
THE USE OF QUADRATIC REGULARIZATION WITH A CUBIC1

DESCENT CONDITION FOR UNCONSTRAINED OPTIMIZATION∗2

E. G. BIRGIN† AND J. M. MART́ıNEZ‡3

Abstract. Cubic-regularization and trust-region methods with worst-case first-order complex-4
ity O(ε−3/2) and worst-case second-order complexity O(ε−3) have been developed in the last few5
years. In this paper it is proved that the same complexities are achieved by means of a quadratic-6
regularization method with a cubic sufficient-descent condition instead of the more usual predicted-7
reduction based descent. Asymptotic convergence and order of convergence results are also presented.8
Finally, some numerical experiments comparing the new algorithm with a well-established quadratic9
regularization method are shown.10

Key words. Unconstrained minimization, quadratic regularization, cubic descent, complexity.11

AMS subject classifications. 90C30, 65K05, 49M37, 90C60, 68Q25.12

1. Introduction. Assume that f : Rn → R is possibly nonconvex and smooth13

for all x ∈ Rn. We will consider the unconstrained minimization problem given by14

(1) Minimize f(x).15

In the last decade, many works have been devoted to analyze iterative algorithms16

for solving (1) from the point of view of their time complexity. See, for example,17

[2, 4, 5, 6, 8, 11, 14, 19, 21]. A review of complexity results for the convex case, in18

addition to novel techniques, can be found in [12].19

Given arbitrary tolerances εg > 0 and εh > 0, the question is about the amount of20

iterations and functional and derivative evaluations that are necessary to achieve an21

approximate solution defined by ‖∇f(x)‖ ≤ εg or by ‖∇f(x)‖ ≤ εg plus λ1(∇2f(x)) ≥22

−εh, where λ1(∇2f(x)) represents the left-most eigenvalue of ∇2f(x).23

In general, gradient-based methods exhibit complexity O(ε−2
g) [4], which means24

that there exists a constant c, that only depends on the characteristics of the problem,25

algorithmic parameters, and, of course, the initial approximation, such that the effort26

required to achieve ‖∇f(x)‖ ≤ εg for a bounded-below objective function f is at most27

c/ε2
g. This bound is sharp for all gradient-based methods [4]. Complexity results for28

modified Newton’s methods are available in [14]. Surprisingly, Newton’s method with29

the classical trust-region strategy does not exhibit better complexity than O(ε−2
g)30

either [4]. The same example used in [4] to prove this fact can be applied to Newton’s31

method with standard quadratic regularization. On the other hand, Newton’s method32

employing cubic regularization [15] for obtaining sufficient descent at each iteration33

exhibits the better complexity O(ε
−3/2
g) (see [5, 6, 19, 21]).34

The best known practical algorithm for unconstrained optimization with worst-35

case evaluation complexity O(ε
−3/2
g) to achieve first-order stationarity and complexity36

O(ε
−3/2
g + ε−3

h) to achieve second-order stationarity, defined by Cartis, Gould, and37

∗Submitted to the editors October 27, 2016.
Funding: Supported by FAPESP (grants 2013/03447-6, 2013/05475-7, 2013/07375-0, and

2014/18711-3) and CNPq (grants 309517/2014-1 and 303750/2014-6).
†Dept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo,

Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. egbirgin@ime.usp.br
‡Dept. of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing,

State University of Campinas, 13083-859, Campinas, SP, Brazil. martinez@ime.unicamp.br

1

This manuscript is for review purposes only.

mailto:egbirgin@ime.usp.br
mailto:martinez@ime.unicamp.br

2 E. G. BIRGIN AND J. M. MART́ıNEZ

Toint in [5] and [6], uses cubic regularization and a descent criterion based on the com-38

parison of the actual reduction of the objective function and the reduction predicted39

by a quadratic model. A non-standard trust-region method with the same complexity40

properties due to Curtis, Robinson, and Samadi [8] employs a cubic descent criterion41

for accepting trial increments. In [2], the essential ideas of ARC [5, 6] were extended in42

order to introduce high-order methods in which a p-th Taylor approximation (p ≥ 2)43

plus a (p+1)-th regularization term is minimized at each iteration. In these methods,44

O(ε
−(p+1)/p
g) evaluation complexity for first-order stationarity is obtained also using45

the actual-versus-predicted-reduction descent criterion. However, it is rather straight-46

forward to show that this criterion can be replaced by a (p+1)-th descent criterion (i.e.47

f(xk+1) ≤ f(xk)− α‖xk+1 − xk‖p+1) in order to obtain the same complexity results.48

Moreover, the (p+ 1)-th descent criterion (cubic descent in the case p = 2) seems to49

be more naturally connected with the Taylor approximation properties that are used50

to prove complexity. Cubic descent was also used in [19] in a variable metric method51

that seeks to achieve good practical global convergence behavior. In the trust-region52

example exhibited in [4], the unitary Newtonian step is accepted at every iteration53

since it satisfies the adopted sufficient descent criterion. This criterion requires that54

the function descent (actual reduction) should be better than a fraction of the pre-55

dicted descent provided by the quadratic model (predicted reduction). However, if,56

instead of this condition, one requires functional descent proportional to ‖s‖3, where s57

is the increment given by the model minimization, the given example does not stand58

anymore. This state of facts led us to the following theoretical question: Would it be59

possible to obtain worst-case evaluation complexities O(ε
−3/2
g) and O(ε

−3/2
g + ε−3

h)60

using cubic descent to accept trial increments but only quadratic regularization in the61

subproblems?62

In this paper, we provide an affirmative answer to this question by incorporat-63

ing cubic descent into a quadratic regularization framework. Iterative regularization64

is a classical idea in unconstrained optimization originated in the seminal works of65

Levenberg [17] and Marquardt [18] for nonlinear least-squares. It relies upon the66

Levenberg-Marquardt path, which is the set of solutions of regularized subproblems67

varying the regularization parameter, both in the case of quadratic and cubic regular-68

ized subproblems. It is worth mentioning that this path is also the set of solutions of69

Euclidean trust-region subproblems for different trust-region radii. The explicit con-70

sideration of the so-called hard case (where the Hessian is not positive definite and the71

gradient is orthogonal to the eigenspace related to the left-most Hessian’s eigenvalue)72

and the employment of spectral computations to handle it are in the core of every73

careful trust-region implementation [8, 20, 22, 23]. Our new method explicitly deals74

with the hard case and uses a regularization parameter with adequate safeguards in75

order to guarantee the classical complexity results of cubic regularization and related76

methods [8]. The new method has been implemented and compared against a well es-77

tablished quadratic regularization method for unconstrained optimization introduced78

in [16].79

The rest of this paper is organized as follows. A model algorithm with cubic80

descent is described in section 2. An implementable version of the algorithm is intro-81

duced in section 3. Well-definiteness and complexity results are presented in section 482

and section 5, respectively. Local convergence results are given in section 6. Numerical83

experiments are presented in section 7; while final remarks are given in section 8.84

Notation. The symbol ‖ · ‖ denotes the Euclidean norm of vectors and the sub-85

ordinate matricial norm. We denote g(x) = ∇f(x), H(x) = ∇2f(x), and, some-86

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 3

times, gk = g(xk) and Hk = H(xk). If a ∈ R, [a]+ = max{a, 0}. If a1, . . . , an ∈87

R, diag(a1, . . . , an) denotes the n × n diagonal matrix whose diagonal entries are88

a1, . . . , an. If A ∈ Rn×n, A† denotes de Moore-Penrose pseudoinverse of A. The89

notation [x]j denotes the jth component of a vector x whenever the simpler notation90

xj might lead to confusion.91

2. Model algorithm. The following algorithm establishes a general framework92

for minimization schemes that use cubic descent. At each iteration k, we compute an93

increment sk such that f(xk+sk) ≤ f(xk)−α‖sk‖3. In principle, this is not very useful94

because even sk = 0 satisfies this descent condition. However, in Theorem 2.1, we95

show that under the additional condition (3), the algorithm satisfies suitable stopping96

criteria. As a consequence, practical algorithms should aim to achieve (2) and (3)97

simultaneously.98

Algorithm 2.1. Let x0 ∈ Rn and α > 0 be given. Initialize k ← 0.99

Step 1. Compute sk such that100

(2) f(xk + sk) ≤ f(xk)− α‖sk‖3.101

Step 2. Define xk+1 = xk + sk, set k ← k + 1, and go to Step 1.102

The theorems below establish that, under suitable assumptions, every limit point103

of the sequence generated by Algorithm 2.1 is second-order stationary and provide104

an upper bound on the number of iterations that Algorithm 2.1 requires to achieve105

a target objective functional value or to find an approximate first- or second-order106

stationary point.107

Lemma 2.1. Assume that the objective function f is twice continuously differen-108

tiable and that there exist γg > 0 and γh > 0 such that, for all k ∈ N, the increment sk109

computed at Step 1 of Algorithm 2.1 satisfies110

(3)

√
‖gk+1‖
γg

≤ ‖sk‖ and
[−λ1,k]+

γh
≤ ‖sk‖,111

where λ1,k stands for the left-most eigenvalue of Hk. Then, it follows that112

f(xk+1) ≤ f(xk)−max

{(
α

γ
3/2
g

)
‖gk+1‖3/2,

(
α

γ3
h

)
[−λ1,k]3+

}
.113

Proof. The result follows trivially from (2), (3), and the fact that, at Step 2 of114

Algorithm 2.1, xk+1 is defined as xk+1 = xk + sk.115

Theorem 2.1. Let fmin ∈ R, εg > 0, and εh > 0 be given constants, assume116

that the hypothesis of Lemma 2.1 hold, and let {xk}∞k=0 be the sequence generated by117

Algorithm 2.1. Then, the cardinality of the set of indices118

(4) Kg =
{
k ∈ N | f(xk) > fmin and ‖gk+1‖ > εg

}
119

is, at most,120

(5)

⌊
1

α

(
f(x0)− fmin

(εg/γg)
3/2

)⌋
;121

This manuscript is for review purposes only.

