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THE USE OF QUADRATIC REGULARIZATION WITH A CUBIC
DESCENT CONDITION FOR UNCONSTRAINED OPTIMIZATION*

E. G. BIRGINT AND J. M. MARTINEZ#

Abstract. Cubic-regularization and trust-region methods with worst-case first-order complex-
ity O(e=3/?) and worst-case second-order complexity O(¢~3) have been developed in the last few
years. In this paper it is proved that the same complexities are achieved by means of a quadratic-
regularization method with a cubic sufficient-descent condition instead of the more usual predicted-
reduction based descent. Asymptotic convergence and order of convergence results are also presented.
Finally, some numerical experiments comparing the new algorithm with a well-established quadratic
regularization method are shown.
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1. Introduction. Assume that f : R™ — R is possibly nonconvex and smooth
for all x € R™. We will consider the unconstrained minimization problem given by

(1) Minimize f(z).

In the last decade, many works have been devoted to analyze iterative algorithms
for solving (1) from the point of view of their time complexity. See, for example,
[2, 4, 5, 6, 8, 11, 14, 19, 21]. A review of complexity results for the convex case, in
addition to novel techniques, can be found in [12].

Given arbitrary tolerances ¢, > 0 and e > 0, the question is about the amount of
iterations and functional and derivative evaluations that are necessary to achieve an
approximate solution defined by |V f(x)| < g4 or by |V f(2)| < &4 plus A1 (V2 f(z)) >
—ey, where A\ (V2f(z)) represents the left-most eigenvalue of V2 f(z).

In general, gradient-based methods exhibit complexity 0(5;2) [4], which means
that there exists a constant ¢, that only depends on the characteristics of the problem,
algorithmic parameters, and, of course, the initial approximation, such that the effort
required to achieve |V f(z)| < g, for a bounded-below objective function f is at most
¢/e2. This bound is sharp for all gradient-based methods [4]. Complexity results for
modified Newton’s methods are available in [14]. Surprisingly, Newton’s method with
the classical trust-region strategy does not exhibit better complexity than 0(59_2)
either [4]. The same example used in [4] to prove this fact can be applied to Newton’s
method with standard quadratic regularization. On the other hand, Newton’s method
employing cubic regularization [15] for obtaining sufficient descent at each iteration
exhibits the better complexity 0(69_3/2) (see [5, 6, 19, 21]).

The best known practical algorithm for unconstrained optimization with worst-
case evaluation complexity 0(5;3/ 2) to achieve first-order stationarity and complexity

0(5;3/ 2 4 eq3) to achieve second-order stationarity, defined by Cartis, Gould, and
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2 E. G. BIRGIN AND J. M. MARTINEZ

Toint in [5] and [6], uses cubic regularization and a descent criterion based on the com-
parison of the actual reduction of the objective function and the reduction predicted
by a quadratic model. A non-standard trust-region method with the same complexity
properties due to Curtis, Robinson, and Samadi [8] employs a cubic descent criterion
for accepting trial increments. In [2], the essential ideas of ARC [5, 6] were extended in
order to introduce high-order methods in which a p-th Taylor approximation (p > 2)
plus a (p+ 1)-th regularization term is minimized at each iteration. In these methods,

O(gq (p+1)/p ) evaluation complexity for first-order stationarity is obtained also using
the actual-versus-predicted-reduction descent criterion. However, it is rather straight-
forward to show that this criterion can be replaced by a (p+1)-th descent criterion (i.e.
f(@F) < f(2F) — a|zF*+ — 2F||PT1) in order to obtain the same complexity results.
Moreover, the (p 4 1)-th descent criterion (cubic descent in the case p = 2) seems to
be more naturally connected with the Taylor approximation properties that are used
to prove complexity. Cubic descent was also used in [19] in a variable metric method
that seeks to achieve good practical global convergence behavior. In the trust-region
example exhibited in [4], the unitary Newtonian step is accepted at every iteration
since it satisfies the adopted sufficient descent criterion. This criterion requires that
the function descent (actual reduction) should be better than a fraction of the pre-
dicted descent provided by the quadratic model (predicted reduction). However, if,
instead of this condition, one requires functional descent proportional to ||s||%, where s
is the increment given by the model minimization, the given example does not stand
anymore. This state of facts led us to the following theoretical question: Would it be
possible to obtain worst-case evaluation complexities O(eg 3/ ®) and 0(69_3/ )
using cubic descent to accept trial increments but only quadratic regularization in the
subproblems?

