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Abstract

A practical problem that requires the classification of a set of points of IRn using

a criterion not sensitive to bounded outliers is studied in this paper. A fixed-point

(k-means) algorithm is defined that uses an arbitrary distance function. Finite conver-

gence is proved. A robust distance defined by Boente, Fraiman and Yohai is selected

for applications. Smooth approximations of this distance are defined and suitable

heuristics are introduced to enhance the probability of finding global optimizers. A

real-life example is presented and commented.
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1 Introduction

This research has a practical motivation. We wish to classify students into different groups

regarding their application to different training programs. The parameters used for clas-

sification are the scores in a set of tests and exams. We observed that “outliers” among

these scores are frequent. They are probably due, on one side, to occasional faking and,

on the other side, to illness or stress disorders. Outliers cause misclassifications when the

ordinary Euclidean distance is used in the context of a fixed-point procedure. Since all

the observations are scores between 0 and 10 there is a severe restriction to the distribu-

tion of outliers. The probability of their occurrence outside a fixed interval is null. This

motivated us to seek a different “robust” distance, which should be less sensitive to this

type of outliers. With that purpose, we chose a distance introduced by Boente, Fraiman

and Yohai in [9]. The new distance seems to fit our objectives better than other L1-like

alternatives. See [30]–[33].

Fixed-point procedures for classification are largely known in classical literature. They

are generally known as k-means algorithms (see [18, 24] and many others). The main

properties of these algorithms can be found in modern literature. See, for example, [1, 2,

8, 11, 15] and references therein.

Suppose that we want to classify m points of IRn into q different clusters. Given q

arbitrary subsets, the center of gravity of each group is computed. Then, the clusters

are reorganized in such a way that each point belongs to the set defined by the closest

center. This procedure is repeated until a repetition in classification occurs. In k-means

algorithms, the center of gravity is the point that minimizes the sum of squared Euclidean

distances and, therefore, is quite sensitive to the presence of outliers. Using a continuous

arbitrary distance function, the fixed-point algorithm can be generalized and it can be

proved that finite convergence to a local minimizer of an adequate merit function takes

place under a regularity assumption. Regularity is essential for obtaining convergence.

The general algorithm will be analyzed in connection to the Boente-Fraiman-Yohai

(BFY) distance function (see [9]). In order to smooth the function we use a half-Gaussian

approximation of Heaviside step functions. We will prove that, when the smoothing pa-

rameter tends to its limit, the smoothed problem produces the same results as the original

BFY function.

In order to illustrate the advantages of using the BFY distance for clustering in

the presence of outliers let us give an example. Assume that P1 = (0, 0, 0, 0, 0), P2 =

(0, 0, 0, 0, 10), P3 = (0, 1, 2, 3, 4) and that we wish to classify these points into two groups.

Suppose that the points represent the scores of three students in a course with five exams.

So, P j
i is the score of student i in exam j. The “reasonable” solution is C1 = {P1, P2}, C2 =
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{P3}. In fact, the fifth score of P2 is, very likely, an outlier due, perhaps, to fake. This is

the solution found by the algorithm that we are going to present here, that uses the BFY

distance. On the other hand, k-means and k-median algorithms with the Euclidean and

the 1-norm, respectively, classify C1 = {P1}, C2 = {P2, P3}. It is worth mentioning that

the efficiency of the BFY approach is not independent of scaling considerations. In fact,

in this case it is essential that all the measurements lie between 0 and 10. If the scaling

of the variables is very different, the BFY function must be scaled as well.

The fact that the fixed-point method stops only at local minimizers motivated us to

find suitable heuristics to determine an initial classification, previous to the centering

cycles. The final algorithm combines heuristics and fixed-point iterations (in the outer

stage) with centering steps based on BFY minimizations (in the inner stage). For finding

the centers we used an algorithm recently introduced in [6]. See, also [25, 26]. Gradient

algorithms for clustering problems have also been proposed in [23], where deterministic

annealing plays the role of our heuristic for improving global properties.

The algorithm was applied to practical situations where it turned out to be efficient.

We describe one of these situations in the present research.

The development of this paper follows the sequence sketched above. Section 2 contains

the convergence proof of the generalized fixed-point method. Section 3 is devoted to the

approximation of the BFY distance function. In Section 4 we describe the heuristics for

the initial classification and the application is presented in Section 5. The last section

contains final remarks.

2 The fixed-point procedure

The results of this section seem to be well known in the classical literature. See, for

example, [1] and the references of this book. We give a brief survey of them for future

reference.

Assume that P1, . . . , Pm are points in IRn which we wish to classify into q groups. The

idea is to determine C1, . . . , Cq, the “centers” of the groups, in an optimal way. The point

Pi will be assigned to the group whose center is Cj if a distance-like continuous function

ϕ(Pi, C) takes its minimum value at Cj. We assume that ϕ(P,C) ≥ 0 for all P,C,∈ IRn.

