νmax. We assume that x0 ∈ IRn is

an arbitrary initial point and {εk} is a sequence of positive numbers that satisfies limk→∞ εk = 0.

Step 1. Initialization.
Set k ← 1.

Step 2. Solve the subproblem.
Compute xk ∈ IRn as an approximate solution of

Minimize Lρk(x
k, λ̄k, µ̄k, ν̄k) subject to h(x) = 0, g(x) ≤ 0. (14)

8



Step 3. Update penalty parameter.

For all i = 1, . . . , p, compute V k
i = max

{
gi(x

k),−
µ̄k
i

ρk

}
.

For all i = 1, . . . , q, compute W k
i =





max

{
fi(x

k),− ν̄k
ρk

}
, if i ∈ {i1(x

k), . . . ir(x
k)},

0, otherwise.
Compute

Rk = max{‖h(xk)‖∞, ‖V k‖∞, ‖W k‖∞}.

If k > 1 and Rk > τRk−1, define ρk+1 = ηρk. Else, define ρk+1 = ρk.

Step 4. Estimate multipliers.
Compute λ̄k+1

i ∈ [λmin, λmax] for all i = 1, . . . ,m, µ̄k+1
i ∈ [0, µmax] for all i = 1, . . . , p, and

ν̄k+1 ∈ [0, νmax]. Set k ← k + 1 and go to Step 2.

Algorithm 4.1. Proceed as in the Conceptual Algorithm 4.0, where xk ∈ IRn is such that there
exist vk ∈ IRm and wk ∈ IRp satisfying

‖∇Lρk(x
k, λ̄k, µ̄k, ν̄k) +

∑m
i=1 v

k
i∇hi(x

k) +
∑p

i=1w
k
i∇gi(x

k))]‖ ≤ εk, (15)

wk ≥ 0, g(xk) ≤ εk, (16)

g
i
(xk) < −εk ⇒ wk

i = 0 for all i = 1, . . . , p, (17)

‖h(xk)‖ ≤ εk. (18)

4.1 Solvability of the subproblems

At each iteration of Algorithm 4.1 we minimize, approximately, Lρk(x, λ̄
k, µ̄k, ν̄k) with respect

to x on the set defined by h(x) = 0 and g(x) ≤ 0. The stopping criterion for the corresponding
iterative process is reflected in the conditions (15–18). We want to show that obtaining (15–18)
is possible in finite time using a computable algorithm.

Let us define:

Fmin(x) = min
I | #I=r

{
f(x) +

ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2

+
∑

i∈I

(
fi(x) +

ν

ρ

)2

+

]}
.

The subproblem

Minimize Lρk(x, λ̄
k, µ̄k, ν̄k) subject to h(x) = 0, g(x) ≤ 0

is equivalent to
Minimize Fmin(x) subject to h(x) = 0, g(x) ≤ 0.

This is a LOVO problem with constraints as defined in [11]. Therefore, one can employ Algorithm
C-LOVO of [11] for its resolution. Thus, assuming that the feasible set h(x) = 0, g(x) ≤ 0 is
non-empty and that the set defined by g(x) ≤ ε is bounded for some ε > 0, we have that the
conditions (15–18) are fulfilled by some iterate of C-LOVO in finite time.
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4.2 Convergence of Algorithm 4.1

In the previous section we saw that Algorithm 4.1 is well defined. Here we wish to analyze its
convergence properties. From now on we will assume that K ⊂

∞
IN is such that

lim
k∈K

= x∗. (19)

Since the number of subsets of {1, . . . , q} is finite, there exist K1⊂
∞
K, I ⊂ {1, . . . , q}, #I = r,

such that, for all k ∈ K1,
{i1(x

k), . . . , ir(x
k)} = I. (20)

For all k ∈ K1, i ∈ I, j /∈ I one has that:

fi(x
k) ≤ fj(x

k). (21)

Taking limits in (21) we see that for all i ∈ I, j /∈ I,

fi(x
∗) ≤ fj(x

∗). (22)

With these definitions, thanks to (9), the sequence satisfied by Algorithm 4.1 may be thought
as being generated by Algorithm 3.1, applied to the problem:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I, h(x) = 0, g(x) ≤ 0. (23)

Therefore, the convergence result given in Theorem 3.1 holds for this sequence. The global
convergence result is condensed in the theorem below.

Theorem 4.1. Assume that x∗, K, K1 and I satisfy (19,20). Then, one of the following three
possibilities hold:

1. x∗ is a feasible point of (5).

2. x∗ is a KKT point of

Minimize ‖h(x)‖2 + ‖g(x)+‖
2 +

∑

i∈I

fi(x)
2
+ subject to h(x) = 0, g(x) ≤ 0.

3. The constraints h(x) = 0, g(x) ≤ 0 do not satisfy the Constant Positive Linear Dependence
(CPLD) constraint qualification [13, 37] at x∗.

If x∗ is a feasible point of (5) then one of the following two possibilities hold:

1. x∗ is a KKT point of problem (23).

2. The constraints h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I, h(x) = 0, g(x) ≤ 0 do not satisfy
the CPLD constraint qualification at x∗.

Remark. A nice practical consequence of Theorem 4.1 is that, in general, the limit point x∗

generated by the algorithm satisfies optimality conditions of the nonlinear programming problem
(23), where the LOVO constraints fi(x) ≤ 0, i ∈ I, correspond to the r smallest values of
f1(x

∗), . . . , fq(x
∗) (22). The importance of this property will become apparent when we introduce

the algorithms of the following sections.
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4.3 Global optimization with LOVO subproblems

As in the case of Algorithm 3.0, we are going to see that a version of Algorithm 4.0 converges
to global minimizers of (5). As in Section 3 we only need to find approximate global minimizers
of the subproblems.

Algorithm 4.2. Proceed as in the Conceptual Algorithm 4.0, with xk ∈ Ω being such that

Lρk(x
k, λ̄k, µ̄k, νk) ≤ Lρk(x, λ̄

k, µ̄k, νk) + εk

for all x ∈ Ω.
Observe that the functions f̄j defined by f̄j(x) = fij(x)(x) are continuous and that the LOVO

constraints of the problem are f̄j(x) ≤ 0, j = 1, . . . , r. Therefore, Algorithm 4.2 is a particular
case of the main algorithm of [17]. As a consequence, by Theorem 2 of [17], we may prove the
following theorem.

Theorem 4.2. Assume that the feasible region of problem (5) is non-empty. Then, every limit
point of a sequence generated by Algorithm 4.2 is a global minimizer of (5).