In this paper, we provide an affirmative answer to this question by incorporat-
ing cubic descent into a quadratic regularization framework. Iterative regularization
is a classical idea in unconstrained optimization originated in the seminal works of
Levenberg [17] and Marquardt [18] for nonlinear least-squares. It relies upon the
Levenberg-Marquardt path, which is the set of solutions of regularized subproblems
varying the regularization parameter, both in the case of quadratic and cubic regular-
ized subproblems. It is worth mentioning that this path is also the set of solutions of
Euclidean trust-region subproblems for different trust-region radii. The explicit con-
sideration of the so-called hard case (where the Hessian is not positive definite and the
gradient is orthogonal to the eigenspace related to the left-most Hessian’s eigenvalue)
and the employment of spectral computations to handle it are in the core of every
careful trust-region implementation [8, 20, 22, 23]. Our new method explicitly deals
with the hard case and uses a regularization parameter with adequate safeguards in
order to guarantee the classical complexity results of cubic regularization and related
methods [8]. The new method has been implemented and compared against a well es-
tablished quadratic regularization method for unconstrained optimization introduced
in [16].

The rest of this paper is organized as follows. A model algorithm with cubic
descent is described in section 2. An implementable version of the algorithm is intro-
duced in section 3. Well-definiteness and complexity results are presented in section 4
and section 5, respectively. Local convergence results are given in section 6. Numerical
experiments are presented in section 7; while final remarks are given in section 8.

Notation. The symbol || - || denotes the Euclidean norm of vectors and the sub-
ordinate matricial norm. We denote g(x) = Vf(z), H(z) = V2f(z), and, some-
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QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 3

times, g¥ = g(2*) and H* = H(2*). If a € R, [a]y = max{a,0}. If ay,...,a, €
R, diag(ay,...,a,) denotes the n x n diagonal matrix whose diagonal entries are
ai,...,a,. If A € R*™™ A" denotes de Moore-Penrose pseudoinverse of A. The
notation [z]; denotes the jth component of a vector x whenever the simpler notation
x; might lead to confusion.

2. Model algorithm. The following algorithm establishes a general framework
for minimization schemes that use cubic descent. At each iteration k, we compute an
increment s* such that f(z*+s*) < f(2*)—al/s*||>. In principle, this is not very useful
because even s* = 0 satisfies this descent condition. However, in Theorem 2.1, we
show that under the additional condition (3), the algorithm satisfies suitable stopping
criteria. As a consequence, practical algorithms should aim to achieve (2) and (3)
simultaneously.

ALGORITHM 2.1. Let 2° € R™ and o > 0 be given. Initialize k + 0.
Step 1. Compute s* such that

(2) Ja® 4+ 6% < f(a) —alls™)>.

Step 2. Define z*+1 = 2% + 5%, set k < k+ 1, and go to Step 1.

The theorems below establish that, under suitable assumptions, every limit point
of the sequence generated by Algorithm 2.1 is second-order stationary and provide
an upper bound on the number of iterations that Algorithm 2.1 requires to achieve
a target objective functional value or to find an approximate first- or second-order
stationary point.