Therefore, the goal is to find C1, . . . , Cq that solves the optimization problem

Minimize f(C1, . . . , Cq) ≡
m

∑

i=1

minimum {ϕ(Pi, Cj), j = 1, . . . , q}. (1)

Problem (1) is nonsmooth and nonconvex. So, its resolution by means of standard op-

timization algorithms can be very hard. The general k-means method is an algorithm
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of fixed-point type for solving it. Given (C1, . . . , Cq) ∈ IRn×q we define F (C1, . . . , Cq) =

(C ′
1, . . . , C

′
q) by means of:

(a) For all j = 1, . . . , q, define Fj saying that Pi ∈ Fj if j is the smallest index k in

{1, . . . , q} such that

ϕ(Pi, Ck) ≤ ϕ(Pi, Cℓ) for all ℓ = 1, . . . , q. (2)

(b) Compute, for all j = 1, . . . , q such that Fj 6= ∅,

C ′
j = Argmin

C

∑

Pk∈Fj

ϕ(C,Pk). (3)

If Fj = ∅ we define C ′
j = Cj .

The set Fj contains the points Pi that have Cj as its closest “center”, deciding for the

one with smallest index in case of equal “distances”. Fj will be called the “influence set”

of Cj. Clearly, the Fj ’s are disjoint and

F1 ∪ . . . ∪ Fq = {P1, . . . , Pm}. (4)

The computation of C ′
j involves the solution of the optimization problem

Minimize
∑

Pk∈Fj

ϕ(C,Pk). (5)

We assume that this problem is always solvable. In fact, in some specific situations it can

be very simple. For example, if ϕ(P,C) = ‖P −C‖2 and ‖ · ‖ is the Euclidean norm, it is

easy to see that

C ′
j =

1

nj

∑

Pk∈Fj

Pk, (6)

where nj is the number of elements of Fj .

Given the current approximation (Ck
1 , . . . , Ck

q ) to the solution of (1), the algorithm

computes (Ck+1
1 , . . . , Ck+1

q ) by means of

(Ck+1
1 , . . . , Ck+1

q ) = F (Ck
1 , . . . , Ck

q ), (7)

where F is defined by (a) and (b).

Lemma 1 states that the objective function f is nonincreasing at the successive itera-

tions of the fixed-point algorithm.
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Lemma 1. If (C ′
1, . . . , C

′
q) = F (C1, . . . , Cq) then f(C ′

1, . . . , C
′
q) ≤ f(C1, . . . , Cq).

Lemma 2 says that the fixed-point algorithm necessarily finishes after a finite number

of iterations repeating always the same functional value.

Lemma 2. There exists k0 ∈ {0, 1, 2, . . .} such that

f(Ck
1 , . . . , Ck

q ) = f(Ck0

1 , . . . , Ck0

q )

for all k ≥ k0.

It is natural to ask whether this implies that (Ck
1 , . . . , Ck

q ) = (Ck0

1 , . . . , Ck0

q ) for all

k ≥ k0. Clearly, if problem (5) admits more than one minimizer, this can be false. How-

ever, it can be proved that the q−uple of centers necessarily repeats for all k large enough

under the assumption that (5) admits a unique solution.

Theorem 1. Assume that, for all F ⊂ {P1, . . . , Pm}, the solution of (5) is unique. Then,

there exists k ∈ {0, 1, 2, . . .} such that (Ck
1 , . . . , Ck

q ) is a fixed point of F .

We saw that the fixed-point algorithm converges, starting from any initial point and

in a finite number of iterations, to a fixed point of F . It is interesting to observe that

neither continuity nor positivity of ϕ need to be used for that purpose. In the following

theorem, we characterize the fixed points of F . In this case the continuity of ϕ will be

used. A previous definition will be necessary: A fixed point (C1, . . . , Cq) of F will be said

to be regular if its influence sets are given by

Fj = {Pi | ϕ(Pi, Cj) < ϕ(Pi, Ck) for all k = 1, . . . , q, k 6= j} (8)

for j = 1, 2, . . . , q. In other words, the fixed point is regular if the lower-index decision is

not necessary when some Pi is assigned to some center Cj.

Theorem 2. If (C1, . . . , Cq) is a regular fixed point of F , then it is a local minimizer of f .