5 Algorithm with smooth subproblems

At each iteration of Algorithm 4.0 one solves an optimization problem with a Low Order-
Value objective function. Conditions (15–18) are the approximate optimality conditions for
this subproblem. This nonsmooth subproblem may be attacked using C-LOVO [11], but the
alternative of using smooth subproblems deserves careful consideration. The idea consists of
defining, at the beginning of each outer iteration k,

I(xk−1) = {i1(x
k−1), . . . , ir(x

k−1)} (24)

and to fix this set of indices in the Augmented Lagrangian definition. Namely, instead of (10),
we define:

Lk
ρ(x, λ, µ, ν) = f(x) +

ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2

+
∑

j∈I(xk−1)

(
fj(x) +

ν

ρ

)2

+

]
. (25)

Again, it is pertinent to ask why we use the Augmented Lagrangian Lk
ρ instead of its coun-

terpart L̃k
ρ, associated with problem (4) and defined by:

L̃k
ρ(x, λ, µ, ν) = f(x) +

ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2

+

(
fir(xk−1)(x) +

ν

ρ

)2

+

]
.

The reason is the following: After minimizing Lk
ρ, we obtain, hopefully, a point x such that

fj(x) ≤ 0 for at least r indices j (those belonging to I(xk−1)). This implies that fir(x)(x) ≤ 0. On

the other hand, the best we can expect from minimizing L̃k
ρ is a point x such that fir(xk−1)(x) ≤ 0.

Since, very likely, the order of the f ′
is changes from one iteration to another, this property does

not imply that fir(x)(x) ≤ 0.
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Function (25) has continuous first derivatives, so that its gradient does not need a special
definition. The Conceptual Algorithm 5.0 is identical to Algorithm 4.0 except that Lρk is re-
placed by Lk

ρk
in (15).

Conceptual Algorithm 5.0. Define τ , η, λmin, λmax, µmax, ρ1, λ̄
1, µ̄1, ν̄1 and εk as in the

Conceptual Algorithm 4.0. Steps 1, 3 and 4 are the same as in that algorithm. At Step 2, the
point xk ∈ IRn is computed as an approximate solution of

Minimize Lk
ρk
(xk, λ̄k, µ̄k, ν̄k) subject to h(x) = 0, g(x) ≤ 0. (26)

Algorithm 5.1. Proceed as in the Conceptual Algorithm 5.0. For computing an approximate
solution of (26), proceed as in Algorithm 4.1, replacing condition (15) by:

‖∇Lk
ρk
(xk, λ̄k, µ̄k, ν̄k) +

m∑

i=1

vki∇hi(x
k) +

p∑

i=1

wk
i∇gi(x

k))]‖ ≤ εk. (27)

Conditions (16–18) remain as in Algorithm 4.1.

5.1 Solvability of the subproblems

At each iteration of Algorithm 5.1 we minimize, approximately, Lk
ρk
(x, λ̄k, µ̄k, ν̄k) with respect

to x on the set defined by h(x) = 0, g(x) ≤ 0. The stopping criterion for the corresponding
iterative process is given by the conditions (27) and (16–18).

As in the case of Algorithm 4.1, obtaining the stopping criterion is possible in finite time
using a computable algorithm. In this case, if we define:

Fmin(x) = f(x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥
2

+

∥∥∥∥
(
g(x) +

µ

ρ

)

+

∥∥∥∥
2

+
∑

j∈I(xk−1)

(
fj(x) +

ν

ρ

)2

+

]
,

the subproblem

Minimize Lk
ρk
(x, λ̄k, µ̄k, ν̄k) subject to h(x) = 0, g(x) ≤ 0

is equivalent to
Minimize Fmin(x) subject to h(x) = 0, g(x) ≤ 0.

This is a smooth optimization problem with constraints. Therefore, one can employ Algo-
rithm 3.1 for its resolution. Assuming that the feasible set h(x) = 0, g(x) ≤ 0 is non-empty and
that the set defined by g(x) ≤ ε is bounded for some ε > 0, we know that conditions (25) and
(16–18) are fulfilled by some Augmented Lagrangian iteration [6].

5.2 Convergence

In this section we analyze the convergence properties of Algorithm 5.1. Assume, as in Section 4.2,
that K ⊂

∞
IN is such that

lim
k∈K

xk = x∗. (28)
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Taking an appropriate subsequence and re-labeling we assume:

lim
k∈K

xk−1 = x∗∗. (29)

Since the number of subsets of {1, . . . , q} is finite, there exist K1⊂
∞
K, I ⊂ {1, . . . , q}, #I = r,

such that, for all k ∈ K1,
{i1(x

k−1), . . . , ir(x
k−1)} = I. (30)

For all k ∈ K1, i ∈ I, j /∈ I one has that:

fi(x
k−1) ≤ fj(x

k−1). (31)

Taking limits in (31) we see that for all i ∈ I, j /∈ I,

fi(x
∗∗) ≤ fj(x

∗∗). (32)

With these definitions, the sequence generated by Algorithm 5.1 may be thought as being
generated by Algorithm 3.1, applied to the problem:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I, h(x) = 0, g(x) ≤ 0. (33)

Therefore, Theorem 3.1 can be applied. The global convergence result is stated in the theorem
below.

Theorem 5.1. Assume that x∗, x∗∗, K, K1 and I satisfy (28–30). Then, one of the following
three possibilities hold:

1. x∗ is a feasible point of (5).

2. x∗ is a KKT point of

Minimize ‖h(x)‖2 + ‖g(x)+‖
2 +

∑

i∈I

fi(x)
2
+ subject to h(x) = 0, g(x) ≤ 0.

3. The constraints h(x) = 0, g(x) ≤ 0 do not satisfy the Constant Positive Linear Dependence
(CPLD) constraint qualification [13, 37] at x∗.

If x∗ is a feasible point of (33) then one of the following two possibilities hold:

1. x∗ is a KKT point of problem (33).

2. The constraints h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I, h(x) = 0, g(x) ≤ 0 do not satisfy
the CPLD constraint qualification at x∗.

Remark. In the case that
x∗∗ = lim

k∈K1

xk−1 = lim
k∈K1

xk = x∗, (34)

the result of Theorem 5.1 is the same as the one of Theorem 4.1. However, (34) is a property
of the algorithmic sequence (not of the problem) and, therefore, might not be verified by the
sequence generated by Algorithm 5.1. In any case, the limit point x∗ generally satisfies all the
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constraints fi(x) ≤ 0, i ∈ I. Thus, fi(x
∗) ≤ 0 for at least r indices i. This means that the

constraint fir(x)(x) ≤ 0 is certainly satisfied by x∗ but the possibility exists that fir+s
(x∗) ≤ 0

also for some s > 0. Since x∗ possibly satisfies more constraints than necessary, the point x∗ is,
perhaps, merely suboptimal.