LEMMA 2.1. Assume that the objective function f is twice continuously differen-
tiable and that there exist vy > 0 and vy > 0 such that, for all k € N, the increment sk
computed at Step 1 of Algorithm 2.1 satisfies

3) lg

k1 Y
I < 4y ana EAREE <y
g Tu

where Ay i, stands for the left-most eigenvalue of H*. Then, it follows that

fa*1) < f(a*) - max { (‘3) I+, () [—Al,kri} .
Vg i

Proof. The result follows trivially from (2), (3), and the fact that, at Step 2 of
Algorithm 2.1, zF*1 is defined as zFt! = z* + s*. 0

THEOREM 2.1. Let fuin € R, €4 > 0, and ex > 0 be given constants, assume
that the hypothesis of Lemma 2.1 hold, and let {xk}z"zo be the sequence generated by
Algorithm 2.1. Then, the cardinality of the set of indices
(4) Ky={k eN| f(z")> fuin and ||g""|| > &, }

1S, at most,

1 f(fvo)—fmm>J.
5 |\ == —s5 |
®) {a ( (eo/70)*"”
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4 E. G. BIRGIN AND J. M. MARTINEZ

while the cardinality of the set of indices
(6) Ky={k eN| f(a") > fuin and A1, < —eu}

18, at most,

1 [ f(2°) — fuin
" H ol )J

Proof. From Lemma, 2.1, it follows that at every time an iterate z* is such that
"] > &, the value of f decreases at least a(e,/7,)%/?; while at every time an
iterate % is such that A\; , < —ey the value of f decrease at least a(ey/vy)®. The

thesis follows from the fact that, by (2), {f(z*)}22, is a non-increasing sequence. 0O

COROLLARY 2.1. Let fmin € R, g4 > 0, and ey > 0 be given constants and assume

that the hypothesis of Lemma 2.1 hold. Algorithm 2.1 requires O(a;?’/z) iterations to
compute z* such that
F(@*) < fuin or |¢"F < eg;

it requires O(e;®) iterations to compute % such that

F(@) < fuin o8 AL = —eu;

and it requires 0(69_3/2 + &%) iterations to compute z* such that

F(@®) < fain or (6" < gy and Ay > —ey) .

COROLLARY 2.2. Assume that the hypothesis of Lemma 2.1 hold and let {z*}32,
be the sequence gemerated by Algorithm 2.1. Then, if the objective function f is
bounded below, we have that

lim ||g(z*)|| = 0 and lim [~X; 4] = 0.
k—o0 k— o0

Proof. Assume that limy_, ||g(z¥)|| # 0. This means that there exists ¢ > 0
and K, an infinite subsequence of N, such that ||g*| > e for all k¥ € K. Since f is
bounded below, this contradicts Theorem 2.1. The second part is analogous. a0

COROLLARY 2.3. Assume that the hypothesis of Lemma 2.1 hold. Then, if the
objective function f is bounded below, every limit point =* of the sequence {xk},;“;o
generated by Algorithm 2.1 is such that V f(z*) = 0 and V2 f(z*) is positive semidef-
wnite.

Proof. This corollary follows from Corollary 2.2 by continuity of Vf and V2f. O

3. Implementable algorithm. Algorithm 2.1 presented in the previous section
is a “model algorithm” in the sense that it does not prescribe a way to compute
the step s* satisfying (2) and (3). This will be the subject of the present section.
Algorithm 3.1 is almost identical to Algorithm 2.1 with the sole difference that it
uses Algorithm 3.2 to compute s*. Lemma 4.1 shows that Algorithm 3.2 is well
defined and Lemma 4.4 shows that the step s* computed by Algorithm 3.2 satisfies
the hypothesis (3) of Lemma 2.1. In the following section, it will be shown that
Algorithm 3.2 computes s* using O(1) evaluations of f (and a single evaluation of
g and H at the current iterate x*). This implies that the complexity results on
the number of iterations of the model Algorithm 2.1 also apply to the number of
iterations and evaluations of f and its first- and second-order derivatives performed
by Algorithm 3.1-3.2.
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QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 5

ALGORITHM 3.1. Let 2° € R™, a > 0, and M > 0 be given. Initialize k < 0.
Step 1. Use Algorithm 3.2 to compute s € R™ satisfying

(8) f@® +5) < f(a¥) —als|?

and define s* = s.
Step 2. Define z*+1 = 2% + 5% set k < k+ 1, and go to Step 1.