4 E. G. BIRGIN AND J. M. MART́ıNEZ

while the cardinality of the set of indices122

(6) Kh =
{
k ∈ N | f(xk) > fmin and λ1,k < −εh

}
123

is, at most,124

(7)

⌊
1

α

(
f(x0)− fmin

(εh/γh)
3

)⌋
.125

Proof. From Lemma 2.1, it follows that at every time an iterate xk is such that126

‖gk+1‖ > εg the value of f decreases at least α(εg/γg)
3/2; while at every time an127

iterate xk is such that λ1,k < −εh the value of f decrease at least α(εh/γh)3. The128

thesis follows from the fact that, by (2), {f(xk)}∞k=0 is a non-increasing sequence.129

Corollary 2.1. Let fmin ∈ R, εg > 0, and εh > 0 be given constants and assume130

that the hypothesis of Lemma 2.1 hold. Algorithm 2.1 requires O(ε
−3/2
g) iterations to131

compute xk such that132

f(xk) ≤ fmin or ‖gk+1‖ ≤ εg;133

it requires O(ε−3
h) iterations to compute xk such that134

f(xk) ≤ fmin or λ1,k ≥ −εh;135

and it requires O(ε
−3/2
g + ε−3

h) iterations to compute xk such that136

f(xk) ≤ fmin or
(
‖gk+1‖ ≤ εg and λ1,k ≥ −εh

)
.137

Corollary 2.2. Assume that the hypothesis of Lemma 2.1 hold and let {xk}∞k=0138

be the sequence generated by Algorithm 2.1. Then, if the objective function f is139

bounded below, we have that140

lim
k→∞

‖g(xk)‖ = 0 and lim
k→∞

[−λ1,k]+ = 0.141

Proof. Assume that limk→∞ ‖g(xk)‖ 6= 0. This means that there exists ε > 0142

and K, an infinite subsequence of N, such that ‖gk‖ > ε for all k ∈ K. Since f is143

bounded below, this contradicts Theorem 2.1. The second part is analogous.144

Corollary 2.3. Assume that the hypothesis of Lemma 2.1 hold. Then, if the145

objective function f is bounded below, every limit point x∗ of the sequence {xk}∞k=0146

generated by Algorithm 2.1 is such that ∇f(x∗) = 0 and ∇2f(x∗) is positive semidef-147

inite.148

Proof. This corollary follows from Corollary 2.2 by continuity of ∇f and ∇2f .149

3. Implementable algorithm. Algorithm 2.1 presented in the previous section150

is a “model algorithm” in the sense that it does not prescribe a way to compute151

the step sk satisfying (2) and (3). This will be the subject of the present section.152

Algorithm 3.1 is almost identical to Algorithm 2.1 with the sole difference that it153

uses Algorithm 3.2 to compute sk. Lemma 4.1 shows that Algorithm 3.2 is well154

defined and Lemma 4.4 shows that the step sk computed by Algorithm 3.2 satisfies155

the hypothesis (3) of Lemma 2.1. In the following section, it will be shown that156

Algorithm 3.2 computes sk using O(1) evaluations of f (and a single evaluation of157

g and H at the current iterate xk). This implies that the complexity results on158

the number of iterations of the model Algorithm 2.1 also apply to the number of159

iterations and evaluations of f and its first- and second-order derivatives performed160

by Algorithm 3.1–3.2.161

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 5

Algorithm 3.1. Let x0 ∈ Rn, α > 0, and M > 0 be given. Initialize k ← 0.162

Step 1. Use Algorithm 3.2 to compute s ∈ Rn satisfying163

(8) f(xk + s) ≤ f(xk)− α‖s‖3164

and define sk = s.165

Step 2. Define xk+1 = xk + sk, set k ← k + 1, and go to Step 1.166

Algorithm 3.2 below describes the way in which the increment sk is computed.167

For that purpose, different trial increments are tried along the set of solutions168

(9) s(µ) := argmin 〈gk, s〉+
1

2
sT
(
Hk + [−λ1,k]+I

)
s+

µ

2
‖s‖2,169

for different values of the regularizing parameter µ ≥ 0, where λ1,k is the left-most170

eigenvalue of Hk. Algorithm 3.2 proceeds by increasing the value of the regularization171

parameter µ ≥ 0 until the sufficient descent condition (8) is satisfied with s = s(µ).172

For each value of µ, we define ρ(µ) = ([−λ1,k]+ + µ)/(3‖s(µ)‖). By Lemma 3.1173

of [5] (see also [15, 21]), s(µ) is a global minimizer of 〈gk, s〉 + 1
2s
THks + ρ(µ)‖s‖3.174

The way in which µ is increased is determined by two necessities related to ρ(µ):175

the initial ρ(µ) at each iteration should not be excessively small and the final ρ(µ)176

should not be excessively big. Essentially, the technical manipulation of the quadratic177

regularization parameter µ in the algorithm is motivated by these two apparently178

conflicting objectives which are necessary to obtain the complexity results.179

Algorithm 3.2. Given xk, this algorithm computes a step s ∈ Rn satisfying (8).180

Step 1. Let λ1,k be the left-most eigenvalue of Hk. Consider the linear system181

(10) [Hk + ([−λ1,k]+ + µ)I]s = −gk.182

If (10) with µ = 0 is not compatible then set ρk,0 = 0 and go to Step 5; else183

pursue to Step 2 below.184

Step 2. Compute the minimum norm solution ŝk,0 to the linear system (10) with185

µ = 0 and set186

ρk,0 =

 ∞, if ŝk,0 = 0 and [−λ1,k]+ > 0,
0, if ŝk,0 = 0 and [−λ1,k]+ = 0,
[−λ1,k]+/

(
3‖ŝk,0‖

)
, if ŝk,0 6= 0.

187

If ρk,0 ≤M then go to Step 4; else pursue to Step 3 below.188

Step 3. Let q1,k with ‖q1,k‖ = 1 be an eigenvector of Hk associated with its left-most189

eigenvalue λ1,k. Set `3 ← 1 and compute t`3 ≥ 0 and ŝk,`3 = ŝk,0 + t`3q
1,k190

such that191

(11) [−λ1,k]+/
(
3‖ŝk,`3‖

)
= M.192

If (8) holds with s = ŝk,`3 , return s = ŝk,`3 ; else pursue to Step 3.1 below.193

Step 3.1. While ‖ŝk,`3‖ ≥ 2‖ŝk,0‖, execute Steps 3.1.1–3.1.2 below:194

Step 3.1.1. Set `3 ← `3 + 1 and compute t`3 ≥ 0 and ŝk,`3 = ŝk,0 + t`3q
1,k195

such that196

(12) ‖ŝk,`3‖ =
1

2
‖ŝk,`3−1‖.197

Step 3.1.2. If (8) holds with s = ŝk,`3 then return s = ŝk,`3 .198

This manuscript is for review purposes only.

6 E. G. BIRGIN AND J. M. MART́ıNEZ

Step 4. If (8) holds with s = ŝk,0 then return s = ŝk,0; else pursue to Step 5 below.199

Step 5. Set `5 ← 1 and ρk,`5 = max{0.1, ρk,0} and compute µ̃k,`5 > 0 and s̃k,`5200

solution to (10) with µ = µ̃k,`5 such that201

(13) ρk,`5 ≤
[−λ1,k]+ + µ̃k,`5

3‖s̃k,`5‖
≤ 100ρk,`5 .202

If (8) holds with s = s̃k,`5 , return s = s̃k,`5 ; else pursue to Step 5.1 below.203

Step 5.1. While µ̃k,`5 < 0.1, execute Steps 5.1.1–5.1.3 below:204

Step 5.1.1. Set `5 ← `5 + 1 and205

(14) ρk,`5 = 10

(
[−λ1,k]+ + µ̃k,`5−1

3‖s̃k,`5−1‖

)
.206

Step 5.1.2 Compute µ̃k,`5 > 0 and s̃k,`5 solution to (10) with µ = µ̃k,`5 such207

that (13) holds.208

Step 5.1.3 If (8) holds with s = s̃k,`5 , return s = s̃k,`5 .209

Step 6. Set `6 ← 1, µ̄k,`6 = 2µ̃k,`5 , and compute s̄k,`6 solution to (10) with µ = µ̄k,`6 .210

Step 6.1. While (8) does not hold with s = s̄k,`6 , execute Steps 6.1.1–6.1.2 below:211

Step 6.1.1. Set `6 ← `6 + 1 and µ̄k,`6 = 2µ̄k,`6−1.212

Step 6.1.2. Compute s̄k,`6 solution to (10) with µ = µ̄k,`6 .213

Step 6.2. Return s = s̄k,`6 .214

The reader may have noticed that Algorithm 3.2 includes several constants in215

its definition. Those constants are arbitrary and all of them can be replaced by216

any number (sometimes larger or smaller than unity, depending on the case). The217

algorithm was presented in this way with the simple purpose of avoiding a large218

number of hard-to-recall letters and/or parameters.219

The way in which Algorithm 3.2 proceeds is directly related to the geometry of220

the set of solutions of (9), many times called Levenberg-Marquardt path. On the one221

hand, when µ→∞, s(µ) tends to 0 describing a curve tangent to −gk. On the other222

hand, the geometry of the Levenberg-Marquardt path when µ → 0 depends on the223

positive definiteness of Hk and the compatibility or not of the linear system (10) with224

µ = 0 as we now describe.225

If Hk is positive definite then the Levenberg-Marquardt path is a bounded curve226

that joins s = 0 with the Newtonian step s = −(Hk)−1gk. In this case, we have227

that λ1,k > 0, so [−λ1,k]+ = 0. Then, the system (10) with µ = 0 is compatible228

and, by Step 2, ρk,0 = 0. Since ρk,0 ≤ M , the algorithm continues at Step 4 and the229

increment ŝk,0 is accepted if the sufficient descent condition (8) holds with s = ŝk,0230

(this is always the case if ŝk,0 = 0, that occurs if and only if gk = 0). However, if231

(8) does not hold, after a few initializations at Step 5, the algorithm computes at232

Step 5.1.2 a regularization parameter µ such that the corresponding ρ(µ) increases233

with respect to the previous one, but not very much. This corresponds to our purpose234

of maintaining the auxiliary quantity ρ(µ) within controlled bounds. If s(µ) does not235

satisfy (8) (checked at Step 5.1.3) and the regularization parameter µ is still small236

(checked at the loop condition of Step 5.1), we update (increase) the bounds on ρ(µ)237

at Step 5.1.1, and we repeat this process until the fulfillment of (8) or until µ is238

not small anymore. In that latter case, the process continues in Step 6 with regular239

increases of the regularization parameter µ which should lead to the final fulfillment240

of (8) at the loop condition of Step 6.1. It is easy to see that, when Hk is positive241

semidefinite and the linear system Hks = −gk is compatible, the algorithm proceeds242

as in the positive definite case described above.243

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 7

The case in which Hk is not positive definite but the linear system (10) with µ = 0244

is compatible is called the “hard case” in the trust-region literature [7]. In the hard245

case, the Levenberg-Marquardt path is constituted by two branches. The first branch,246

that corresponds to µ > 0, is a bounded curve that joins s = 0 with the minimum-247

norm solution of (10) with µ = 0. The second branch, that corresponds to µ = 0,248

is given by the infinitely many solutions to the system (10) with µ = 0. This set of249

infinitely many solutions form an affine subspace that contains −[Hk + [−λ1,k]+I]†gk250

and is spanned by the eigenvectors of Hk associated with λ1,k. Usually, one restricts251

this affine subspace to the line −[Hk + [−λ1,k]+I]†gk + tv with t ∈ R, where v is252

one of the eigenvectors associated with λ1,k. The algorithm starts by computing the253

minimum norm solution of (10) with µ = 0, which corresponds to the intersection254

of the two branches of the Levenberg-Marquardt path. If taking the regularizing255

parameter µ = 0 we have that the associated ρ(µ) is not very big (ρk,0 ≤ M at256

Step 2) then we proceed exactly as in the positive definite and compatible positive257

semidefinite cases, increasing µ and seeking an acceptable increment along the first258

branch of the Levenberg-Marquardt path. However, if ρk,0 > M , we are in the case259

in which ρ(µ) could be very big. Then, the search starts at Step 3 by seeking an260

increment along the second branch of the Levenberg-Marquardt path. This happens261

when λ1,k < 0 and ŝk,0 = 0 (because gk = 0), since in that case, we set ρk,0 = ∞262

at Step 2. Note that, along this branch, the value of µ = 0 does not change and the263

reduction of ρ(µ) is achieved trivially by increasing the norm of s(µ). Starting with a264

sufficiently large ‖s(µ)‖, and by means of successive reductions of ‖s(µ)‖ at Step 3.1.1,265

we seek the fulfillment of (8). However, after a finite number of reductions of ‖s(µ)‖266

this norm becomes smaller than a multiple of the norm of the minimum-norm solution267