To see the practical counterpart of the observation above we need to discuss first the adequate
stopping criterion for Algorithm 5.1. By Theorem 5.1, we may expect that limit points of the
algorithm solve problem (33). Therefore, the algorithm should stop at the iterate xk when xk

approximately fulfills a KKT condition for this problem. (For a discussion on approximate KKT
conditions, see [9].) In other words, the algorithm should stop at xk when xk is, presumably, an
approximate solution of

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I(xk−1), h(x) = 0, g(x) ≤ 0.
(35)

Since (with some small tolerance ε) fi(x
k) ≤ 0 for all i ∈ I(xk−1) and I(xk−1) contains

r indices, it turns out that fi(x
k) ≤ 0 for all i ∈ I(xk) (with tolerance ε). Therefore, xk is

a probable minimizer of f(x) on a set that, disregarding the tolerance, is (perhaps strictly)
contained in the feasible set of the following problem:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I(xk), h(x) = 0, g(x) ≤ 0. (36)

This means that minima of (35) could be greater than minima of (36). Then, albeit Algorithm 5.1
generally computes (almost) feasible points of problem (5), its iterates could be worse than the
ones generated by Algorithm 4.1.

5.3 Global optimization properties

Following the ideas of previous sections, it is natural to ask for the properties of Algorithm 5.1
when, instead of (27), (16), (17) and (18), we require that xk should be an approximate global
minimizer of Lk

ρk
(x, λ̄k, µ̄k, ν̄k) with respect to x ∈ Ω.

Algorithm 5.2. Proceed as in Algorithm 5.1 except that xk ∈ Ω is such that

Lk
ρk
(xk, λ̄k, µ̄k, ν̄k) ≤ Lk

ρk
(x, λ̄k, µ̄k, ν̄k) + εk

for all x ∈ Ω.

The global optimization properties of Algorithm 5.2 are given in the following theorem.

Theorem 5.2. Assume that the feasible region of problem (5) is non-empty. Let {xk} be gen-
erated by Algorithm 5.2 and let x∗ be a limit point, x∗∗, K,K1 and I satisfy (28–30). Then, x∗

is a global solution of problem (33).

Proof. As in Section 5.2, we may assume that the subsequence that converges to x∗ is generated
by Algorithm 3.2 applied to problem (33). Then, by Theorem 3.2, x∗ is a global solution of (33),
as we wanted to prove.

Note that, even in the case that x∗ = x∗∗ this result is weaker than the one obtained in
Theorem 4.2 for Algorithm 4.2. In fact, if x∗ = x∗∗, it follows that x∗ is a global minimizer of f(x)
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subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω and fi(x) ≤ 0 for all i ∈ I where I = {i1(x
∗), . . . , ir(x

∗),
but this does not imply that x∗ is a solution of (5). For example, take the problem

Minimize x subject to min{f1(x), f2(x)} ≤ 0,

where f1(x) = (x − 1)2 − 1, f2(x) = (x + 1)2 − 1. Take x∗ = 0. Then, we may consider that
r = 1, i1(x

∗) = 1, i2(x
∗) = 2. Clearly, x∗ is a global minimizer of the objective function subject

to fi1(x∗)(x) ≤ 0 but the global minimizer of the problem is −2.

6 Fixed-point LOVO algorithms

The algorithms presented in this section for solving (5) will be of fixed-point type. The idea
is to solve the problem by means of a small number (perhaps only one) smooth constrained
optimization problem. For all k = 1, 2, . . . we define I(xk−1) as in (24). The definition of the
Conceptual Algorithm is as follows.

Algorithm 6.0. We assume that x0 ∈ IRn is an arbitrary initial point.

Step 1. Initialization.
Set k ← 1.

Step 2. Solve the subproblem.
Compute xk as a (possible) solution of

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I(xk−1), h(x) = 0, g(x) ≤ 0.
(37)

Step 3. If I(xk−1) = I(xk), define xfinal = xk and stop. Else, set k ← k + 1 and go to Step 1.

An alternative to problem (37) could be:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fir(xk−1)(x) ≤ 0, h(x) = 0, g(x) ≤ 0. (38)

However, in the case of solving successfully (38), we would only obtain fir(xk−1)(x
k) ≤ 0. That is,

the fulfillment of fj(x) ≤ 0 would be guaranteed for only one index j. On the other hand, solving
successfully (37) leads to a point xk that satisfies fj(x) ≤ 0 for at least r indices. Therefore,
fir(xk)(x

k) ≤ 0.
By a “possible” solution of problem (37) we understand a limit point of a sequence generated

by a smooth constrained optimization algorithm. We may use Algorithm 3.1 or Algorithm 3.2
for that purpose. If

I(xk) = I(xk−1) (39)

then, very likely, xk+s would be identical to xk for all s = 1, 2, . . .. Therefore, the identity
between I(xk−1) and I(xk) is a sensible practical stopping criterion for Algorithm 6.0.

Algorithm 6.0 resembles the third algorithm proposed in the paper of Gaivoronski and
Pflug [23]. These authors considered the case of linear objective function, returns, and addi-
tional constraints, observing that, in this case, (37) reduces to a Linear Programming problem.
Instead of using always I(xk−1) for risk constraints, they suggest to select a suitable set of r
scenarios using adequate heuristics.
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Algorithms 6.1 and 6.2 are defined and the local and global counterparts of Algorithm 6.0.
Namely, in Algorithm 6.1 we are supposed to use Algorithm 3.1 for computing the fixed-point
iteration, whereas in Algorithm 6.2 we use Algorithm 3.2 for the same purpose.

Theorem 6.1. Assume that we use Algorithm 3.1 and the sequence {xk} stops at the feasible
point xfinal. Then, at least one of the two following possibilities hold:

1. xfinal is a KKT point of the problem

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 i ∈ I(xfinal), h(x) = 0, g(x) ≤ 0.
(40)

2. The constraints of problem (40) do not satisfy the CPLD constraint qualification at xfinal.

Proof. The proof follows from Theorem 3.1 using the identity (39).

The proof of the final theorem of this section follows directly from the definition of Algo-
rithm 6.2 and the fact that I(xk) = I(xk−1) at the final iterate.

Theorem 6.2. Assume that we use Algorithm 6.2 and the sequence {xk} stops at the feasible
point xfinal. Then, xfinal is a global solution of

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, fi(x) ≤ 0 ∀ i ∈ I(xk), h(x) = 0, g(x) ≤ 0.