The property stated in Theorem 2 is not true, in general, if the fixed point (C1, . . . , Cq)

is not regular. In fact, consider the following counter-example: m = 3, n = 1, q = 2,

P1 = 0, P2 = 2, P3 = −1, C1 = 1, C2 = −1. By the rule of the lower index, with

ϕ(C,P ) = |C −P |2, F1 = {P1, P2} and F2 = {P3}. Clearly (C1, C2) is a non-regular fixed

point of F since C1 = (P1 + P2)/2 and C2 = P3. We have f(C1, C2) = 2. However, taking

ε > 0 we obtain f(C1 + ε,C2) = (1− ε)2 + 1. Therefore, (C1, C2) is not a local minimizer.
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3 Subproblems with the BFY distance function

The implementation of the fixed-point algorithm requires the solution of q subproblems

(5) at each iteration. For simplicity, and without loss of generality, let us write (5) as

Minimize g(C) (9)

where

g(C) =
m

∑

i=1

ϕ(C,Pi). (10)

The difficulty of (9) depends on the definition of ϕ(C,P ). If ϕ(C,P ) is the squared

Euclidean distance between C and P , subproblem (9) is trivial. However, that choice of

ϕ is not satisfactory, and it is better to consider a function less sensitive to outliers. With

that purpose, we consider here the distance introduced by Boente, Fraiman and Yohai [9]:

ϕ(C,P ) = Infimum {ε | #{k | |Ck − P k| ≥ ε} ≤ nε}, (11)

where Ck and P k denote the k−th coordinate of C and P respectively and # denotes the

number of elements of a finite set. This function is continuous and satisfies

ϕ(C,P ) ≤ 1 for all C,P ∈ IRn. (12)

According to this definition, the distance between C and P is small if all the coordinates

of C − P except a small fraction are close to zero (see [9]). It is important to mention

that scaling considerations are implicit in the assertion above. This can be understood

even in the one-dimensional case. In this case ϕ(C,P ) = |C − P | if |C − P | ≤ 1 and

ϕ(C,P ) = 1 otherwise. This way of measuring distances might not be reasonable in many

situations but it is under the range of scaling of the (bounded) variables that we consider

in our applications. It is easy to see that, when the coordinates of C −P are integers, the

function ϕ(C,P ) is ν(C,P )/n, where

ν(C,P ) = #{k | Ck 6= P k}.

From now on, we consider always g(C) associated to the distance (11). The following

results are directed to justify the resolution of (9) by means of standard optimization

techniques.

Theorem 3

Infimum {g(C) | C ∈ IRn}
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= Infimum {
m

∑

i=1

zi | #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m}

Proof. Assume that C ∈ IRn and z1, . . . , zm are such that #{k | |Ck−P k
i | ≥ zi} ≤ nzi}.

Therefore, by (11), ϕ(C,Pi) ≤ zi for all i = 1, . . . ,m. So, g(C) =
∑m

i=1 ϕ(C,Pi) ≤
∑m

i=1 zi

and, consequently,

Infimum {g(C) | C ∈ IRn} ≤

Infimum {
m

∑

i=1

zi | #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m}. (13)

Now, suppose that C ∈ IRn and ε > 0. Define, for i = 1, . . . ,m, zi = ϕ(C,Pi) + ε/m.

The definition (11) implies that #{k | |Ck − P k
i | ≥ zi} ≤ nzi and, clearly,

∑m
i=1 zi ≤

∑m
i=1 ϕ(C,Pi) + ε = g(C) + ε. This implies that

Infimum {
m

∑

i=1

zi | #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m} ≤

Infimum {g(C) | C ∈ IRn}+ ε. (14)

Since (14) holds for arbitrary ε > 0, the desired result follows from this inequality and

(13). 2

Theorem 3 justifies the definition of the following constrained optimization problem

which, in fact, has been proved to be equivalent to (9) for the estimation purposes.

Minimize
m

∑

i=1

zi subject to #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m. (15)

Let us define now the classical Heaviside step function:

H(x) =

{

1, if x ≥ 0,

0, otherwise.

It is easy to see that (15) can be written as

Minimize
m

∑

i=1

zi subject to
n

∑

k=1

H(|Ck − P k
i | − zi) ≤ nzi, i = 1, . . . ,m. (16)

Now, let Hℓ be a sequence of bounded, nondecreasing and non-negative continuous

functions that converges to H in the sense that

lim
ℓ→∞

Hℓ(x) = H(x) for all x ∈ IR
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and

Hℓ(x) ≥ H(x) for all x ∈ IR.

Theorem 4

lim
ℓ→∞

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m} =

Infimum {
m

∑

i=1

zi | #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m}.

Proof. Assume that C, z1, . . . , zm are such that

n
∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m.

Since Hℓ(x) ≥ H(x) for all x ∈ IR, we have that

n
∑

k=1

H(|Ck − P k
i | − zi) ≤ nzi, i = 1, . . . ,m,

so,

#{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m}.