Algorithm 3.2 below describes the way in which the increment s* is computed.
For that purpose, different trial increments are tried along the set of solutions

©) (1) = argmin (g, 5) + 57 (H* + [-Aualo D) s + 2],

for different values of the regularizing parameter p > 0, where Ay j is the left-most
eigenvalue of H*. Algorithm 3.2 proceeds by increasing the value of the regularization
parameter p > 0 until the sufficient descent condition (8) is satisfied with s = s(u).
For each value of p, we define p(u) = ([—A1.k]+ + £)/(3]|s(w)]|). By Lemma 3.1
of [5] (see also [15, 21]), s(u) is a global minimizer of (g*,s) + 7 H"s + p(p)|s||?.
The way in which p is increased is determined by two necessities related to p(u):
the initial p(u) at each iteration should not be excessively small and the final p(u)
should not be excessively big. Essentially, the technical manipulation of the quadratic
regularization parameter p in the algorithm is motivated by these two apparently
conflicting objectives which are necessary to obtain the complexity results.

ALGORITHM 3.2. Given x*, this algorithm computes a step s € R™ satisfying (8).
Step 1. Let A1y be the left-most eigenvalue of H*. Consider the linear system

(10) [H* + ([~ A1 k)4 + )]s = —g".

If (10) with p = 0 is not compatible then set pro = 0 and go to Step 5; else
pursue to Step 2 below.

Step 2. Compute the minimum norm solution §%° to the linear system (10) with
w=0 and set

00, if 80 =0 and [~ A1 ;)4 > 0,
Pro=14 0, if 880 =0 and [~\1 4]+ =0,
[=X1k]+/ (BI8%0]), if 850 # 0.

If pr,o < M then go to Step 4; else pursue to Step 3 below.

Step 3. Let ¢"F with ||¢"*| = 1 be an eigenvector of H* associated with its left-most
eigenvalue Aj . Set {3 <— 1 and compute to, > 0 and ghts = ghs0 4 tgsql’k
such that

(11) [=Auel+/ (BlIs™ ) = M.

If (8) holds with s = §®% | return s = 3% else pursue to Step 3.1 below.
Step 3.1. While ||3%%| > 2||3%0||, evecute Steps 3.1.1-3.1.2 below:
Step 3.1.1. Set {3 < {3+ 1 and compute tg, > 0 and §htls = §k0 4 tggql’k
such that
1
(12) 15| = §||§k’e3_1||~

Step 3.1.2. If (8) holds with s = 3% then return s = §%%s.

This manuscript is for review purposes only.
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6 E. G. BIRGIN AND J. M. MARTINEZ

Step 4. If (8) holds with s = 380 then return s = §%; else pursue to Step 5 below.
Step 5. Set l5 <+ 1 and py, = max{0.1,pr0} and compute fix e, > 0 and §%%
solution to (10) with p = fix e, such that

13 <
(13) Phts < 35k

< 100pk,€5'

If (8) holds with s = %% return s = 5% ; else pursue to Step 5.1 below.
Step 5.1. While ji ¢, < 0.1, execute Steps 5.1.1-5.1.83 below:

Step 5.1.1. Set {5 + l5+ 1 and

[= A1 k)4 + ks —1
14 =10 : s
(14) Pk, t5 < 3||§k,€571||

Step 5.1.2 Compute fix ¢, > 0 and §%% solution to (10) with u = fig ¢, such
that (13) holds.
Step 5.1.3 If (8) holds with s = %% | return s = 5%,
Step 6. Setls < 1, ik = 2fik,e,, and compute 5t solution to (10) with p = ke e -
Step 6.1. While (8) does not hold with s = 5% execute Steps 6.1.1-6.1.2 below:
Step 6.1.1. Set lg < lg + 1 and [ig 0o = 2fik t6—1-
Step 6.1.2. Compute 5% solution to (10) with pu = ik ¢,-
Step 6.2. Return s = 5%,