Note that the thesis of Theorem 6.2 does not imply that xfinal is a solution of the original
problem (5). Similarly to Section 5, consider the problem:

Minimize x subject to min{f1(x), f2(x)} ≤ 0,

where f1(x) = (x−1)2−1, f2(x) = (x+2)2−1. Taking r = 1 this problem has the form (5). Take
x∗ = 0. Then, i1(x

∗) = 1, i2(x
∗) = 2. Clearly, x∗ is a global minimizer of the objective function

subject to fi1(x∗)(x) ≤ 0, and, consequently, x∗ is a fixed-point of the algorithm. However, the
global minimizer of the problem is −3.

This means that the only algorithm presented in this paper that is completely satisfactory
from the point of view of global minimization is Algorithm 4.2. This is because Algorithm 4.2
fits completely the global theory of [17] whereas Algorithms 5.2 and 6.2 do not.

7 Numerical experiments

We implemented the algorithms introduced in Sections 4, 5 and 6 for solving problem (5),
making suitable modifications of Algencan and using all the Algencan default parameters. More
specifically, we implemented Algorithms 4.1, 5.1 and 6.1 using the framework of Algencan, which
implies that global optimization properties mentioned in Theorems 4.2, 5.2 and 6.2 cannot be
guaranteed for these implementations. However, Algencan implementations are designed in
such a way that global minimizers of subproblems are actively pursued, independently of the
fulfillment of approximate stationarity conditions in the subproblems. In other words, our
subproblem solvers try always to find the lowest possible function values, even if this is not
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necessary for obtaining approximate local minimizers. As a consequence, practical behavior of
Algencan-like methods is usually well explained by the properties of their global-optimization
counterparts. The “preference for global minimizers” of the original smooth Algencan method
has been discussed in [6].

For solving problem (5) with Algorithms 4.1, 5.1 and 6.1, the evaluations of the objective
function, the constraints and their derivatives are the most time consuming tasks. In particular,
among them, the most time consuming task is the evaluation of the VaR constraints fij(x)(x) ≤
0, j = 1, . . . , r that involves, for a given x, the selection of the r smallest values among fi(x), i =
1, . . . , q. We implemented a divide-and-conquer type algorithm called Randomized-Select (see
[19] pp. 185–192) whose expected complexity is linear on the number of scenarios q (for any
value of r).

Codes are in Fortran 77 and, together with some problem data that makes it possible repro-
duction of the numerical experiments, are available for download in [42]. Codes were compiled
with gfortran (GNU Fortran version 4.2.1) and the compiler option -O4 was adopted. All the
experiments were run on a 2.4GHz Intel Core2 Quad Q6600 processor, 4Gb of RAM memory
and Linux operating system.

7.1 Preliminary test

Before going to our main application, in this subsection we will compare Algorithms 4.1, 5.1
and 6.1 using a simple portfolio risk problem. Assume that we have a history of percentage
returns for n assets and, using this information, we simulate a list of q equally probable n-uples
of prices at the end of some period of time (equal to 10 business days in the experiments below).
Each n-uple represents a different scenario and defines a loss function. We want to minimize the
average loss subject to fir(x)(x) ≤ 0, where fj is the difference between the loss under scenario
j and the tolerated loss, for j = 1, . . . , q. We assume that xj is the amount invested in asset j,
j = 1, . . . , n. Let θij be the quotient between the final price of asset j and the initial price of
this asset, under scenario i. Therefore, at the end of the period we have

∑n
j=1 θijxj monetary

units. On average, our final amount of money will be:
∑n

j=1 θ̂jxj , where, for j = 1, . . . , n,

θ̂j =
1
q

∑q
i=1 θij . The natural function to be minimized is, therefore,

−Average final money ≡ f(x) = −
n∑

j=1

θ̂jxj .

We have a natural budget restriction given by:

n∑

j=1

xj = M (41)

and, in order to avoid negative investments, we include the non-negativity constraints

xj ≥ 0, j = 1, . . . , n. (42)

The problem of minimizing f(x) subject to (41) and (42) has at least one trivial solution x∗,
given by

x∗j = M if θ̂j = max{θ̂1, . . . , θ̂n}, x
∗
j = 0, otherwise.
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The additional VaR constraint imposes that, under at least r scenarios, the loss must not exceed
the tolerance Tloss. This means that:

loss ≡M −
n∑

j=1

θijxj ≤ Tloss (43)

for at least r indices i. In our experiments we take Tloss = 0.05M and r = 0.99q. This means
that the tolerated loss is required to be smaller than (Tloss/M)100% = 5% of the invested capital
with a probability α = r/q = 0.99.

We assume that one of the assets (corresponding to j = n) is risk-free with rate equal to
zero. This fact is expressed stating that θin = 1 for all i = 1, . . . , q. As a consequence, the
portfolio given by:

xn = M,xj = 0 for all j = 1, . . . , n− 1, (44)

necessarily satisfies the constraints (41–43). The portfolio x given by (44) is attractive as initial
approximation but it has the drawback that fi(x) is the same for all scenarios i. This makes
the choice of i1(x), . . . , ir(x) quite ambiguous. If a poor choice is made this could lead to poor
local minimizers of the problem. Therefore, the initial choice

xn = 0.5M,xj = 0.5M/(n− 1) for all j = 1, . . . , n− 1 (45)

is more attractive. Observe that the portfolio (45) might not satisfy the constraint (43), but
this is not a serious inconvenience for Augmented Lagrangian approaches.

Summing up, in this section we wish to solve problem (5) stated as:

Minimize −
n∑

j=1

θ̂jxj (46)

subject to fik(x)(x) ≤ 0, k = 1, . . . , r, (47)
n∑

j=1

xj = M, (48)

x ∈ Ω, (49)

where fi(x) = M −
∑n

j=1 θijxj − Tloss, i = 1, . . . , q, and Ω = {x ∈ IRn | x ≥ 0}.
We use n = 8 and q = 1000 in our experiments. For reproducibility, the scenarios matrix

θ ∈ IRq×n can be found in [42]. An information that can be useful to analyze the obtained
results is that, as a consequence of having

θ̂ ≈ (0.9994, 1.0005, 0.9958, 1.0003, 1.0063, 1.0059, 1.0023, 1.0000)T ,

the solution of problem (46)–(49) ignoring the VaR constraint (47) is given by (100/M)×x∗5 = 100
and x∗i = 0, ∀ i 6= 5, with (−100/M) × f(x∗) ≈ 100.63. Solutions obtained by Algorithms 4.1,
5.1 and 6.1 are shown in Table 1.