(except in the case in which we have ŝk,0 = 0). If this happens, we enter Step 4 and268

then initiate a search in the other branch in an analogous way as we do in the positive269

definite case. In this situation, we have the guarantee that ρ(µ) is suitable bounded270

in the intersection point because, otherwise, the sufficient descent condition (8) would271

have been satisfied.272

If Hk is not positive definite and the system (10) with µ = 0 is not compatible273

then the Levenberg-Marquardt path is an unbounded curve that, as µ tends to 0,274

becomes tangent to an affine subspace generated by an eigenvector of Hk associated275

with λ1,k. In this case, the control goes to Step 5 and the algorithm proceeds as in276

the already described situation in which Hk is positive definite but the Newtonian277

step does not satisfy the sufficient descent condition (8).278

4. Well-definiteness results. In this section, we will show that Algorithm 3.2279

is well-defined and that the computed increment sk that satisfies (8) also satisfies (3).280

We start by describing how Algorithm 3.2 could be implemented considering the spec-281

tral decomposition of Hk. Of course, this is an arbitrary choice and other options are282

possible like, for example, computing the left-most eigenvalue of Hk only, and possible283

its associated eigenvector, and then solving the linear systems by any factorization284

suitable for symmetric matrices. In any case, the description based on the spectral285

decomposition of Hk introduces some useful notation for the rest of the section.286

Consider the spectral decomposition Hk = QkΛkQ
T
k , where Qk = [q1,k . . . qn,k] is287

orthogonal and Λk = diag(λ1,k, . . . , λn,k) with λ1,k ≤ · · · ≤ λn,k. Substituting Hk by288

its spectral decomposition in (10), we obtain [Λk + ([−λ1,k]+ + µ)I]QTk s = −QTk gk.289

Therefore, for µ = 0, the linear system (10) is compatible if and only if [QTk g
k]j = 0290

whenever λj,k + [−λ1,k]+ = 0. Assuming that the linear system (10) with µ = 0 is291

This manuscript is for review purposes only.

8 E. G. BIRGIN AND J. M. MART́ıNEZ

compatible, its minimum norm solution is given by ŝk,0 = Qky
k, where292

ykj =

{
−[QTk g

k]j/(λj,k + [−λ1,k]+), j ∈ J,
0, j ∈ J̄ ,293

J = {j ∈ {1, . . . , n} | λj,k + [−λ1,k]+ 6= 0}, and J̄ = {1, . . . , n} \ J . Moreover, note294

that295

‖ŝk,0‖ =

√∑
j∈J

(
[QTk g

k]j/(λj,k + [−λ1,k]+)
)2
.296

The norm of ŝk,`3 = ŝk,0 + t`3q
1,k (for any `3 ≥ 1) computed at Step 3 is given by297

‖ŝk,`3‖ =
√
‖ŝk,0‖2 + t`32〈ŝk,0, q1,k〉+ t2`3 =

√
‖ŝk,0‖2 + t2`3 ,298

where the last equality holds because ŝk,0 is orthogonal to q1,k by definition. Thus,299

given a desired norm c`3 for ŝk,`3 (c`3 = [−λ1,k]+/(3M) when `3 = 1 and c`3 =300

1
2‖ŝ

k,`3−1‖ when `3 > 1), we have that t`3 =
√
c2`3 − ‖ŝ

k,0‖2.301

The following technical lemma establishes that Step 5 of Algorithm 3.2 can al-302

ways be completed finding a regularization parameter µ and an increment s(µ) that303

satisfies (13). The assumption gk 6= 0 in the lemma is perfectly reasonable because,304

as it will be shown later, it always holds at Step 5.305

Lemma 4.1. Suppose that gk 6= 0. At Step 5 of Algorithm 3.2, for any `5 ≥ 1,306

there exists µ̃k,`5 > 0 and s̃k,`5 solution to (10) with µ = µ̃k,`5 satisfying (13).307

Proof. For any µ > 0, the matrix of the system (10) is positive definite and the308

solution s(µ) to (10) is such that309

(15) ‖s(µ)‖ =

√√√√ ∑
{j | [QT

k g
k]j 6=0}

(
[QTk g

k]j
(λj,k + [−λ1,k]+ + µ)

)2

.310

Moreover, clearly,311

(16) lim
µ→∞

‖s(µ)‖ = 0.312

In order to analyze the case µ → 0, the proof will be divided in two cases: (a) the313

linear system (10) with µ = 0 is compatible and (b) the linear system (10) with µ = 0314

is not compatible.315

Consider first case (a). In this case, since [QTk g
k]j = 0 whenever λj,k+[−λ1,k]+ =316

0, (15) is equivalent to317

‖s(µ)‖ =

√√√√∑
j∈J

(
[QTk g

k]j
(λj,k + [−λ1,k]+ + µ)

)2

.318

Therefore,319

(17) lim
µ→0
‖s(µ)‖ = ‖ŝk,0‖ > 0320

because gk 6= 0 implies ŝk,0 6= 0. Thus, by (16) and (17), we have that321

(18) lim
µ→∞

[−λ1,k]+ + µ

3‖s(µ)‖
=∞ and lim

µ→0

[−λ1,k]+ + µ

3‖s(µ)‖
=

[−λ1,k]+
3‖ŝk,0‖

.322

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 9

Since, by definition, for any `5 ≥ 1,323

ρk,`5 ≥ ρk,0 =
[−λ1,k]+
3‖ŝk,0‖

,324

the desired result follows by continuity from (18).325

Consider now case (b). In this case, there exists j such that λj,k + [−λ1,k]+ = 0326

and [QTk g
k]j 6= 0. Therefore, from (15), we have that327

(19) lim
µ→0
‖s(µ)‖ =∞.328

Thus, by (16) and (19), we have that329

(20) lim
µ→∞

[−λ1,k]+ + µ

3‖s(µ)‖
=∞ and lim

µ→0

[−λ1,k]+ + µ

3‖s(µ)‖
= 0.330

Since, by definition, for any `5 ≥ 1, in this case we have ρk,`5 ≥ ρk,0 = 0.1, the desired331

result follows by continuity from (20).332

Below we state the main assumption that supports the complexity results. Essen-333

tially, we will assume that the objective function is twice continuously differentiable334

and that ∇2f satisfies a Lipschitz condition on a suitable region that contains the335

iterates xk and the trial points xk + strial. Of course, a sufficient condition for the336

fulfillment of this assumption is the Lipschitz-continuity of ∇2f on Rn, but in some337

cases this global assumption may be unnecessarily strong.338

Assumption A1. The function f is twice continuous differentiable for all x ∈ Rn339

and there exists a constant L > 0 such that, for all xk computed by Algorithm 3.1340

and every trial increment strial computed at Steps 2, 3, 3.1.1, 5, 5.1.2, 6, or 6.1.2 of341

Algorithm 3.2, we have that342

f(xk + strial) ≤ f(xk) + (strial)T gk +
1

2
(strial)THkstrial + L‖strial‖3343

and344

‖g(xk + strial)− gk −Hkstrial‖ ≤ L‖strial‖2.345

In the following lemma we prove that any trial increment necessarily satisfies the346

sufficient descent condition (8) if the regularization parameter is large enough.347

Lemma 4.2. Suppose that Assumption A1 holds and µ ≥ 0. If 0 6= strial ∈ Rn348

computed at Steps 2, 3, 3.1.1, 5, 5.1.2, 6, or 6.1.2 of Algorithm 3.2, that by definition349

satisfies350

(21) [Hk + ([−λ1,k]+ + µ)]strial = −gk,351

is such that352

(22)
[−λ1,k]+ + µ

3‖strial‖
≥ L+ α353

then (8) is satisfied with s = strial.354

Proof. Let us define, for all s ∈ Rn,355

q(s) = sT gk +
1

2
sTHks.356

This manuscript is for review purposes only.

10 E. G. BIRGIN AND J. M. MART́ıNEZ

Since Hk + ([−λ1,k]+ + µ)I is positive semidefinite for any µ ≥ 0, by (21),357

(23) strial minimizes q(s) +
1

2
([−λ1,k]+ + µ)‖s‖2.358

Define359

(24) ρ =
[−λ1,k]+ + µ

3‖strial‖
.360

By Lemma 3.1 of [5], strial is a minimizer of q(s) + ρ‖s‖3. In particular,361

(25) q(strial) + ρ‖strial‖3 ≤ q(0) = 0.362

Now, by Assumption A1, we have that363

f(xk + strial) ≤ f(xk) + (strial)T gk + 1
2 (strial)THkstrial + L‖strial‖3

= f(xk) + q(strial) + ρ‖strial‖3 + (L− ρ)‖strial‖3.364

Thus, by (22), (24), and (25), f(xk + strial) ≤ f(xk)− α‖strial‖3. This completes the365

proof.366

The lemma below shows that Algorithm 3.2 may return a null increment only at367

Step 4.368

Lemma 4.3. Suppose that A1 holds. Algorithm 3.2 returns a null increment s = 0369

if and only if gk = 0 and λ1,k ≥ 0. Moreover, an increment s = 0 may only be returned370

by Algorithm 3.2 at Step 4 (i.e. Steps 3, 3.1.2, 5, 5.1.3, and 6.2 always return non371

null increments).372

Proof. Assume that gk = 0 and λ1,k ≥ 0. Then, we have that the minimum norm373

solution ŝk,0 to the linear system (10) with µ = 0 computed at Step 2 is null and that374

ρk,0 = 0 ≤M . Therefore, the algorithm goes to Step 4 and returns s = ŝk,0 = 0 since375

it satisfies (8).376

Assume now that Algorithm 3.2 returned an increment s = 0. Since every trial377

increment computed by the algorithm is a solution to the linear system (10) for some378

µ ≥ 0, we must have gk = 0. If λ1,k ≥ 0, the first part of thesis holds and it remains379

to show that the null increment is returned at Step 4. Note that, since gk = 0 implies380

ŝk,0 = 0 and λ1,k ≥ 0 means [−λ1,k]+ = 0, at Step 2 we have ρk,0 = 0 ≤ M . Thus,381

the algorithm goes to Step 4 where the null increment is returned since it satisfies (8).382

We now show that assuming λ1,k < 0 leaves to a contradiction. Since λ1,k < 0 means383

[−λ1,k]+ > 0 and gk = 0 implies ŝk,0 = 0, by the way ρk,0 is defined at Step 2, we384

have that ρk,0 =∞ 6≤M . In this case the algorithm goes to Step 3. On the one hand,385

note that ŝk,0 = 0 implies that the algorithm never leaves the loop in Step 3.1 becasue386

its condition reduces to ‖ŝk,`3‖ ≥ 0. On the other hand, note that, by halving the387

norm of the trial increments ŝk,`3 , since µ = 0 is fixed, in a finite number of trials,388