Therefore,

Infimum {
m

∑

i=1

zi | #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m} ≤

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m} (17)

for all ℓ = 0, 1, 2, . . ..

Now, let us define

s = Infimum {
m

∑

i=1

zi | #{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m}

and let ε be an arbitrary positive number. (Since g(C) ≥ 0 for all C ∈ IRn the infimum s

is not −∞.) Let C, z1, . . . , zm be such that

#{k | |Ck − P k
i | ≥ zi} ≤ nzi, i = 1, . . . ,m

and
m

∑

i=1

zi ≤ s + ε/2.
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Define

z̄i = zi + ε/(2m) for all i = 1, . . . ,m.

Therefore, from
∑m

i=1 H(|Ck − P k
i | − zi) ≤ nzi it follows that

m
∑

i=1

H(|Ck − P k
i | − z̄i) < nz̄i.

Since Hℓ(|C
k −P k

i | − z̄i)→ H(|Ck −P k
i | − z̄i), there exists ℓ0 ∈ {0, 1, 2, . . .} such that for

all ℓ ≥ ℓ0,
m

∑

i=1

Hℓ(|C
k − P k

i | − z̄i) < nz̄i.

But
m

∑

i=1

z̄i =
m

∑

i=1

zi + ε/2 ≤ s + ε,

therefore, by (17), for all ℓ ≥ ℓ0,

s ≤ Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m} ≤ s + ε. (18)

Since ε > 0 was arbitrary, this implies the thesis of the theorem. 2

The theorems above justify the consideration of the family of subproblems

Minimize
m

∑

i=1

zi subject to
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m. (19)

However, we are going to prove an additional result that shows that the resolution of (9)

by means of auxiliary continuous problems admits further simplifications.

Theorem 5

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m} =

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) = nzi, i = 1, . . . ,m}

for all ℓ ∈ {0, 1, 2, . . .}.

Proof. Clearly,

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m} ≤
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Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) = nzi, i = 1, . . . ,m}.

Now, let us assume that C, z1, . . . , zm are such that

n
∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m

and that, for some i, Hℓ(|C
k − P k

i | − zi) < nzi. So, defining

β(z) =
n

∑

k=1

Hℓ(|C
k − P k

i | − z)− nz

we have that β is continuous, β(zi) < 0 and β(0) ≥ 0. This implies that there exists

yi ∈ [0, zi) such that β(z) = 0. Repeating this reasoning for all i such that
∑n

k=1 Hℓ(|C
k−

P k
i | − zi) < nzi and defining yi = zi in the remaining cases, we see that

n
∑

k=1

Hℓ(|C
k − P k

i | − yi) = nyi

for all i = 1, . . . ,m and
∑m

i=1 yi <
∑m

i=1 zi. So,

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) ≤ nzi, i = 1, . . . ,m} ≥

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) = nzi, i = 1, . . . ,m}

and the proof is complete. 2

Therefore, by the results proved above, the original problem (9) can be approximated

by the problems defined below:

Minimize
m

∑

i=1

zi subject to
n

∑

k=1

Hℓ(|C
k − P k

i | − zi)− nzi = 0, i = 1, . . . ,m. (20)

Now, given C ∈ IRn, i ∈ {1, . . . ,m}, consider, as in the proof of Theorem 5, the function

β(z) =
∑n

k=1 Hℓ(|C
k − P k

i | − z) − nz. Clearly, β(0) ≥ 0, β(z) < 0 if z is large enough

and, finally, β(z) is strictly decreasing. Therefore, for all C ∈ IRn, i ∈ {1, . . . ,m}, there

exists a unique zi such that
∑n

k=1 Hℓ(|C
k−P k

i |− zi)−nzi = 0. This zi is easy to compute

using standard numerical procedures. Assuming that Hℓ is differentiable, a safeguarded

Newton’s method surely finds zi in few steps (see [12, 22]). Let us call ξi,ℓ(C) the unique

value of z that verifies
∑n

k=1 Hℓ(|C
k − P k

i | − z)− nz = 0. Then, (20) reduces to

Minimize
m

∑

i=1

ξi,ℓ(C). (21)
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Unfortunately, the objective function of (21) is not differentiable at the points C such that

Ck = P k
i for some i, k. For overcoming this problem, let us assume from now on that Hℓ is

differentiable and |H ′
ℓ(t)| ≤ cℓ for all t ∈ IR. Moreover, assume that α(t) is a differentiable

function such that |α(t) − |t|| ≤ ε for all t ∈ IR. The theorem below allows us to consider

a differentiable problem.

Theorem 6

Under the assumptions above, there exists η = ηℓ such that |η| ≤ ncℓε and

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(|C
k − P k

i | − zi) = nzi, i = 1, . . . ,m} =

Infimum {
m

∑

i=1

zi |
n

∑

k=1

Hℓ(α(Ck − P k
i )− zi) = nzi, i = 1, . . . ,m}+ η.