7.2 Model with transaction costs

We will now introduce transaction costs to problem (46)–(49). According the model described
in [4, 5], impact costs can be temporary or permanent. A temporary impact is a short lived
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Method (−100/M)× f(x∗) (100/M)× x∗

Algorithm 4.1 100.40

x1 = x2 = x3 = x4 = 0
x5 ≈ 1.58
x6 ≈ 65.79
x7 ≈ 1.62
x8 ≈ 31.01

Algorithm 5.1 100.41

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 27.54
x6 ≈ 39.92
x8 ≈ 32.54

Algorithm 6.1 100.42

x1 = x2 = x3 = x4 = 0
x5 ≈ 20.98
x6 ≈ 46.60
x7 ≈ 4.96
x8 ≈ 27.46

Table 1: Performance of Algorithms 4.1, 5.1 and 6.1 applied to a simple problem without
transaction costs.

deviation from the equilibrium price caused by our own trading and it can affect our transaction
in progress. Its duration is mainly governed by the liquidity pattern of the stock we are trading.
A permanent impact can stay well after the trade is executed but it is significantly smaller
(for one order of magnitude) than the temporary impact. Both temporary and permanent
impacts are concave functions. Contrary to the fixed costs, impact costs are important for large
institutional investors since their trades tend to be of large volume, while their importance for
small investors is not that big. Due to all these considerations we will include both fixed and
impact costs in our model and consider separately small and large investors in the numerical
tests. Due to the presence of impact costs, we will have a nonlinear objective function in our
optimization problem. Transaction costs are also divided into fixed and impact costs in [28],
where the problem is formulated as VaR minimization with yield and costs constraints.

Let us now describe the model we will consider from now on. Assume that the set of n
different shares {1, 2, . . . , n} is available. Denoting by xj the amount invested in asset j we
have:

n∑

j=1

xj = M, xj ≥ 0, j = 1, . . . , n. (50)

Following [4, 5], the impact is a function of trading intensity that depends of several stock-
specific parameters: the spread εj , the initial price of the stock πj , the average daily volume
ADVj and an additional parameter β ∈ (0, 1] that determines the impact function nonlinearity.

We define the temporary impact function [4], relative to asset j, in the following way:

H(xj) =
εj
2πj

+
εj
2πj

(
100xj

ADVjπj

)β

. (51)
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The permanent impact function [4] will be given by:

G(xj) =
εj
πj

(
10xj

ADVjπj

)β

. (52)

Assuming that cjxj is the fixed cost of trading xj monetary units of stock j, the total cost
of the transaction that includes impact and fixed costs will be:

tj(xj) = xj(H(xj) +G(xj) + cj).

In this way, the rule of thumb given in [4] is taken into account. This rule states that a buy
order of 1% of ADVj of asset j temporarily moves the price for one spread εj while the same
permanent impact is achieved with volume equal to 10% of ADVj . Therefore the temporary
impact is larger than the permanent for one order of magnitude.

Fixed costs, consisting of all fees and taxes, are in general proportional to the transaction
value but with different factors for small and large investors. We will assume that a small
investor has a fixed cost equal to 1% of the transaction value for any asset. On the other hand,
a large institutional investor will be paying 0.1% for any asset.

Let us assume that the sequence of historical (or simulated) asset returns is available. This
means that the matrix θ = (θij), that gives the quotient of the final price and the initial price of
the asset j under scenario i, is available. The final value of our portfolio, under scenario i, will
be given by

∑n
j=1 θijxj . Therefore, defining, as in Section 7.1, θ̂j =

∑q
i=1 θij/q, the average final

value of the portfolio is
∑n

j=1 θ̂jxj . We want to maximize this value, discounting transaction
costs and considering the VaR constraint. This means that our objective function in (5) should
be:

f(x) = −
n∑

j=1

θjxj +
n∑

j=1

tj(xj).

The VaR constraint is determined by the definition of fi(x) for each scenario i. In the present
case, we have:

fi(x) = M −
n∑

j=1

θijxj +
n∑

j=1

tj(xj)− Tloss,

where Tloss denotes the tolerated loss.
As in Section 7.1, we take Tloss = 0.05M , r = 0.99q and q = 1000 in our experiments.

Moreover, we also assume that one of the assets (corresponding to j = n) is risk-free stating
that θin = 1 for all i = 1, . . . , q, εn = 0 and cn = 0. Finally, we also use xn = 0.5M ,
xj = 0.5M/(n− 1) for j = 1, . . . , n− 1 as initial choice.

Summing up, in this section we wish to solve problem (5) stated as:

Minimize −
n∑

j=1

θ̂jxj +
n∑

j=1

tj(xj) (53)

subject to fik(x) ≤ 0, k = 1, . . . , r, (54)
n∑

j=1

xj = M, (55)

x ∈ Ω, (56)
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where

fi(x) = M −
n∑

j=1

θijxj +
n∑

j=1

tj(xj)− Tloss, i = 1, . . . , q,

and
Ω = {x ∈ IRn | x ≥ 0}.

The proposed algorithms were tested using the problems described below. The set of n = 8
available shares consists of the seven FTSE shares AZN.L, BARC.L, KGF.L, LLOY.L, MKS.L,
TSCO.L and VOD.L, plus a risk-free asset. We consider q = 1000 scenarios. The matrices
of scenarios θ were generated using the historical data on daily returns from March 19 (2004)
to February 12 (2008). For the small investor case we consider M = 10, 000 (pounds) and
portfolios with a time life of 120 and 240 business days. For the large investor case we consider
M = 100, 000, 000 and a 10-days life time portfolio. The matrices θ as well as the transaction
costs related constants εj , πj and ADVj , j = 1, . . . , n can be found in [42]. Table 2 shows the
solutions found by Algorithms 4.1, 5.1 and 6.1 in the large investor case using β = 1 and β = 0.6
in the transaction costs formulae, respectively. The solutions in the small investor case for β = 1
are given in Table 3. As expected, since impact factors are negligible for small investors, tests
made with β = 0.6 yield almost identical results.

In Table 2 we observe that:

1. As expected, returns with β = 0.6 are slightly smaller than returns with β = 1 since in
the first case the impact factor is bigger.

2. Qualitatively, the suggested portfolios are the same in all the cases except in the case
β = 0.6 with Algorithm 5.1. Since the return is slightly smaller in this case, it may be
deduced that Algorithm 5.1 converged to a local minimizer when β = 0.6.

3. The identity between portfolios with β = 1 and β = 0.6 is more evident in the case of
Algorithm 6.1. However, it can be observed that the solution obtained by Algorithm 6.1
is also identical to the one obtained by Algorithm 4.1 with β = 0.6. On the other hand,
the solution obtained by Algorithms 4.1 and 5.1 are identical when β = 0.6. This seems
to indicate that the algorithms find slightly different local minimizers, the choice among
which is not meaningful from the practical point of view.