(22) holds and, by Lemma 4.2, the algorithm returns s = ŝk,`3 6= 0 for some `3 ≥ 1,389

contradicting the fact that the algorithm returned a null increment.390

We finish this section proving that the increment sk computed at Algorithm 3.2,391

that satisfies (8) and defines xk+1 in Algorithm 3.1, is such that it also satisfies (3).392

Note that this result assumes the existence of sk by hypothesis. Up to the present393

moment we proved that Algorithm 3.2 is well defined. The existence of sk for all k will394

be proved in the following section when proving that Algorithm 3.2 always computes395

sk performing a finite number of operations.396

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 11

Lemma 4.4. Suppose that Assumption A1 holds. Then, there exist γg > 0 and397

γh > 0 such that, for all k ∈ N, the increment sk computed by Algorithm 3.2 and the398

new iterate xk+1 = xk + sk computed at Step 2 of Algorithm 3.1 satisfy399 √
‖gk+1‖
γg

≤ ‖sk‖ and
[−λ1,k]+

γh
≤ ‖sk‖.400

Moreover,401

(26) γg ≤ max {3M + L, 3000(L+ α) + L, 30 + L}402

and403

(27) γh ≤ max {3M, 3000(L+ α), 30} .404

Proof. If sk = 0 then, by Lemma 4.3, we have that gk = 0 and λ1,k ≥ 0 and,405

therefore, the thesis follows trivially. We now assume sk 6= 0. Since sk is a solution406

to (10) for some µ ≥ 0, we have that Hksk + gk + ([−λ1,k]+ + µ)sk = 0. Therefore,407

Hksk + gk +

(
[−λ1,k]+ + µ

‖sk‖

)
‖sk‖sk = 0.408

Then409

‖Hksk + gk‖ =

(
[−λ1,k]+ + µ

‖sk‖

)
‖sk‖2.410

But, by Assumption A1 and the triangle inequality,411

‖gk+1‖ − ‖gk +Hksk‖ ≤ ‖gk+1 − gk −Hksk‖ ≤ L‖sk‖2.412

Therefore,413

(28) ‖gk+1‖ ≤
(

[−λ1,k]+ + µ

‖sk‖
+ L

)
‖sk‖2.414

We now analyze in separate the cases in which sk 6= 0 is returned by Algorithm 3.2415

at Steps 3, 3.1.2, 4, 5, 5.1.3, and 6.2416

Case sk = ŝk,`3 with `3 = 1 was returned at Step 3: In this case, sk,`3 is a417

solution to (10) with µ = 0 and, by (11), it satisfies418

(29) [−λ1,k]+/‖sk,`3‖ = 3M.419

Case sk = ŝk,`3 with `3 > 1 was returned at Step 3.1.2: This means that there420

exists ŝk,`3−1 6= 0 that is a solution to (10) with µ = 0 and for which (8) with s =421

ŝk,`3−1 did not hold. Therefore, by Lemma 4.2, we have that [−λ1,k]+/
(
3‖ŝk,`3−1‖

)
<422

L+ α. Thus, by (12), we have that423

(30) [−λ1,k]+/‖ŝk,`3‖ < 6(L+ α).424

Case sk = ŝk,0 was returned at Step 4: In this case, we have that425

(31) [−λ1,k]+/
(
3‖ŝk,0‖

)
≤M426

or that there exists ŝk,`3 6= 0 with `3 ≥ 1 such that427

(32) ‖ŝk,`3‖ < 2‖ŝk,0‖,428

This manuscript is for review purposes only.

12 E. G. BIRGIN AND J. M. MART́ıNEZ

ŝk,`3 is a solution to (10) with µ = 0, and (8) did not hold with s = ŝk,`3 . Therefore,429

by Lemma 4.2, we have that430

(33) [−λ1,k]+/
(
3‖ŝk,`3‖

)
< L+ α431

and, by (32) and (33),432

(34) [−λ1,k]+/‖ŝk,0‖ < 6(L+ α).433

Thus, by (31) and (34),434

(35) [−λ1,k]+/‖sk,0‖ ≤ max{3M, 6(L+ α)}.435

Case sk = s̃k,`5 with `5 = 1 was returned at Step 5: In this case there are two436

possibilities: the linear system (10) with µ = 0 is compatible or not. In the first case,437

ŝk,0 was computed,438

ρk,0 = [−λ1,k]+/
(
3‖ŝk,0‖

)
,439

and, since (8) with s = ŝk,0 did not hold, by Lemma 4.2, ρk,0 < L+ α. In the second440

case, we simple have that ρk,0 = 0. Thus, by (13) and by the fact that, by definition,441

ρk,1 = max{0.1, ρk,0}, in the first case, we have442

(36)
[−λ1,k]+ + µ̃k,`5

3‖s̃k,`5‖
≤ 100ρk,`5 = 100 max{0.1, ρk,0} ≤ max{10, 100(L+ α)}443

and, in the second case, we have444

(37)
[−λ1,k]+ + µ̃k,`5

3‖s̃k,`5‖
≤ 100ρk,`5 = 100 max{0.1, 0} = 10.445

Therefore, µ̃k,`5 ≥ 0, (36), and (37) imply that446

(38)
[−λ1,k]+
‖sk,`5‖

≤ [−λ1,k]+ + µ̃k,`5
‖sk,`5‖

≤ max{30, 300(L+ α)}.447

Case sk = s̃k,`5 with `5 > 1 was returned at Step 5.1.3: This means that there448

exists µ̃k,`5−1 > 0 and s̃k,`5−1 solution to (10) with µ = µ̃k,`5−1 for which (8) did not449

hold. Thus, by Lemma 4.2,450

[−λ1,k]+ + µ̃k,`5−1

3‖s̃k,`5−1‖
< L+ α.451

Moreover, by (13) and (14),452

[−λ1,k]+ + µ̃k,`5
3‖s̃k,`5‖

≤ 100ρk,`5 = 1000

(
[−λ1,k]+ + µ̃k,`5−1

3‖s̃k,`5−1‖

)
.453

Thus,454

(39)
[−λ1,k]+
‖s̃k,`5‖

≤ [−λ1,k]+ + µ̃k,`5
‖s̃k,`5‖

≤ 3000(L+ α).455

Case sk = s̄k,`6 was returned at Step 6.2: If `6 = 1 then µ̄k,`6 = 2µ̃k,`5 for some456

`5 ≥ 1 and the solution s̃k,`5 to (10) with µ = µ̃k,`5 is such that (8) with s = s̃k,`5457

does not hold. Thus, by Lemma 4.2,458

[−λ1,k]+ + µ̃k,`5
3‖s̃k,`5‖

< L+ α.459

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 13

On the other hand, and since µ̄k,`6 = 2µ̃k,`5 , we have that460

(40)

‖s̄k,`6‖ =

√∑
j∈J

(
[QT

k
gk]j

λj,k+[−λ1,k]++µ̄k,`6

)2

=

√∑
j∈J

(
[QT

k
gk]j

λj,k+[−λ1,k]++2µ̃k,`5

)2

=

√∑
j∈J

(
[QT

k
gk]j

2(1
2

(λj,k+[−λ1,k]+)+µ̃k,`5
)

)2

≥

√∑
j∈J

(
[QT

k
gk]j

2(λj,k+[−λ1,k]++µ̃k,`5
)

)2

= 1
2

√∑
j∈J

(
[QT

k
gk]j

λj,k+[−λ1,k]++µ̃k,`5

)2

= 1
2
‖s̃k,`5‖ > 0.

461

Therefore,462

(41)

[−λ1,k]+
‖s̄k,`6‖

≤ [−λ1,k]+ + µ̄k,`6
‖s̄k,`6‖

=
[−λ1,k]+ + 2µ̃k,`5

‖s̄k,`6‖
=

2
(

1
2 [−λ1,k]+ + µ̃k,`5

)
‖s̄k,`6‖

≤

2 ([−λ1,k]+ + µ̃k,`5)

‖s̄k,`6‖
≤ 2 ([−λ1,k]+ + µ̃k,`5)

1
2‖s̃k,`5‖

= 4

(
[−λ1,k]+ + µ̃k,`5

‖s̃k,`5‖

)
< 12(L+ α).

463

If `6 > 1 then µ̄k,`6 = 2µ̄k,`6−1 and the solution s̄k,`6−1 to (10) with µ = µ̄k,`6−1464

is such that (8) with s = s̄k,`6−1 does not hold. Thus, by Lemma 4.2,465

(42)
[−λ1,k]+ + µ̄k,`6−1

3‖s̄k,`6−1‖
< L+ α.466

Moreover, µ̄k,`6 = 2µ̄k,`6−1 implies, as shown above, that467

(43) ‖s̄k,`6‖ ≥ 1

2
‖s̄k,`6−1‖.468

Therefore, by (42) and (43), and since µ̄k,`6 ≥ 0, we have that469

(44)
[−λ1,k]+
‖s̄k,`6‖

≤ [−λ1,k]+ + µ̄k,`6
‖s̄k,`6‖

< 12(L+ α).470

The desired result (27) follows from (29), (30), (35), (38), (39), (41), and (44);471

while (26) follows from the same set of inequalities plus (28).472

5. Complexity results. In this section, complexity results on Algorithm 3.2 are473

presented. In particular, we show that the number of functional evaluations required474

to compute the increment sk using Algorithm 3.2 is O(1), i.e. it does not depend475

on εg nor εh. The section finishes establishing the complexity of Algorithm 3.1–3.2476

in terms of the number of functional (and derivatives) evaluations. The sufficient477

condition (8) is tested at Steps 3, 3.1.2, 4, 5, 5.1.3, and 6.1. These are the only steps478

of Algorithm 3.2 in which the objective function is evaluated. Condition (8) is tested479

only once per iteration at Steps 3, 4, and 5. Therefore, in order to assess the worst-480

case evaluation complexity of Algorithm 3.2, we must obtain a bound for the number481

of executions of the remaining mentioned steps, namely, Steps 3.1.2, 5.1.3, and 6.1.482

Step 3.1 of Algorithm 3.2 describes the loop that corresponds to the hard case,483

in which we seek an increment along an appropriate eigenvector of Hk. For each trial484

increment, f is evaluated and the condition (8) is tested (at Step 3.1.2). Therefore,485

it is necessary to establish a bound on the number of executions of Step 3.1.2. This486

is done in Lemma 5.1.487

Lemma 5.1. Suppose that Assumption A1 holds. If Step 3.1.2 of Algorithm 3.2488

is executed, it is executed at most blog2((L+ α)/M)c+ 1 times.489

This manuscript is for review purposes only.