Proof. Let C, zi, wi be such that

n
∑

k=1

Hℓ(|C
k − P k

i | − zi) = nzi, i = 1, . . . ,m

and
n

∑

k=1

Hℓ(α(Ck − P k
i )− wi) = nwi, i = 1, . . . ,m.

The existence and unicity of wi is guaranteed by the same arguments that guarantee the

existence and unicity of zi. Moreover, the equation

n
∑

k=1

Hℓ(xk − z) = nz, i = 1, . . . ,m. (22)

defines z as a function of x. Differentiation with respect to xj gives

∑

k 6=j

H ′
ℓ(xk − z)(−

∂z

∂xj
) + H ′

ℓ(xj − z)(1 −
∂z

∂xj
) = n

∂z

∂xj
.

So,
n

∑

k=1

H ′
ℓ(xk − z)(−

∂z

∂xj
) + H ′

ℓ(xj − z)− n
∂z

∂xj
= 0.

Therefore,

(−
∂z

∂xj
)[

n
∑

k=1

H ′
ℓ(xk − z) + n] = −H ′

ℓ(xj − z).

and
∂z

∂xj
=

H ′
ℓ(xj − z)

∑n
k=1 H ′

ℓ(xk − z) + n
.
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Since H ′
ℓ(t) ≥ 0 and |H ′

ℓ(t)| ≤ cℓ for all t ∈ IR, this implies that

|
∂z

∂xj
| ≤ cℓ/n,

for all j = 1, . . . , n. Therefore, since ||Ck
i −P k

i |−α(Ck
i −P k

i )| ≤ ε, the Mean Value theorem

guarantees that

|zi − wi| ≤ cℓε.

This implies that the thesis holds. 2

Therefore, the solution of (20) can be approximated by the solution of the smooth

problem

Minimize
m

∑

i=1

zi subject to
n

∑

k=1

Hℓ(α(Ck − P k
i )− zi)− nzi = 0, i = 1, . . . ,m. (23)

or, as in the deduction of (21),

Minimize
m

∑

i=1

κi,ℓ(C) (24)

where κi,ℓ(C) is the the unique value of zi that verifies

n
∑

k=1

Hℓ(α(Ck − P k
i )− zi)− nzi = 0, i = 1, . . . ,m.

The problem that we are going to solve to find the centers is the one given by way that

the hypotheses of the theorems of this section hold. So, we choose

Hℓ(x) =

{

1, if x ≥ 0,

e(−x/ℓ)2 , otherwise,

and

α(x) =
√

x2 + ε.

4 Heuristics for the initial classification

We have two motivations to define an adequate heuristics for an initial classification.

On one hand, the fixed-point method converges to local minimizers and, very likely, the

heuristics can help to avoid some local-nonglobal minimal points. On the other hand, the

general functions used for finding centers need not to be convex and, so, false centers can

arise from the application of gradient-like algorithms.

12



Our heuristic approach gives an initial clustering based on classical methods for a

well known production problem: construction of families of jobs and machines based on

their path of production. This problem comes from the application of Technology Group

ideas and was addressed using similarity-coefficient techniques by many authors. See

[16, 17, 20, 29, 27, 28]. Following [17], the re-assignment of data points in the algorithm

is done in a serial fashion.

The heuristic approach has two phases: (i) initial clustering and (ii) improvement by

relocation. The number of points m, the set of points {P1, P2, ..., Pm} and the number of

desired clusters q are given. In the algorithm described below the functions D and Φ are

arbitrary and several possibilities will be defined latter.

Phase 1: Initial clustering

Step 0: Initialization

Consider the m clusters Fi = {Pi}, i = 1, 2, . . . ,m, and

set dist(Fi,Fj)← ϕ(Pi, Pj) for all 1 ≤ i, j ≤ m.

Step 1: Stopping criteria

If the number of clusters is equal to q stop.

Step 2: Shrinking clusters

Find the pair of nearest clusters (Fr,Fs), r 6= s,

create (deleting Fr and Fs) a new cluster Ft = Fr ∪ Fs, t = min{r, s}, and

for all i 6= t compute dist(Ft,Fi)← D(Fs,Fr,Fi).

Step 3: Go to Step 1.

Phase 2: Re-assignment of data points

Step 1: Local reduction

For each point Pi, let Fr be the cluster to which Pi belongs.

Step 1.1:

For each ℓ = 1, . . . , q, move Pi from Fr to Fℓ, compute γ(ℓ) =
∑q

j=1 Φ(Fj)

after this change and return Pi to Fr. Let s ∈ {1, . . . , q} be the minimum

index minimizer of {γ(1), . . . , γ(q)}.