The conclusions in the case of the small investor with short and long life time scenarios
(Table 3) are significantly different. (Recall that we only report the case β = 1 because the
results for β = 0.6 are almost identical.)

1. The three algorithms recommend, for the 120 days scenario, to keep 74 % of the budget
on the risk-free asset (x8), around 19 % on the asset x6 and 6 % on x5. In the case of the
240-days scenario the decision is even more conservative, since the investment on asset x5
migrates to the risk-free asset.

2. The reason for that progressively conservative behavior is the VaR constraint. Clearly, the
chance of loosing 5 % of the capital is very small for a short-time investment and increases
with time. Although short-time investments are not encouraged for small investors, the
conservative effect of transaction costs is less important than effect caused by the VaR
constraint.
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Method (−100/M)× f(x∗) (100/M)× x∗

Algorithm 4.1 100.31

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 16.20
x6 ≈ 53.03
x8 ≈ 30.77

β
=

1.
0

Algorithm 5.1 100.31

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 16.20
x6 ≈ 53.03
x8 ≈ 30.77

Algorithm 6.1 100.31

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 10.17
x6 ≈ 58.82
x8 ≈ 31.01

Algorithm 4.1 100.30

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 10.15
x6 ≈ 58.71
x8 ≈ 31.13

β
=

0.
6

Algorithm 5.1 100.29

x1 = x2 = x3 = x4 = 0
x5 ≈ 1.55
x6 ≈ 64.36
x7 ≈ 1.58
x8 ≈ 32.51

Algorithm 6.1 100.30

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 10.15
x6 ≈ 58.71
x8 ≈ 31.13

Table 2: Performance of Algorithms 4.1, 5.1 and 6.1 using β ∈ {0.6, 1.0} in the large investor
case considering a 10-days life time scenario.

3. There are no important practical differences between the tested algorithms. The average
returns predicted by them are very similar.

7.3 Large-scale problems

In this subsection we will consider larger scale instances of problem (53)-(56) with n ∈ {500, 1000}
assets and q = 1000 scenarios. The data θ ∈ IRq×n and ε, π,ADV ∈ IRn can be found in [42].
We use β = 0.6 to deal with non-linear transaction costs. We deal with the large investor case,
using M = 100, 000, 000, cj = 0.001 for all j. The matrix θ simulates 120-days life time scenar-
ios. We also consider that the n-th asset is risk-free and we use xn = 0.5M , xj = 0.5M/(n− 1)
for j = 1, . . . , n− 1 as initial choice.

In order to evaluate the influence of the VaR constraint in the quality of the objective function
value at the solution, we solve the problem for different values of the VaR constraint parameters

Confidence level = r/q ∈ {0.90, 0.91, . . . , 0.99}
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Method (−100/M)× f(x∗) (100/M)× x∗

Algorithm 4.1 101.77

x2 = x3 = x4 = 0
x1 ≈ 1.02
x5 ≈ 6.04
x6 ≈ 18.53
x7 ≈ 1.31
x8 ≈ 73.11

12
0
d
ay
s

Algorithm 5.1 101.82

x2 = x3 = x4 = x7 = 0
x1 ≈ 0.13
x5 ≈ 6.19
x6 ≈ 19.37
x8 ≈ 74.31

Algorithm 6.1 101.83

x2 = x3 = x4 = x7 = 0
x1 ≈ 0.19
x5 ≈ 6.17
x6 ≈ 19.41
x8 ≈ 74.23

Algorithm 4.1 103.00

x1 = x2 = x3 = x4 = x7 = 0
x5 ≈ 2.63
x6 ≈ 17.23
x8 ≈ 80.14

24
0
d
ay
s

Algorithm 5.1 103.09

x3 = x4 = x5 = x7 = 0
x1 ≈ 0.15
x2 ≈ 0.54
x6 ≈ 19.49
x8 ≈ 79.82

Algorithm 6.1 103.09

x3 = x4 = x5 = x7 = 0
x1 ≈ 0.15
x2 ≈ 0.55
x6 ≈ 19.49
x8 ≈ 79.81

Table 3: Performance of Algorithms 4.1, 5.1 and 6.1 using β = 1.0 in the small investor case
considering 120- and 240-days life time scenarios.
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and
Maximal percentual loss = (100/M)× Tloss ∈ {1, 2, . . . , 10}.

Tables 4 and 5 show the optimal values obtained by Algorithms 4.1, 5.1 and
6.1 for each combination of r and Tloss. Note that tighter the VaR constraint (bottom-right),

smaller the expected gain.
The average CPU times of each method are 64.82, 60.10 and 10.06 seconds, for the problem

with n = 500, and 324.65, 451.02 and 50.27 seconds, for the problem with n = 1000, respectively.
On average, optimal values found by Algorithm 4.1 are slightly better than the ones obtained
by Algorithm 5.1, and the ones obtained by Algorithm 5.1 are slightly better than the ones
obtained by Algorithm 6.1.

It may be observed that, in the solutions given by Algorithms 4.1 and 5.1, the expected
return decreases when the confidence level increases and when the tolerated loss decreases, as
expected. In the case of Algorithm 6.1 this desired behavior is violated systematically when we
go from α = 0.95 to α = 0.96. In fact, we observe that the expected return increases between
those values of α. This may reveal that, as predicted by theory, the global convergence properties
of Algorithms 4.1 and 5.1 are stronger than the ones of Algorithm 6.1.

8 Conclusions

We presented algorithms of Augmented Lagrangian type to cope the (large scale) portfolio
optimization problem with transaction costs. The structure of this optimization problem is
different from the standard smooth nonlinear programming structure. Non-smoothness of our
problem appears in a very particular way, allowing us to fully exploit the main characteristics
of the Low Order-Value constrained optimization paradigm.

Numerical results seem to show that there are little performance differences between the
algorithms presented in this paper. However, these results are preliminary and practical expe-
rience with this approach is still incipient. Theoretical results are rather emphatic in the sense
of showing that better behavior should be expected from algorithms in Section 4. As mentioned
before, the algorithms effectively implemented here do not guarantee global minimization of the
problems. The complexity of the problem makes it very improbable that practical guaranteedly
global methods could exist, at least with the present development of computer facilities and
in the presence of large-scale situations. However, in everyday practice, is is not unreliable to
think that good initial approximations to the global minimizers, provided by trained investors,
may be available. Moreover, when Algencan-like algorithms are used, the global heuristic proce-
dures merged in the subproblems are known to enhance the probability of convergence to global
minimizers.