14 E. G. BIRGIN AND J. M. MART́ıNEZ

Proof. By (11) when `3 = 1 and by (12) when `3 > 1, ŝk,`3 6= 0 for all `3 ≥ 1 and490

‖ŝk,`3‖ =

{
[−λ1,k]+/(3M), `3 = 1,
‖ŝk,`3−1‖/2, `3 > 1,

491

or, equivalently,492

(45) 2`3−1M = [−λ1,k]+/
(
3‖ŝk,`3‖

)
.493

Thus, by Lemma 4.2, if (8) does not hold with s = ŝk,`3 we must have 2`3−1M < L+α,494

i.e. `3 ≤ blog2((L+ α)/M)c+ 1 as we wanted to prove.495

Step 5.1 of Algorithm 3.2 describes a loop where one tries to find an “initial”496

sufficiently big regularization parameter. Each time the regularization parameter is497

increased one tests the condition (8) (at Step 5.1.3). Therefore, it is necessary to498

establish a bound on the number of evaluations that may be performed at Step 5.1.3.499

This is done in Lemma 5.2.500

Lemma 5.2. Suppose that Assumption A1 holds. If Step 5.1.3 of Algorithm 3.2501

is executed, it is executed at most blog10(L+ α)c+ 2 times.502

Proof. For all `5 ≥ 1, when (8) is tested at Step 5.1.3 with s = s̃k,`5 , s̃k,`5 is503

a solution to (10) with µ = µ̃k,`5 > 0 and satisfies (13). Therefore, by Lemma 4.3,504

s̃k,`5 6= 0 and, thus, by Lemma 4.2, if (8) does not hold with s = s̃k,`5 we must have505

(46) ρk,`5 < L+ α.506

On the other hand, since, by definition, ρk,1 ≥ 0.1 and, by (13) and (14), ρk,`5 ≥507

10ρk,`5−1 for all `5 ≥ 2, we have that508

(47) ρk,`5 ≥ 10`5−2
509

for all `5 ≥ 1. By (46) and (47), if (8) does not hold with s = s̃k,`5 we must have510

10`5−2 < L+ α, i.e. `5 ≤ blog10(L+ α)c+ 2 as we wanted to prove.511

Finally, at Step 6.1 we increase the regularization parameter by means of a512

doubling process (µ̄k,`6 = 2µ̄k,`6−1). This process guarantees, by Lemma 4.3 and513

Lemma 4.2, that the sufficient condition will eventually hold. In Lemma 5.3, we514

prove that the number of doubling steps is also bounded by a quantity that only515

depends on characteristics of the problem and algorithmic parameters. For proving516

this lemma, we need to assume boundedness of ‖Hk‖ at the iterates generated by517

the algorithm. Note that, since f(xk+1) ≤ f(xk) for all k, a sufficient condition for518

Assumption A2 is the boundedness of ‖H(x)‖ on the level set defined by f(x0).519

Assumption A2. There exists a constant hmax ≥ 0 such that, for all iterates xk520

computed by Algorithm 3.1, we have that ‖Hk‖ ≤ hmax.521

Lemma 5.3. Suppose that Assumption A1 and Assumption A2 hold. If Step 6.1.2522

of Algorithm 3.2 is executed, it is executed at most523 ⌊[
log

(
1 +

0.2

hmax + 0.2

)]−1

log

(
L+ α

0.1

)⌋
+ 1524

times.525

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 15

Proof. For all `6 ≥ 1, Lemma 4.3 implies that s̄k,`6 6= 0 and straightforward526

calculations show that527

‖s̄k,`6‖ =

√∑
j∈J

(
[QTk g

k]j/(λj,k + [−λ1,k]+ + µ̄k,`6)
)2
.528

Moreover, it is easy to see that ‖s̄k,`6‖ decreases when µ̄k,`6 increases. Therefore,529

since, by definition, µ̄k,`6+1 = 2µ̄k,`6 , for all `6 ≥ 1, we have that530

(48)
‖s̄k,`6‖
‖s̄k,`6+1‖

≥ 1.531

Thus, for all `6 ≥ 1,532

(49)

(
[−λ1,k]++µ̄k,`6+1

3‖s̄k,`6+1‖

)
/
(

[−λ1,k]++µ̄k,`6

3‖s̄k,`6‖

)
=
(

[−λ1,k]++µ̄k,`6+1

[−λ1,k]++µ̄k,`6

)(
‖s̄k,`6‖
‖s̄k,`6+1‖

)
≥

[−λ1,k]++µ̄k,`6+1

[−λ1,k]++µ̄k,`6
=

[−λ1,k]++2µ̄k,`6

[−λ1,k]++µ̄k,`6
= 1 +

µ̄k,`6

[−λ1,k]++µ̄k,`6
≥
(

1 + 0.2
hmax+0.2

)
> 1,

533

where the first inequality follows from (48) and the second inequality follows from the534

fact that, by the definition of the algorithm, µ̄k,`6 ≥ 0.2 and by Assumption A2.535

From (49) and the fact that, by the definition of the algorithm, `6 = 1 implies536

[−λ1,k]+ + µ̄k,`6
3‖s̄k,`6‖

≥ 0.1,537

it follows that538

(50)
[−λ1,k]+ + µ̄k,`6

3‖s̄k,`6‖
≥ 0.1

(
1 +

0.2

hmax + 0.2

)`6−1

539

for all `6 ≥ 1. For all `6 ≥ 1, when (8) is tested at Step 6.1.2 with s = s̄k,`6 , s̄k,`6540

satisfies (10) with µ = µ̄k,`6 > 0. Therefore, by Lemma 4.2, if (8) does not hold with541

s = s̄k,`6 we must have, by (50),542

0.1

(
1 +

0.2

hmax + 0.2

)`6−1

< L+ α.543

This implies the desired result.544

We finish this section summarizing the complexity and asymptotic results on545

Algorithm 3.1–3.2.546

Theorem 5.1. Let fmin ∈ R, εg > 0, and εh > 0 be given constants, suppose that547

Assumption A1 and Assumption A2 hold, and let {xk}∞k=0 be the sequence generated548

by Algorithm 3.1–3.2. Then, the cardinality of the set of indices549

(51) Kg =
{
k ∈ N | f(xk) > fmin and ‖gk+1‖ > εg

}
550

is, at most,551

(52)

⌊
1

α

(
f(x0)− fmin

(εg/γg)
3/2

)⌋
;552

This manuscript is for review purposes only.

16 E. G. BIRGIN AND J. M. MART́ıNEZ

while the cardinality of the set of indices553

(53) Kh =
{
k ∈ N | f(xk) > fmin and λ1,k < −εh

}
554

is, at most,555

(54)

⌊
1

α

(
f(x0)− fmin

(εh/γh)
3

)⌋
,556

where constants γg and γh are as in the thesis of Lemma 4.4 (i.e. they satisfy (26)557

and (27), respectively).558

Proof. Assumption A1 and Assumption A2 imply, by Lemma 4.4, the the hy-559

pothesis of Lemma 2.1 hold. Therefore, since Algorithm 3.1 is a particular case of560

Algorithm 2.1, the thesis follows from Theorem 2.1.561

Corollary 2.1, Corollary 2.2, and Corollary 2.3 also hold for Algorithm 3.1–3.2562

under the hypothesis of Theorem 5.1, the most significant result being the complexity563

rates that possess the same dependencies on εg and εh whether we consider iteration564

or evaluation complexity. Note that the number of iterations is a direct consequence of565

Theorem 5.1. On the other hand, Lemma 5.1, Lemma 5.2, and Lemma 5.3 show that,566

every time Algorithm 3.2 is used by Algorithm 3.1 to compute an increment sk, it567

performs O(1) evaluations of the objective function f ; while, by definition, it performs568

a single evaluation of g and H. Thus, the evaluation complexity of Algorithm 3.1–3.2569

coincides with its iteration complexity.570

6. Local convergence. Note that if Hk is positive definite then the minimum571

norm solution ŝk,0 to the linear system (10) with µ = 0 computed at Step 2 of572

Algorithm 3.2 is given by ŝk,0 = −(Hk)−1gk, i.e. ŝk,0 is the Newton direction. More-573

over, since, independently of having ŝk,0 = 0 or ŝk,0 6= 0, λ1,k > 0 implies that574

ρk,0 = 0 ≤M , in this case (Hk positive definite) the algorithm goes directly to Step 4575

and checks whether the Newton direction satisfies the sufficient cubic decrease con-576

dition (8). The lemma below shows that, if (55) holds then the Newton direction577

satisfies (8). (If λ1,k > 0 and gk = 0 and, in consequence, sk,0 = 0, it is trivial to578

see that the (null) Newton direction satisfies (8) and there is nothing to be proved.579

Anyway, the lemma below covers this case as well.)580

Lemma 6.1. Suppose that Assumption A1 holds. If Hk is positive definite and581

(55) ‖gk‖ ≤ 1

2(L+ α)
λ2

1,k582

then we have that the trial increment ŝk,0 computed at Step 2 of Algorithm 3.2 is such583

that (8) holds with s = ŝk,0.584

Proof. By Assumption A1,585

f(xk + ŝk,0) ≤ f(xk) + (ŝk,0)T gk +
1

2
(ŝk,0)THkŝk,0 + L‖ŝk,0‖3.586

Then, since ŝk,0 = −(Hk)−1gk,587

f(xk + ŝk,0) ≤ f(xk)− 1

2
(ŝk,0)THkŝk,0 + L‖ŝk,0‖3.588

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 17

Therefore,589

(56) f(xk + ŝk,0) ≤ f(xk)− 1

2
λ1,k‖ŝk,0‖2 + L‖ŝk,0‖3.590

On the other hand, since ŝk,0 = −(Hk)−1gk, we have that591

(57) ‖ŝk,0‖ = ‖(Hk)−1gk‖ ≤ ‖(Hk)−1‖‖gk‖ =
1

λ1,k
‖gk‖.592

Then, by (55), ‖ŝk,0‖ ≤ λ1,k/(2(L + α)) or, equivalently, −λ1,k/2 + L‖ŝk,0‖ ≤593

−α‖ŝk,0‖. Therefore, multiplying by ‖ŝk,0‖2 and adding f(xk), we have that594

f(xk)− 1

2
λ1,k‖ŝk,0‖2 + L‖ŝk,0‖3 ≤ f(xk)− α‖ŝk,0‖3.595

and the thesis follows from (56).596

In the next theorem, we use the classical local convergence result of Newton’s597

method plus continuity arguments (that imply that the hypothesis (55) always hold598

in a neighborhood of a local minimizer with positive definite Hessian) to prove the599

quadratic local convergence of Algorithm 3.1–3.2.600

Assumption A3. Let x∗ be a local minimizer of f . We say that this assumption601

holds if H(x∗) is positive definite with ‖H(x∗)−1‖ ≤ β and, in addition, there exist602

r > 0 and γ > 0 such that ‖H(x)−H(x∗)‖ ≤ γ‖x− x∗‖ whenever ‖x− x∗‖ ≤ r.603

Theorem 6.1. Let x∗ be a local minimizer of f at which Assumption A3 holds604

and suppose that Assumption A1 also holds. Define δ1 = min{r, 1
2βγ }. Then, there605

exists δ ∈ (0, δ1] such that606

(58) ‖H(x)−1‖ ≤ 2β whenever ‖x− x∗‖ ≤ δ607

and such that, if ‖x0−x∗‖ ≤ δ, the sequence {xk}∞k=0 generated by Algorithm 3.1–3.2608

satisfies609

(59) ‖g(xk)‖ ≤
[

1

2(L+ α)

]
/(2β)2,610

611

(60) ‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖, and ‖xk+1 − x∗‖ ≤ βγ‖xk − x∗‖2612

for all k = 0, 1, 2,613

Proof. By the classical Newton convergence theory (see, for example, [9, Th.5.2.1,614

p.90]), whenever ‖x0 − x∗‖ ≤ δ1 the sequence generated by xk+1 = xk − (Hk)−1gk is615

well defined and satisfies (60) for all k ≥ 0. By continuity of g(x), since g(x∗) = 0,616

there exists δ2 ∈ (0, δ1] such that whenever ‖xk − x∗‖ ≤ δ2 one has that (59) holds;617

while, by continuity of H(x), there exists δ ∈ (0, δ2] such that whenever ‖x− x∗‖ ≤ δ618

one has that (58) holds.619

On the other hand, by (59), if ‖xk − x∗‖ ≤ δ, we have that620

‖g(xk)‖ ≤
[

1

2(L+ α)

]
/‖(Hk)−1‖2621

This manuscript is for review purposes only.