Step 1.2:

If s 6= r, redefine Fr ← Fr − {Pi} and Fs ← Fs ∪ {Pi}.

Step 2: Stopping criteria

If Step 1 did not produce any change of cluster, stop.

Step 3: Go to Step 1.

Different algorithms come from different definitions of D (at Phase 1) and Φ (at Phase

13



2). Some possibilities (D1,D2,D3) for the definition of D are given below.

D1(Fs,Fr,Fi) = [(#Fr)dist(Fr,Fi) + (#Fs)dist(Fs,Fi)]/[(#Fr) + (#Fs)], (25)

D2(Fs,Fr,Fi) = (dist(Fr,Fi) + dist(Fs,Fi))/2. (26)

D3(Fs,Fr,Fi) =















min{dist(Fs,Fi), dist(Fr,Fi)}, if dist(Fs,Fi) ≤ 0.5 and dist(Fr,Fi) ≤ 0.5

max{dist(Fs,Fi), dist(Fr ,Fi)}, if dist(Fs,Fi) > 0.5 and dist(Fr,Fi) > 0.5

0.5, otherwise.

(27)

Alternative definitions of Φ(c) are:

Φ1(F) =
∑

Pi,Pj∈F

dist(Pi, Pj), (28)

Φ2(F) =

∑

Pi,Pj∈F
dist(Pi, Pj)

#F(#F − 1)/2
, (29)

Φ3(F) =
∑

Pi∈F

dist(Pi, E), (30)

where E is the Euclidean center of cluster F .

The output of the heuristic algorithm is used as an initial point for the fixed-point (k-

means) method that uses the BFY function. The definition of the functions (Φ and D) used

in the heuristics might look as rather disconnected with the original problem. However,

according our experience, in many global optimization problems very good results come

from using initial approximations for local optimization procedures by means of criteria

that do not seem connected with the original objective function. The reason is that, when

one tries to avoid local minimizers, it is sensible to “forget” the true objective function for

a while. Many “climbing” methods for global optimization are based on this principle.

5 Examples

In Table 1 the scores of 48 students in five different tests corresponding to the subject

“Complements of Mathematics” at the University of Campinas during the first semester

14



Student Scores

P1 7.80 3.50 8.50 9.00 8.90

P2 6.90 2.00 7.00 7.00 5.00

P3 9.40 6.50 7.00 9.80 9.20

P4 0.00 0.00 0.00 0.00 0.00

P5 1.90 0.50 6.50 1.00 2.00

P6 9.70 4.00 8.50 7.00 7.80

P7 2.50 0.00 4.00 6.30 0.00

P8 7.20 1.00 6.00 5.30 6.40

P9 6.50 8.50 6.00 6.50 7.70

P10 6.50 0.00 7.00 5.30 1.20

P11 9.70 6.00 9.00 9.50 8.50

P12 5.00 3.00 7.50 8.30 5.70

P13 3.70 0.00 1.50 3.00 0.00

P14 3.50 0.50 6.50 3.80 2.20

P15 3.90 0.00 4.50 2.30 0.80

P16 4.50 3.00 4.00 1.50 3.30

P17 5.40 0.00 1.50 4.30 0.00

P18 0.00 0.00 0.00 0.00 0.00

P19 7.40 1.50 7.50 10.00 6.90

P20 3.30 1.50 6.50 7.20 3.20

P21 5.90 4.50 8.00 6.80 8.30

P22 7.60 5.50 7.50 10.00 6.90

P23 8.50 6.00 6.50 10.00 7.30

P24 6.70 7.00 8.50 7.50 7.70

P25 3.70 3.50 6.00 7.00 6.80

P26 1.00 0.00 0.50 0.50 0.00

P27 6.70 1.00 8.00 6.00 4.90

P28 3.90 0.00 4.00 2.80 0.00

P29 7.00 1.50 5.50 2.00 4.40

P30 7.50 0.00 2.00 4.00 0.00

P31 4.00 3.00 6.50 5.30 7.70

P32 8.00 2.00 7.50 9.80 8.20

P33 4.20 4.50 5.00 7.50 3.50

P34 0.00 0.00 0.50 0.00 0.00

P35 3.70 0.50 6.50 6.30 1.50

P36 4.20 0.00 0.00 1.50 0.00

P37 1.90 0.00 4.50 0.50 0.00

P38 6.90 1.50 5.50 5.00 3.40

P39 0.00 0.00 2.50 1.50 0.00

P40 4.70 0.50 5.50 5.80 5.70

P41 7.20 3.50 7.00 8.30 7.50

P42 0.00 0.00 0.00 0.00 0.00

P43 5.70 0.50 6.00 5.50 5.00

P44 5.20 0.50 1.50 2.30 2.90

P45 5.90 2.00 8.00 6.50 7.50

P46 1.10 0.50 6.00 1.80 1.80

P47 7.70 0.50 7.70 6.30 6.70

P48 10.00 7.00 8.50 10.00 9.80

Table 1: Scores of 48 students
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of 1997 are displayed. This is a small example. Large real-life problems can involve all

the students that enter the university (about 2500) and as much as 11 tests.