Other times, investors are ready to make small changes in their portfolios instead of the
large ones that could be suggested by a global minimization solver. Real life contains subjective
criteria that are difficult to capture in models. Such criteria are usually implicit in initial
approximations. Thus, on one hand, the initial approximation motivated by investor feelings
is, probably, a good guess for the global solution of the problem. On the other hand, in the
case that global minimizers are very far from initial educated guesses, it is very likely that some
constraint implicitly considered by the user is not contemplated in the mathematical model. For
this reason we believe that even local-minimization algorithms may be quite useful.
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Algorithm 4.1
Confidence level α = r/q

f̄
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

%
lo
ss

(1
0
0
/M

)
×

T
lo
ss

10% 101.51 101.48 101.42 101.31 101.25 101.16 101.10 101.06 100.99 100.87 101.22

9 % 101.37 101.33 101.27 101.18 101.11 101.07 101.00 100.96 100.86 100.79 101.09

8 % 101.21 101.18 101.14 101.05 101.00 100.92 100.87 100.84 100.80 100.70 100.97

7 % 101.06 101.02 100.94 100.92 100.88 100.81 100.76 100.75 100.67 100.63 100.84

6 % 100.92 100.72 100.85 100.77 100.73 100.69 100.66 100.65 100.58 100.52 100.71

5 % 100.77 100.74 100.70 100.66 100.63 100.59 100.56 100.54 100.50 100.45 100.61

4 % 100.61 100.59 100.56 100.53 100.50 100.48 100.46 100.43 100.41 100.35 100.49

3 % 100.46 100.45 100.42 100.40 100.36 100.36 100.34 100.33 100.29 100.27 100.37

2 % 100.31 100.30 100.29 100.27 100.25 100.25 100.23 100.22 100.20 100.18 100.25

1 % 100.16 100.16 100.15 100.14 100.13 100.13 100.12 100.11 100.11 100.10 100.13

f̄ 100.84 100.80 100.77 100.72 100.68 100.65 100.61 100.59 100.54 100.49 100.67

Algorithm 5.1
Confidence level α = r/q

f̄
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

%
lo
ss

(1
0
0
/M

)
×

T
lo
ss

10% 101.51 101.48 101.42 101.31 101.25 101.19 101.11 101.06 100.98 100.89 101.22

9 % 101.37 101.33 101.27 101.18 101.11 101.08 101.00 100.96 100.84 100.80 101.09

8 % 101.22 101.18 101.12 100.91 100.97 100.87 100.89 100.82 100.77 100.70 100.95

7 % 101.03 101.04 100.99 100.90 100.83 100.78 100.78 100.73 100.69 100.59 100.84

6 % 100.91 100.89 100.85 100.76 100.74 100.69 100.67 100.62 100.58 100.54 100.73

5 % 100.77 100.72 100.71 100.64 100.61 100.60 100.55 100.53 100.50 100.45 100.61

4 % 100.55 100.55 100.51 100.51 100.49 100.49 100.46 100.42 100.39 100.36 100.47

3 % 100.44 100.43 100.40 100.38 100.38 100.35 100.34 100.32 100.30 100.27 100.36

2 % 100.31 100.31 100.28 100.26 100.25 100.23 100.23 100.22 100.21 100.18 100.25

1 % 100.15 100.14 100.14 100.13 100.13 100.12 100.11 100.10 100.10 100.10 100.12

f̄ 100.83 100.81 100.77 100.70 100.68 100.64 100.61 100.58 100.54 100.49 100.66

Algorithm 6.1
Confidence level α = r/q

f̄
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

%
lo
ss

(1
0
0
/M

)
×

T
lo
ss

10% 101.40 101.33 101.13 101.12 101.09 101.01 101.09 101.03 100.93 100.82 101.10

9 % 101.26 101.20 101.02 100.99 100.95 100.91 100.98 100.93 100.84 100.74 100.98

8 % 101.12 101.07 100.91 100.87 100.88 100.81 100.87 100.83 100.75 100.66 100.88

7 % 100.98 100.93 100.80 100.77 100.77 100.71 100.76 100.72 100.65 100.58 100.77

6 % 100.84 100.80 100.68 100.66 100.66 100.61 100.65 100.62 100.56 100.49 100.66

5 % 100.70 100.67 100.57 100.55 100.55 100.51 100.55 100.52 100.47 100.41 100.55

4 % 100.56 100.54 100.46 100.44 100.44 100.41 100.44 100.42 100.37 100.33 100.44

3 % 100.42 100.40 100.34 100.33 100.33 100.30 100.33 100.31 100.28 100.25 100.33

2 % 100.28 100.27 100.23 100.22 100.22 100.20 100.22 100.21 100.20 100.17 100.22

1 % 100.14 100.14 100.12 100.11 100.11 100.10 100.11 100.11 100.10 100.08 100.11

f̄ 100.77 100.74 100.63 100.61 100.60 100.56 100.60 100.57 100.52 100.45 100.60

Table 4: Performance of Algorithms 4.1, 5.1 and 6.1 on a problem with n = 500 assets, varying
confidence level and tolerated loss. The VaR constraint imposes that the loss must be smaller
than (100/M)×Tloss% of the invested capital with a probability α = r/q. Each cell of the table
shows the value of −(100/M)× f(x∗). Rows and columns in boldface represent average values.

Among the algorithmic improvements that we have in mind, we plan to adapt some of the
global techniques employed in the subproblems of [17] to the problem introduced in this paper.

Acknowledgements. We are indebted to two anonymous referees for useful remarks.
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Algorithm 4.1
Confidence level α = r/q