18 E. G. BIRGIN AND J. M. MART́ıNEZ

and, since ‖(Hk)−1‖ = 1/λ1,k,622

‖g(xk)‖ ≤ 1

2(L+ α)
λ2

1,k.623

Thus, by Lemma 6.1 and the definition of Algorithm 3.2, we have that xk+1 is, in fact,624

defined by xk+1 = xk − (Hk)−1gk and, therefore, the thesis follows by an inductive625

argument.626

Theorem 6.2. Let x∗ be a local minimizer of f at which Assumption A3 holds.627

Suppose also that Assumption A1 holds and, in addition, that x∗ is a limit point of the628

sequence {xk}∞k=0 generated by Algorithm 3.1–3.2. Then, the whole sequence {xk}∞k=0629

converges quadratically to x∗.630

Proof. Since x∗ is a limit point, there exists k0 such that ‖xk0 − x∗‖ ≤ δ. Thus,631

the convergence of {xk} follows from Theorem 6.1 replacing x0 with xk0 .632

The following is a global non-flatness assumption that will allow us to prove a633

complexity result that takes advantage of local quadratic convergence.634

Assumption A4. Let δ > 0 be as in the thesis of Theorem 6.1. There exists635

κ > 0 such that, for all xk generated by Algorithm 3.1–3.2, if ‖xk − x∗‖ > δ then636

‖g(xk)‖ > κ.637

Note that Assumption A4 holds under the uniform non-singularity assumption638

that says that for all k ∈ N and x ∈ [xk, xk+1], H(x) is nonsingular and ‖H(x)−1‖ ≥639

1/η. In fact, by the Mean Value Theorem, the uniform non-singularity assumption640

implies that, for all xk generated by Algorithm 3.1–3.2, ‖g(xk)‖ ≥ η‖xk − x∗‖.641

Theorem 6.3. Let f be bounded below and let x∗ be a local minimizer of f at642

which Assumption A3 holds. Suppose also that Assumption A1, Assumption A2 and643

Assumption A4 hold, and, in addition, that x∗ is a limit point of the sequence {xk}∞k=0644

generated by Algorithm 3.1–3.2. Then, after a number of iterations k0 = O(κ−3/2),645

where κ is as in Assumption A4 and it only depends on characteristics of the problem646

and algorithmic parameters, we obtain that ‖xk − x∗‖ ≤ δ for all k ≥ k0, where δ is647

as in the thesis of Theorem 6.1.648

Proof. By construction (see Theorem 6.1), δ only depends on characteristics of649

the problem. By Assumption A4, ‖g(xk)‖ > κ for all k such that ‖xk−x∗‖ > δ. Then,650

by Assumption A1, Assumption A2, and Theorem 5.1, after k0 = O(κ−3/2) iterations,651

we obtain that ‖g(xk0)‖ ≤ κ, i.e. ‖xk0 − x∗‖ ≤ δ. This implies, by Theorem 6.1, that652

‖xk − x∗‖ ≤ δ for all k ≥ k0, as we wanted to prove.653

Theorem 6.4. Let f be bounded below and let x∗ be a local minimizer of f at654

which Assumption A3 holds. Suppose also that Assumption A1, Assumption A2, and655

Assumption A4 hold, and, in addition, that x∗ is a limit point of the sequence {xk}∞k=0656

generated by Algorithm 3.1–3.2. Let εg > 0 be a given constant. Then, in at most657

k̂ = O(log2(− log2(εg))) iterations we have that ‖g(xk)‖ ≤ εg for all k ≥ k̂.658

Proof. By the Mean Value Theorem of Integral Calculus, we have that, for any659

k ≥ 0,660

(61) g(xk+1) =

[∫ 1

0

H(ξk+1(t))dt

]
(xk+1 − x∗), where ξk+1(t) = x∗ + t(xk+1 − x∗).661

By the triangle inequality, Theorem 6.1, and Theorem 6.3, since ‖xk+1 − x∗‖ ≤ δ for662

This manuscript is for review purposes only.

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 19

all k ≥ k0 implies ‖ξ(t)− x∗‖ ≤ δ for all k ≥ k0 and t ∈ [0, 1], we have that663

(62) ‖H(ξk+1(t))‖ − ‖H(x∗)‖ ≤ ‖H(ξk+1(t))−H(x∗)‖ ≤ γ‖ξk+1(t)− x∗‖ ≤ γδ664

for all k ≥ k0 and t ∈ [0.1]. Therefore, by (61) and (62),665

(63) ‖g(xk+1)‖ =

∥∥∥∥[∫ 1

0

H(ξk+1(t))dt

]
(xk+1 − x∗)

∥∥∥∥ ≤ (‖H(x∗)‖+ γδ)‖xk+1 − x∗‖666

for all k ≥ k0.667

On the other hand, by the Mean Value Theorem of Integral Calculus, we have668

that, for any k ≥ 0,669

xk − x∗ =

[∫ 1

0

H(ξk(t))dt

]−1

g(xk) where ξk(t) = x∗ + t(xk − x∗)670

and, thus, by Theorem 6.1 and Theorem 6.3, since ‖xk−x∗‖ ≤ δ implies ‖ξk(t)−x∗‖ ≤671

δ for all k ≥ k0 and t ∈ [0, 1], we have that672

(64) ‖xk − x∗‖ ≤ 2β‖g(xk)‖ for all k ≥ k0.673

Now, by (63), (64), Theorem 6.1, and Theorem 6.3,674

(65)
‖g(xk+1)‖ ≤ (‖H(x∗)‖+ γδ)‖xk+1 − x∗‖

≤ βγ(‖H(x∗)‖+ γδ)‖xk − x∗‖2 ≤ 4β3γ(‖H(x∗)‖+ γδ)‖gk‖2
675

for all k ≥ k0.676

Up to this point, we have that ‖gk0‖ ≤ κ with k0 = O(κ−3/2) and that, for677

all ` ≥ 0, ‖g(xk0+1+`)‖ ≤ cquad‖gk0+`‖2, where κ and cquad = 4β3γ(‖H(x∗)‖ + γδ)678

depend only on characteristics of the problem and algorithmic parameters. This679

means that680

(66) ‖g(xk0+1+`)‖ ≤ c`+1
quad‖g(xk0)‖2

`+1

≤ c`+1
quad κ

2`+1

for all ` ≥ 0.681

We now consider, with the simple purpose of simplifying the presentation, k1 ≥ k0,682

k1 = O(c
3/2
quad), whose existence is granted by Assumption A1, Assumption A2, and683

Theorem 5.1, such that ‖gk‖ ≤ 1
2c
−1
quad for all k ≥ k1. Thus, (66) can be re-stated as684

(67) ‖g(xk1+1+`)‖ ≤ c`+1
quad‖g(xk1)‖2

`+1

≤
c`+1
quad

c2
`+1

quad

(
1

2

)2`+1

≤ 2−2`+1

for all ` ≥ 0.685

Thus, since 2−2`+1 ≤ εg if and only if ` ≥ log2(− log2(εg))+1, we have that ‖gk‖ ≤ εg686

for all k ≥ k1 + log2(− log2(εg)) + 1. This implies the desired result recalling that k1687

does not depend on εg.688

7. Numerical experiments. We implemented Algorithm 3.1–3.2 in Fortran 90.689

At each iteration k, the spectral decomposition of matrix Hk is computed by the690

Lapack [1] subroutine dsyev. At Step 5 and 5.1.2 of Algorithm 3.2, µ̃k,`5 > 0 and691

s̃k,`5 solution to (10) with µ = µ̃k,`5 such that (13) holds are computed using bisection.692

In the numerical experiments, we arbitrarily considered α = 10−8 and M = 103.693

It should be noted that these two parameters, as well as the other constants that694

This manuscript is for review purposes only.

20 E. G. BIRGIN AND J. M. MART́ıNEZ

appeared hard-coded in Algorithm 3.1–3.2 (in order to simplify the exposition), were695

not subject to tuning at all. All those values were chosen because they seemed to696

be “natural choices” and the intention of the numerical experiments below is not to697

deliver the most robust or efficient version of the proposed method but to illustrate698

its practical behaviour.699

The method proposed in the present work will be compared against the line-700

search Newton’s method with quadratic regularization and Armijo descent introduced701

in [16]. With this purpose, we implemented (also in Fortran 90) Algorithm 1 described702

in [16, p.348]. In order to focus the comparison on the methods’ differences (mainly703

the way in which the regularizing parameter is computed and the descent criterion),704

our implementation uses the Lapack subroutine dsyev for computing the spectral705

decomposition of Hk. This choice provides the value of the left-most eigenvalue of706

Hk required by the algorithm and also trivializes solving the Newtonian linear system.707

A classical quadratic interpolation (taking t/2 as a new trial step when the minimizer708

of the quadratic model lies outside the interval [0.1t, 0.9t]) was considered. In the709

numerical experiments, we set, as suggested in [16], β = 10−2, η = 0.25, L0 = 10−6,710

and δ = 10−16. We considered the two choices µk = µ−k and µk = µ+
k and, thus the711

method introduced in [16] with these two choices will be referred, from now on, as712

“KSS with µk = µ−k ” and “KSS with µk = µ+
k ”.713

The Fortan 90 implementation of Algorithm 3.1–3.2, as well as our implementa-714

tion of the algorithm introduced in [16], is freely available at http://www.ime.usp.br/715

∼egbirgin/. Interfaces for solving user-defined problems coded in Fortran 90 as well716

as problems from the CUTEst collection [13] are available. All tests reported below717

were conducted on a computer with 3.5 GHz Intel Core i7 processor and 16GB 1600718

MHz DDR3 RAM memory, running OS X Yosemite (version 10.10.5). Codes were719

compiled by the GFortran compiler of GCC (version 5.1.0) with the -O3 optimization720

directive enabled.721

7.1. An ad hoc toy problem with expected hard case. In this section,722

we illustrate the behaviour of Algorithm 3.1–3.2 in a simple problem in which the723

hard case is expected to appear. Consider the function defined by f(x1, x2) = x1x2 +724

0.1(x1−x2)4 +(x1 +x2)4. This function has two global minimizers at, approximately,725