We applied the algorithm to the classification of the students into four groups. The

result was compared with the clustering obtained by the classical k-means and k-median

algorithms. For this comparison we proceeded as follows: all possible combinations of Di

and Φj (1 ≤ i, j ≤ 3) were tested to generate the initial clustering for the three algorithms.

The combination that gave the best clustering was used as initial point for the fixed point

procedure in the three cases. The best combination was (D1,Φ2) for k-means and k-median

and (D1,Φ1) for the algorithm that uses the BFY distance. The two classical algorithms

obtained the same classification. In all cases, the local minimizers found starting from a

point given by the different heuristics were better than local minimizers found in several

experiments with trivial initial points. The minimization subproblems whose solutions are

the centers of the clusters were solved using the spectral projected gradient method [6, 7].

Table 2 shows the obtained clusterings.

We mentioned in the introduction that the use of the BFY function is motivated by

the specific need of classification in a situation where severe outliers are expected. Let us

comment briefly here the way in which the characteristics of the function influenced the

classification in the presented example. Notably, the students 19 and 22 did not appear

in the first group of the BFY classification. The reason is that the score 10, obtained

by these students in the fourth test was not considered meaningful by the clustering

procedure. Clearly, the decision about the correctness of this classification depends of

external considerations which, in this case, involve the specific environment under which

the fourth test was applied. Further knowledge about the behavior of the involved students

in other tests is also useful. In this case, one of the teachers of the course told us that,

in fact, there are good reasons to disregard outstanding records in the mentioned test.

Other discrepancies between the two classifications are due to the fact that BFY tends to

put together points with the maximum number of similar coordinates. Again, the expert

opinion in this specific case revealed that the taken decisions were quite adequate and

more suitable for the specific purpose of the classification than the one obtained by the

classical k-means method.

The fact that BFY tends to classify according to the “number of similarities” has

important consequences when the purpose of the classification is to form several groups

for different training programs.
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k-means and k-median