f̄
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

%
lo
ss

(1
0
0
/M

)
×

T
lo
ss

10% 101.78 101.75 101.72 101.63 101.54 101.41 101.28 101.17 101.12 101.04 101.44

9 % 101.63 101.59 101.51 101.47 101.39 101.27 101.16 101.06 101.02 100.94 101.30

8 % 101.45 101.39 101.38 101.31 101.24 101.11 100.98 100.94 100.92 100.81 101.15

7 % 101.26 101.24 101.19 101.15 101.08 100.97 100.86 100.83 100.81 100.73 101.01

6 % 101.09 101.02 101.01 100.97 100.93 100.86 100.78 100.71 100.69 100.63 100.87

5 % 100.86 100.83 100.88 100.83 100.78 100.71 100.64 100.60 100.58 100.52 100.72

4 % 100.73 100.69 100.65 100.67 100.63 100.57 100.51 100.49 100.46 100.41 100.58

3 % 100.56 100.53 100.53 100.49 100.47 100.43 100.39 100.35 100.35 100.31 100.44

2 % 100.37 100.36 100.33 100.33 100.32 100.28 100.27 100.24 100.24 100.21 100.30

1 % 100.19 100.19 100.18 100.17 100.16 100.14 100.14 100.12 100.12 100.10 100.15

f̄ 100.99 100.96 100.94 100.90 100.85 100.78 100.70 100.65 100.63 100.57 100.80

Algorithm 5.1
Confidence level α = r/q

f̄
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

%
lo
ss

(1
0
0
/M

)
×

T
lo
ss

10% 101.80 101.74 101.72 101.63 101.55 101.41 101.29 101.19 101.08 101.04 101.45

9 % 101.66 101.59 101.53 101.47 101.35 101.27 101.11 101.07 101.02 100.93 101.30

8 % 101.45 101.40 101.33 101.30 101.24 101.11 100.97 100.94 100.89 100.84 101.15

7 % 101.28 101.26 101.14 101.14 101.07 100.99 100.85 100.82 100.77 100.72 101.00

6 % 101.09 101.02 100.98 100.98 100.88 100.85 100.73 100.71 100.69 100.63 100.86

5 % 100.90 100.87 100.85 100.82 100.76 100.71 100.60 100.59 100.57 100.51 100.72

4 % 100.74 100.67 100.67 100.58 100.63 100.57 100.53 100.46 100.46 100.41 100.57

3 % 100.55 100.53 100.49 100.46 100.45 100.43 100.40 100.36 100.34 100.31 100.43

2 % 100.36 100.35 100.35 100.33 100.31 100.30 100.26 100.24 100.23 100.20 100.29

1 % 100.20 100.18 100.18 100.17 100.16 100.15 100.13 100.12 100.12 100.10 100.15

f̄ 101.00 100.96 100.92 100.89 100.84 100.78 100.69 100.65 100.62 100.57 100.79

Algorithm 6.1
Confidence level α = r/q

f̄
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

%
lo
ss

(1
0
0
/M

)
×

T
lo
ss

10% 101.68 101.64 101.46 101.52 101.31 101.26 101.16 101.08 101.04 100.99 101.31

9 % 101.64 101.41 101.31 101.31 101.27 101.14 101.05 100.97 100.93 100.89 101.19

8 % 101.35 101.26 101.17 101.16 101.13 101.01 100.93 100.86 100.82 100.80 101.05

7 % 101.28 101.10 101.02 101.01 100.92 100.89 100.82 100.75 100.73 100.70 100.92

6 % 101.08 100.95 100.87 100.87 100.79 100.76 100.70 100.65 100.65 100.60 100.79

5 % 100.91 100.79 100.73 100.73 100.66 100.64 100.58 100.54 100.53 100.50 100.66

4 % 100.74 100.66 100.58 100.58 100.53 100.51 100.47 100.43 100.42 100.40 100.53

3 % 100.55 100.47 100.44 100.44 100.40 100.38 100.35 100.35 100.32 100.31 100.40

2 % 100.37 100.36 100.29 100.29 100.27 100.25 100.23 100.24 100.21 100.20 100.27

1 % 100.18 100.18 100.15 100.15 100.13 100.13 100.12 100.11 100.11 100.10 100.14

f̄ 100.98 100.88 100.80 100.81 100.74 100.70 100.64 100.60 100.58 100.55 100.73

Table 5: Performance of Algorithms 4.1, 5.1 and 6.1 on a problem with n = 1000 assets, varying
confidence level and tolerated loss. The VaR constraint imposes that the loss must be smaller
than (100/M)×Tloss% of the invested capital with a probability α = r/q. Each cell of the table
shows the value of −(100/M)× f(x∗). Rows and columns in boldface represent average values.

References

[1] C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas, A global optimization
method α-BB for process design, Computers & Chemical Engineering 20, pp. S419–424,
1996.

26



[2] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier, A global optimization method,
α-BB, for general twice-differentiable constrained NLPs – I. Theoretical Advances, Com-
puters & Chemical Engineering 22, pp. 1137–1158, 1998.

[3] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, A global optimization method, α-BB,
for general twice-differentiable constrained NLPs – II. Implementation and computational
results, Computers & Chemical Engineering 22, pp. 1159–1179, 1998.

[4] R. F. Almgren, Optimal execution with nonlinear impact functions and trading-enhanced
risk, Applied Mathematical Finance 10, pp. 1–18, 2003

[5] R. F. Almgren and N. Chriss, Optimal execution of portfolio transaction, Journal of Risk
3, pp. 5–39, 2001.

[6] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On Augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2007.

[7] R. Andreani, C. Dunder, and J. M. Mart́ınez, Order-value optimization: formulation and
solution by means of a primal Cauchy method, Mathematical Methods of Operations Re-
search 58, pp. 387–399, 2003.

[8] R. Andreani, C. Dunder, and J. M. Mart́ınez, Nonlinear-programming reformulation of the
Order-value optimization problem, Mathematical Methods of Operations Research 61, pp.
365–384, 2005.

[9] R. Andreani, G. Haeser, and J. M. Mart́ınez, Sequential optimality conditions for con-
strained optimization, Optimization, to appear.

[10] R. Andreani, J. M. Mart́ınez, L. Mart́ınez, and F. Yano, Continuous optimization methods
for structure alignments, Mathematical Programming 112, pp. 93–124, 2008.

[11] R. Andreani, J. M. Mart́ınez, L. Mart́ınez, and F. Yano, Low Order-value optimization and
applications, Journal of Global Optimization 43, pp. 1–10, 2009.

[12] R. Andreani, J. M. Mart́ınez, M. Salvatierra, and F. Yano, Quasi-Newton methods for
Order-value optimization and value-at-risk calculations, Pacific Journal of Optimization 2,
pp. 11–33, 2006.

[13] R. Andreani, J. M. Mart́ınez, and M. L. Schuverdt, On the relation between the Constant
Positive Linear Dependence condition and quasinormality constraint qualification, Journal
of Optimization Theory and Applications 125, pp. 473–485, 2005.

[14] I. P. Androulakis, C. D. Maranas, and C. A. Floudas, α-BB: A global optimization method
for general constrained nonconvex problems, Journal of Global Optimization 7, pp. 337–363,
1995.

[15] A. Ben Tal and M. Teboulle, And old-new concept of convex risk measures: the optimized
certainty equivalent, Mathematical Finance 17, pp. 449–476, 2007.

27



[16] M. J. Best and J. Hlouskova, Portfolio selection and transactions costs, Computational
Optimization and Applications 24, pp. 95–116, 2003.

[17] E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez, Global minimization using an Augmented
Lagrangian method with variable lower-level constraints, Mathematical Programming 125,
pp. 139–162, 2010.

[18] J. P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, Fluctuations and response in financial
markets: The subtle nature of ’random’ price changes, Quantitative Finance 4, pp. 57–62,
2004.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Second Edition, The MIT Press, 2001.
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