(0.559017,−0.559017) and (−0.559017, 0.559017), at which the functional value is726

approximately −0.15625. Moreover, (0, 0) is a saddle point at which f vanishes. We727

are interested in the behaviour of the considered algorithms when the initial point is728

in the line x1 = x2 and relatively close to (0, 0).729

The Hessian is indefinite if x1 = x2 and the eigenvalues of ∇2f(x1, x2) tend to 1730

and −1 when x1 = x2 and x1 → 0. For all iterates satisfying x1 = x2 the minimum731

norm solution of (10) satisfies s1 = s2 ≈ −x1 = −x2. Since the regularization732

parameter tends to 1 when x1 = x2 and x1 → 0, it turns out that the associated733

ρ tends to infinity when x1 = x2 and x1 → 0. As a consequence, when an iterate734

(xk1 , x
k
2) with xk1 = xk2 is close to the origin, the test ρk,0 ≤ M eventually fails at735

Step 2 of Algorithm 3.2 and a search along the eigenvector orthogonal to x1 = x2 is736

initiated. So, the process quickly converges to one of the global minimizers. On the737

other hand, a Newtonian method like the one considered in [16] never leaves the line738

x1 = x2 and convergence to the saddle point (0, 0) is expected.739

If we run Algorithm 3.1–3.2 starting from (x0
1, x

0
2) = (1, 1), for all iterations k ≤740

14, we observe that, in fact, the linear system (10) is compatible, ρk,0 ≤M , and ŝk,0741

satisfies the descent condition (8). Therefore, we have that x14 ≈ (2.53523, 2.53523)×742

10−4 still lies in the line x1 = x2. At iteration k = 15, we have that ρk,0 > M and743

This manuscript is for review purposes only.

http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 21

a search along the eigenvector is performed. Having abandoned the line x1 = x2,744

convergence to the global minimizer (−0.559017, 0.559017) occurs and the algorithm745

stops at iteration k = 20 satisfying ‖∇f(x20)‖∞ ≤ 10−8 and λ1(∇2f(x20)) ≥ −10−8746

and performing, as a whole, 23 functional evaluations and having solved 30 linear747

systems.748

Methods KSS with µk = µ−k and KSS with µk = µ+
k , as expected, converge to749

the saddle point (0, 0) (using only two iterations, three functional evaluations, and750

solving three linear systems). The considered ad hoc problem was presented in order751

to highlight a property of the proposed method (related to robustness) that may not752

be shared by other methods. Since different final iterates are being found, it would be753

meaningless to compare the effort required by each method for achieving a stopping754

criterion (first- or second-order criticality); while ignoring the objective functional755

value at the final iterate.756

If we now run Algorithm 3.1–3.2 starting from (0, 0), it converges to the same757

global minimizer in 9 iterations using 11 functional evaluations and having solved758

18 linear systems; while, as expected, methods KSS with µk = µ−k and KSS with759

µk = µ+
k satisfy the stopping criteria at the initial point.760

7.2. A family of problems with “unreachable” second-order stationary761

points. Let v : Rn1 → R and w : Rn2 → R be such that ∇w(0) = 0 and ∇2w(0)762

is not positive semidefinite. Consider f : Rn → R with n = n1 + n2 given by763

f(x) = v(x1, . . . , xn1
) + w(xn1+1, . . . , xn1+n2

). Note that764

∇f(x)T = (∇v(x1, . . . , xn1)T ,∇w(xn1+1, . . . , xn1+n2)T)765

and766

∇2f(x) =

(
∇2v(x1, . . . , xn1

) 0
0 ∇2w(xn1+1, . . . , xn1+n2

)

)
.767

This means that any method for minimizing f based on iterations of the form xk+1 =768

xk + αkd
k, where dk is a solution to a linear system of the form

(
∇f2(xk) +Dk

)
d =769

−∇f(xk), for any diagonal matrix Dk, never leaves the subspace xn1+1 = · · · =770

xn1+n2 = 0 if the initial point belongs to that subspace. Thus, since, by assumption,771

this subspace does not contain any point satisfying second-order necessary optimality772

conditions, methods of this type are fated to fail, in the sense that they (hopefully)773

converge to first-order stationary points that do not satisfy second-order optimality774

conditions.775

A simple example of this family of problems is given by v(x1) = x2
1 and w(x2) =776

x2
2(x2

2 − 1), i.e. f(x1, x2) = x2
1 + x2

2(x2
2 − 1). This problem has two global minimizers777

at (0,±1/
√

2) and a local maximizer at (0, 0). Starting from the point (1, 0), methods778

KSS with µk = µ−k and KSS with µk = µ+
k converge to an approximation to the779

local maximizer (0, 0) in 21 iterations (using 22 functional evaluations and solving 21780

linear systems). Starting from the same initial guess, Algorithm 3.1–3.2 converges781

to the global minimizer (0, 1/
√

2). For k = 0, 1, . . . , 10, the minimum norm solution782

ŝk,0 to the linear system (Hk + [−λ1,k]+I)s = −gk is such that the associated cubic783

regularization parameter ρk,0 is smaller than or equal to M and ŝk,0 satisfies the784

cubic descent criterion. However ‖ŝk,0‖ decreases, and, in consequence, ρk,0 increases785

for k = 0, 1, . . . , 10. Thus, at iteration k = 11, ρk,0 6≤ M and a search along the786

eigenvector (0, 1) makes the iterate x11 to abandon the subspace x2 = 0. The second-787

order stopping criterion ‖∇f(xk)‖ ≤ 10−8 and λ1,k ≥ −10−8 is satisfied at iteration788

k = 18 (using 19 functional evaluations and having solved 25 linear systems).789

This manuscript is for review purposes only.

22 E. G. BIRGIN AND J. M. MART́ıNEZ

7.3. Massive comparison. In this section we consider the 87 problems from790

the CUTEst collection already considered in the numerical experiments presented791

in [16]. The same dimensions chosen in [16] were preserved (most of the problems have792

n = 1 000 variables). These problems correspond to all the unconstrained problems793

from the CUTEst collection with available second-order derivatives.794

For the stopping criteria, we set fmin = −1010, εag = 10−6, and εrg = 10−15. Other795

than stopping if an iterate xk satisfies f(xk) ≤ fmin or796

(68) ‖gk‖ ≤ εag ,797

the methods also stop if798

(69) ‖gk‖ ≤ εrg‖g0‖799

or if the elapsed CPU time exceeds one hour. It should be noted that, in order to allow800

a fair comparison, the same first-order criticality stopping criteria are being used for801

KSS with µk = µ−k and KSS with µk = µ+
k as well as for Algorithm 3.1–3.2. However,802

this choice does not affect the quality of the final points obtained by Algorithm 3.1–803

3.2 because a simple inspection of the results reveals that, in the considered set of804

problems, any time the stopping criteria (68) or (69) is satisfied, its second-order805

counterpart, given by ‖gk‖ ≤ εag and λ1,k ≥ −εah and ‖gk‖ ≤ εrg‖g0‖ and λ1,k ≥806

−εrh maxj=1,n{|λj,0|} (with εah = εag and εrh = εrg), respectively, is satisfied as well.807

We will refer to these stopping criteria as ’UN’ (unbounded f), ’AS’ (first- or second-808

order absolute stopping), ’RS’ (first- or second-order relative stopping), and ’TE’809

(CPU time limit exceeded). Exceptionally, although ‖ · ‖ stands for the Euclidean810

norm everywhere in the text, the sup-norm of the gradient was considered at the811

stopping criteria described above. None other stopping criterion was considered.812

Detailed information regarding the performance of each method on each problem813

can be found at http://www.ime.usp.br/∼egbrigin/. For a given problem, let f1, f2,814

and f3 be the value of the objective function at the final iterate delivered by each of815

the three methods. Following [3], we will say that the three methods found equivalent816

solutions if817
fi − fbest

max{1, |fbest|}
≤ 10−2 for i = 1, 2, 3,818

where fbest = min{f1, f2, f3}. The 87 problems will be separated into two sets.819

Set 1 will be given by the 66 problems in which the three methods found equivalent820

solutions and stopped satisfying the absolute or the relative stopping criterion. Set 2821

will contain the remaining 21 problems. Problems in Set 1 will be used to analyze822

the efficiency of the methods; while problems in Set 2 will be observed with an eye823

on robustness.824

For analyzing the efficiency of the methods through its performance on the 66825

problems on Set 1, we used performance profiles [10]. See Figure 1. By definition of826

the performance profiles and the way in which the problems were selected, all curves827

reach the value 1 at the right-hand-side of the graphic. Thus, these pictures evaluate828

efficiency only. The three pictures show the same thing: Algorithm 3.1–3.2 is more829

efficient in most of the problems but there are a few problems in which it takes much830

longer than the other two methods.831

Table 1 shows the details of the final iterates found by the three methods on832

problems in Set 2. It can be said that, considering these 21 problems, Algorithm 3.1–833

3.2 satisfied the first-order criticality stopping criteria 13 times; while KSS with µk =834

This manuscript is for review purposes only.

http://www.ime.usp.br/~egbrigin/

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 23

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

Iterations

Algorithm 3.1-3.2 (Γ(1) = 0.75)

KSS with µk = µ+
k (Γ(1) = 0.52)

KSS with µk = µ−k (Γ(1) = 0.42)
0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

Functional evaluations

Algorithm 3.1-3.2 (Γ(1) = 0.74)

KSS with µk = µ+
k (Γ(1) = 0.52)

KSS with µk = µ−k (Γ(1) = 0.37)

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

CPU time

Algorithm 3.1-3.2 (Γ(1) = 0.65)

KSS with µk = µ+
k (Γ(1) = 0.20)

KSS with µk = µ−k (Γ(1) = 0.18)

Fig. 1. Performance profiles considering the 66 problems in which the three methods stopped
satisfying the same stopping criterion related to absolute or relative criticality and found equivalent
solutions.

µ−k and KSS with µk = µ+
k satisfied the first-order criticality stopping criteria 5835

and 11 times, respectively. Other than that, there are 3 problems (FLETCBV3,836

FLETCHBV, INDEF) in which the objective function appears to be unbounded from837

below. KSS with µk = µ−k and KSS with µk = µ+
k were both able to identify this838

situation and stopped by the UN stopping criterion. Algorithm 3.1–3.2 recognized839

the situation in only one of the cases and stopped by TE in the other two. This may840

indicate that Algorithm 3.1–3.2 takes longer to reduce the objective functional value841

when it is unbounded below. There are also cases in which the three methods found842

an approximate stationary point but did not find equivalent solutions. BROYDN7D,843

CHAINWOO, and NCB20 are examples of these cases. The methods take turn to be844

the one that finds the stationary point with the lowest functional value and, therefore,845

the presented experiment did not show whether any of the methods is able to find846

better quality solutions.847

8. Final remarks. The present paper explored the relation between quadratic848

and cubic regularization with the principal objective of developing a quadratic-re-849

gularization-based method while preserving the complexity results that hold in the850

case of cubic regularization. Although there are good algorithms for solving the cubic851

regularization subproblem, these algorithms, as well as the ones for solving the trust-852

region subproblem, generally need to solve more than one linear system for computing853

a trial point. Unfortunately, in the algorithm introduced in this paper we could854

not preserve the property of “one linear system per trial point” at every iteration,855

because the preservation of complexity needed safeguarded choices for computing the856

first nonnull regularization parameter µ. On the other hand, even a preliminary857

This manuscript is for review purposes only.