C1 8.02 5.04 7.69 8.78 8.05

P1 7.8 3.5 8.5 9.0 8.9

P3 9.4 6.5 7.0 9.8 9.2

P6 9.7 4.0 8.5 7.0 7.8

P9 6.5 8.5 6.0 6.5 7.7

P11 9.7 6.0 9.0 9.5 8.5

P19 7.4 1.5 7.5 10.0 6.9

P21 5.9 4.5 8.0 6.8 8.3

P22 7.6 5.5 7.5 10.0 6.9

P23 8.5 6.0 6.5 10.0 7.3

P24 6.5 7.0 8.5 7.5 7.7

P32 8.0 2.0 7.5 9.8 8.2

P41 7.2 3.5 7.0 8.3 7.5

P48 10.0 7.0 8.5 10.0 9.8

C2 5.57 1.63 6.51 6.02 4.91

P2 6.9 2.0 7.0 7.0 5.0

P8 7.2 1.0 6.0 5.3 6.4

P10 6.5 0.0 7.0 5.3 1.2

P12 5.0 3.0 7.5 8.3 5.7

P20 3.3 1.5 6.5 7.2 3.2

P25 3.7 3.5 6.0 7.0 6.8

P27 6.7 1.0 8.0 6.0 4.9

P29 7.0 1.5 5.5 2.0 4.4

P31 4.0 3.0 6.5 5.3 7.7

P33 4.2 4.5 5.0 7.5 3.5

P35 3.7 0.5 6.5 6.3 1.5

P38 6.9 1.5 5.5 5.0 3.4

P40 4.7 0.5 5.5 5.8 5.7

P43 5.7 0.0 6.0 5.5 5.0

P45 5.9 2.0 8.0 6.5 7.5

P47 7.7 0.5 7.7 6.3 6.7

C3 3.78 0.35 3.58 2.7 1.0

P5 1.9 0.5 6.5 1.0 2.0

P7 2.5 0.0 4.0 6.3 0.0

P13 3.7 0.0 1.5 3.0 0.0

P14 3.5 0.0 6.5 3.8 2.2

P15 3.9 0.0 4.5 2.3 0.8

P16 4.5 3.0 4.0 1.5 3.3

P17 5.4 0.0 1.5 4.3 0.0

P28 3.9 0.0 4.0 2.8 0.0

P30 7.5 0.0 2.0 4.0 0.0

P36 4.2 0.0 0.0 1.5 0.0

P37 1.9 0.0 4.5 0.5 0.0

P44 5.2 0.5 1.5 2.3 2.9

P46 1.1 0.5 6.0 1.8 1.8

C4 0.17 0.0 0.58 0.33 0.0

P4 0.0 0.0 0.0 0.0 0.0

P18 0.0 0.0 0.0 0.0 0.0

P26 1.0 0.0 0.5 0.5 0.0

P34 0.0 0.0 0.5 0.0 0.0

P39 0.0 0.0 2.5 1.5 0.0

P42 0.0 0.0 0.0 0.0 0.0

BFY

C1 9.70 6.72 8.62 9.80 7.79

P3 9.4 6.5 7.0 9.8 9.2

P6 9.7 4.0 8.5 7.0 7.8

P11 9.7 6.0 9.0 9.5 8.5

P23 8.5 6.0 6.5 10.0 7.3

P24 6.5 7.0 8.5 7.5 7.7

P32 8.0 2.0 7.5 9.8 8.2

P48 10.0 7.0 8.5 10.0 9.8

C2 7.34 3.35 7.65 6.58 7.15

P1 7.8 3.5 8.5 9.0 8.9

P2 6.9 2.0 7.0 7.0 5.0

P9 6.5 8.5 6.0 6.5 7.7

P12 5.0 3.0 7.5 8.3 5.7

P19 7.4 1.5 7.5 10.0 6.9

P21 5.9 4.5 8.0 6.8 8.3

P22 7.6 5.5 7.5 10.0 6.9

P25 3.7 3.5 6.0 7.0 6.8

P27 6.7 1.0 8.0 6.0 4.9

P29 7.0 1.5 5.5 2.0 4.4

P41 7.2 3.5 7.0 8.3 7.5

P45 5.9 2.0 8.0 6.5 7.5

P47 7.7 0.5 7.7 6.3 6.7

C3 3.86 0.30 6.30 5.39 3.20

P5 1.9 0.5 6.5 1.0 2.0

P8 7.2 1.0 6.0 5.3 6.4

P10 6.5 0.0 7.0 5.3 1.2

P14 3.5 0.0 6.5 3.8 2.2

P15 3.9 0.0 4.5 2.3 0.8

P16 4.5 3.0 4.0 1.5 3.3

P20 3.3 1.5 6.5 7.2 3.2

P31 4.0 3.0 6.5 5.3 7.7

P33 4.2 4.5 5.0 7.5 3.5

P35 3.7 0.5 6.5 6.3 1.5

P38 6.9 1.5 5.5 5.0 3.4

P40 4.7 0.5 5.5 5.8 5.7

P43 5.7 0.0 6.0 5.5 5.0

P44 5.2 0.5 1.5 2.3 2.9

P46 1.1 0.5 6.0 1.8 1.8

C4 0.0 0.0 0.0 0.05 0.0

P4 0.0 0.0 0.0 0.0 0.0

P7 2.5 0.0 4.0 6.3 0.0

P13 3.7 0.0 1.5 3.0 0.0

P17 5.4 0.0 1.5 4.3 0.0

P18 0.0 0.0 0.0 0.0 0.0

P26 1.0 0.0 0.5 0.5 0.0

P28 3.9 0.0 4.0 2.8 0.0

P30 7.5 0.0 2.0 4.0 0.0

P34 0.0 0.0 0.5 0.0 0.0

P36 4.2 0.0 0.0 1.5 0.0

P37 1.9 0.0 4.5 0.5 0.0

P39 0.0 0.0 2.5 1.5 0.0

P42 0.0 0.0 0.0 0.0 0.0

Table 2: Four groups clustering.
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6 Final remarks

The practical results obtained with the application of the approximate Boente-Fraiman-

Yohai distance to the real problem considered in this paper in the fixed-point classification

framework were quite satisfactory. In this research we did not consider the problem of

determining the optimum number of clusters. See [13, 14]. In fact, this was not relevant

in our case, in which the number of clusters is predetermined, but can be important in

other applications.

The analysis of classification results is, many times, much easier under a graphical

computer environment. We are planning to adapt our codes to this type of environment,

along the lines of [34]. Another promising line of research is to investigate the robust

capabilities of neural network classifiers [10].

Finally, we would like to mention that the problem presented in this paper provides a

new example of the application of a novel optimization technique, based on the spectral

gradient philosophy [25, 26, 19, 6]. This family of algorithms has proved to be very efficient

in several practical nontrivial situations ([3, 4, 5, 21]) where more sophisticated methods

failed. In the case study presented in this paper, we feel that the nonmonotonic strategy

used by spectral methods has been useful to avoid some local nonglobal minimizers.
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