24 E. G. BIRGIN AND J. M. MART́ıNEZ

Problem Algorithm 3.1–3.2 KSS with µk = µ−k KSS with µk = µ+
k

name f(xk) ‖gk‖ SC f(xk) ‖gk‖ SC f(xk) ‖gk‖ SC

BROYDN7D 3.54624D+02 2.1D−10 AS 4.81627D+02 1.6D−11 AS 4.60601D+02 6.7D−07 AS
CHAINWOO 1.57548D+02 2.1D−12 AS 1.00000D+00 1.7D−12 AS 1.00000D+00 1.5D−09 AS
COSINE -9.99000D+02 1.1D−12 AS -1.40035D+02 2.4D+04 TE -9.44546D+02 1.6D+00 TE
ENGVAL1 1.10819D+03 1.3D−12 AS 1.10819D+03 1.3D−12 AS 1.10819D+03 1.8D−06 TE
FLETCBV3 -1.54153D+03 3.0D−02 TE -1.00026D+08 1.2D−01 UN -1.00026D+08 1.4D−01 UN
FLETCHBV -1.84122D+09 2.8D+06 UN -1.84122D+09 2.8D+06 UN -1.84122D+09 2.8D+06 UN
GENHUMPS 8.73814D+06 1.1D+02 TE 5.90238D+06 1.3D+02 TE 7.70165D+06 1.5D+02 TE
INDEF -2.72320D+06 1.0D+00 TE -1.09591D+08 1.0D+00 UN -1.09760D+08 1.0D+00 UN
MANCINO 1.67148D−14 1.0D−03 RS 2.14315D+17 3.0D+12 TE 1.67797D−14 5.5D−04 RS
MODBEALE 1.10832D−20 9.5D−10 AS 5.19223D+01 1.8D−04 TE 8.04120D+00 1.7D−05 TE
NCB20 9.32122D+02 4.5D−10 AS 9.16688D+02 5.9D−07 AS 9.17763D+02 5.6D−08 AS
NONCVXUN 2.32878D+03 1.6D−03 TE 2.32595D+03 3.4D−08 AS 2.31974D+03 1.4D−07 AS
NONMSQRT 9.02177D+01 3.6D−04 TE 8.99049D+01 3.1D−01 TE 8.99048D+01 4.4D−01 TE
PENALTY2 1.12970D+83 3.4D+75 TE 1.44640D+83 2.1D+38 TE 1.44640D+83 2.1D+38 TE
PENALTY3 9.99523D−04 1.2D−07 AS 3.98575D+04 8.7D−02 TE 9.94993D−04 7.2D−04 TE
SBRYBND 8.80296D−27 3.5D−06 TE 2.49040D+04 2.0D+07 TE 1.85974D−21 6.8D−07 AS
SCOSINE 1.09888D+02 2.9D+13 TE 8.76705D+02 1.2D+05 TE 8.57518D+02 1.2D+11 TE
SCURLY10 -1.00316D+05 4.3D−08 AS 0.00000D+00 1.8D+05 TE -1.00316D+05 1.5D−07 AS
SCURLY20 -1.00316D+05 1.4D−07 AS 0.00000D+00 3.4D+05 TE -1.00316D+05 1.2D−07 AS
SCURLY30 -1.00316D+05 1.1D−07 AS 0.00000D+00 5.0D+05 TE -1.00316D+05 3.1D−07 AS
SENSORS -2.10853D+05 6.8D−10 AS -2.10916D+05 1.7D−05 TE -2.10633D+05 1.1D−09 AS
SPMSRTLS 4.34760D−16 3.2D−11 AS 4.37365D−16 3.1D−09 AS 1.75675D+00 2.4D−07 AS

Table 1
Details of the 21 problems in which it does not hold that “the three methods stopped satisfying

the first- or second-order criticality stopping criterion and found equivalent solutions”.

implementation in which algorithmic parameters were not tuned at all, produced858

satisfactory results, in comparison with a well-established regularization method for859

unconstrained optimization. In addition to first- and second-order complexity results,860

we proved asymptotic convergence to first- and second-order stationary points, as well861

as local convergence and a complexity result corresponding to the case in which local862

quadratic convergence takes place.863

The regularization method introduced in [16] and our present regularized method864

were conceived with quite different purposes. While in our case we were worried about865

the compatibility of the most simple updating rules of the regularization parameter866

with the preservation of optimal complexity results, in [16] the main concern was the867

determination of regularizing parameters that optimize the accuracy of the quadratic868

model. The natural challenge that emerges is related, therefore, with the compatibility869

between the updating rules of [16] and our updating rules and purposes. It should be870

mentioned, moreover, that in [16] a line search follows the obtention of the adequate871

point on the Levenberg-Marquardt path, motivating additional questions about the872

compatibility of this search with complexity bounds. Needless to say, this type of873

studies should be complemented with insightful and extensive numerical experiments.874

Acknowledgments. The authors would like to thank the two anonymous refer-875

ees whose valuable comments helped to improve this work.876

REFERENCES877

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,878
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’879
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, third ed., 1999,880
doi:10.1137/1.9780898719604.881

[2] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and P. L. Toint, Worst-case882
evaluation complexity for unconstrained nonlinear optimization using high-order regular-883

This manuscript is for review purposes only.

http://dx.doi.org/10.1137/1.9780898719604

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 25

ized models, Mathematical Programming, doi:10.1007/s10107-016-1065-8.884
[3] E. G. Birgin and J. M. Gentil, Evaluating bound-constrained minimization software, Compu-885

tational Optimization and Applications, 53 (2012), pp. 347–373, doi:10.1007/s10589-012-886
9466-y.887

[4] C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of steepest descent, New-888
ton’s and regularized Newton’s methods for nonconvex unconstrained optimization, SIAM889
Journal on Optimization, 20 (2010), pp. 2833–2852, doi:10.1137/090774100.890

[5] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularization methods for uncon-891
strained optimization. Part I: motivation motivation, convergence and numerical results,892
Mathematical Programming, 127 (2011), pp. 245–295, doi:10.1007/s10107-009-0286-5.893

[6] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularization methods for894
unconstrained optimization. Part II: worst-case function and derivative complexity, Math-895
ematical Programming, 130 (2011), pp. 295–319, doi:10.1007/s10107-009-0337-y.896

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, Society for Industral897
and Applied Mathematics, Philadelphia, PA, 2000, doi:10.1137/1.9780898719857.898

[8] F. E. Curtis, D. P. Robinson, and M. Samadi, A trust-region algorithm with a worst-case899
iteration complexity of O(ε−3/2), Mathematical Programming, doi:10.1007/s10107-016-900
1026-2.901

[9] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization902
and Nonlinear Equations, Society for Industral and Applied Mathematics, Philadelphia,903
PA, 1996, doi:10.1137/1.9781611971200.904

[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,905
Mathematical Programming, 91 (2002), pp. 201–213, doi:10.1007/s101070100263.906

[11] J. P. Dussault, Simple unified convergence proofs for the trust-region and a new ARC variant,907
tech. report, University of Sherbrooke, Sherbrooke, Canada, 2015.908

[12] C. C. Gonzaga and E. W. Karas, Complexity of first-order methods for differentiable909
convex optimization, Pesquisa Operacional, 34 (2014), pp. 395–419, doi:10.1590/0101-910
7438.2014.034.03.0395.911

[13] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained912
testing environment with safe threads for mathematical optimization, Computational Op-913
timization and Applications, 60 (2014), pp. 545–557, doi:10.1007/s10589-014-9687-3.914

[14] G. N. Grapiglia, J.-Y. Yuan, and Y.-X. Yuan, On the convergence and worst-case complexity915
of trust-region and regularization methods for unconstrained optimization, Mathematical916
Programming, 152 (2015), pp. 491–520, doi:10.1007/s10107-014-0794-9.917

[15] A. Griewank, The modification of Newton’s method for unconstrained optimization by bound-918
ing cubic terms, Tech. Report NA/12, Department of Applied Mathematics and Theoretical919
Physics, University of Cambridge, Cambridge, England, 1981.920

[16] E. W. Karas, S. A. Santos, and B. F. Svaiter, Algebraic rules for quadratic regularization of921
Newton’s method, Computational Optimization and Applications, 60 (2015), pp. 343–376,922
doi:10.1007/s10589-014-9671-y.923

[17] K. Levenberg, A method for the solution of certain non-linear problems in least-squares,924
Quarterly Journal of Applied Mathematics, 2 (1944), pp. 164–168.925

[18] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM926
Journal on Applied Mathematics, 11 (1963), pp. 431–441, doi:10.1137/0111030.927

[19] J. M. Mart́ınez and M. Raydan, Cubic-regularization counterpart of a variable-norm928
trust-region method for unconstrained minimization, Journal of Global Optimization,929
doi:10.1007/s10898-016-0475-8.930

[20] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM Journal on Scientific931
and Statistical Computing, 4 (1983), pp. 553–572, doi:10.1137/0904038.932

[21] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton’s method and its global933
performance, Mathematical Programming, 108 (2006), pp. 177–205, doi:10.1007/s10107-934
006-0706-8.935

[22] M. Rojas, S. A. Santos, and D. C. Sorensen, A new matrix-free algorithm for the large-936
scale trust-region subproblem, SIAM Journal on Optimization, 11 (2001), pp. 611–646,937
doi:10.1137/S105262349928887X.938

[23] M. Rojas, S. A. Santos, and D. C. Sorensen, Algorithm 873: LSTRS: Matlab software for939
large-scale trust-region subproblems and regularization, ACM Transactions on Mathemat-940
ical Software, 34 (2008), pp. 1–28, doi:10.1145/1326548.1326553.941

This manuscript is for review purposes only.

http://dx.doi.org/10.1007/s10107-016-1065-8
http://dx.doi.org/10.1007/s10589-012-9466-y
http://dx.doi.org/10.1007/s10589-012-9466-y
http://dx.doi.org/10.1007/s10589-012-9466-y
http://dx.doi.org/10.1137/090774100
http://dx.doi.org/10.1007/s10107-009-0286-5
http://dx.doi.org/10.1007/s10107-009-0337-y
http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1007/s10107-016-1026-2
http://dx.doi.org/10.1007/s10107-016-1026-2
http://dx.doi.org/10.1007/s10107-016-1026-2
http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1590/0101-7438.2014.034.03.0395
http://dx.doi.org/10.1590/0101-7438.2014.034.03.0395
http://dx.doi.org/10.1590/0101-7438.2014.034.03.0395
http://dx.doi.org/10.1007/s10589-014-9687-3
http://dx.doi.org/10.1007/s10107-014-0794-9
http://dx.doi.org/10.1007/s10589-014-9671-y
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1007/s10898-016-0475-8
http://dx.doi.org/10.1137/0904038
http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1137/S105262349928887X
http://dx.doi.org/10.1145/1326548.1326553

	Introduction
	Model algorithm
	Implementable algorithm
	Well-definiteness results
	Complexity results
	Local convergence
	Numerical experiments
	An ad hoc toy problem with expected hard case
	A family of problems with ``unreachable'' second-order stationary points
	Massive comparison

	Final remarks
	References