The reader may have noticed that Algorithm 3.2 includes several constants in
its definition. Those constants are arbitrary and all of them can be replaced by
any number (sometimes larger or smaller than unity, depending on the case). The
algorithm was presented in this way with the simple purpose of avoiding a large
number of hard-to-recall letters and/or parameters.

The way in which Algorithm 3.2 proceeds is directly related to the geometry of
the set of solutions of (9), many times called Levenberg-Marquardt path. On the one
hand, when p — oo, s(u) tends to 0 describing a curve tangent to —g*. On the other
hand, the geometry of the Levenberg-Marquardt path when g — 0 depends on the
positive definiteness of H* and the compatibility or not of the linear system (10) with
u =0 as we now describe.

If H* is positive definite then the Levenberg-Marquardt path is a bounded curve
that joins s = 0 with the Newtonian step s = —(H*)"!'g*. In this case, we have
that A1 > 0, so [-A1k]+ = 0. Then, the system (10) with x = 0 is compatible
and, by Step 2, pi0 = 0. Since py o < M, the algorithm continues at Step 4 and the
increment §%0 is accepted if the sufficient descent condition (8) holds with s = §%0
(this is always the case if %0 = 0, that occurs if and only if g* = 0). However, if
(8) does not hold, after a few initializations at Step 5, the algorithm computes at
Step 5.1.2 a regularization parameter p such that the corresponding p(u) increases
with respect to the previous one, but not very much. This corresponds to our purpose
of maintaining the auxiliary quantity p(x) within controlled bounds. If s(x) does not
satisfy (8) (checked at Step 5.1.3) and the regularization parameter p is still small
(checked at the loop condition of Step 5.1), we update (increase) the bounds on p(u)
at Step 5.1.1, and we repeat this process until the fulfillment of (8) or until p is
not small anymore. In that latter case, the process continues in Step 6 with regular
increases of the regularization parameter p which should lead to the final fulfillment
of (8) at the loop condition of Step 6.1. It is easy to see that, when H* is positive
semidefinite and the linear system H¥s = —g” is compatible, the algorithm proceeds
as in the positive definite case described above.
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QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 7

The case in which H* is not positive definite but the linear system (10) with u = 0
is compatible is called the “hard case” in the trust-region literature [7]. In the hard
case, the Levenberg-Marquardt path is constituted by two branches. The first branch,
that corresponds to p > 0, is a bounded curve that joins s = 0 with the minimum-
norm solution of (10) with g = 0. The second branch, that corresponds to u = 0,
is given by the infinitely many solutions to the system (10) with p = 0. This set of
infinitely many solutions form an affine subspace that contains —[H* + [~y x]+1]Tg*
and is spanned by the eigenvectors of H* associated with A1,k- Usually, one restricts
this affine subspace to the line —[H* + [~ ] I]Tg* + tv with t € R, where v is
one of the eigenvectors associated with A; ;. The algorithm starts by computing the
minimum norm solution of (10) with p = 0, which corresponds to the intersection
of the two branches of the Levenberg-Marquardt path. If taking the regularizing
parameter p = 0 we have that the associated p(u) is not very big (pro < M at
Step 2) then we proceed exactly as in the positive definite and compatible positive
semidefinite cases, increasing u and seeking an acceptable increment along the first
branch of the Levenberg-Marquardt path. However, if pr o > M, we are in the case
in which p(u) could be very big. Then, the search starts at Step 3 by seeking an
increment along the second branch of the Levenberg-Marquardt path. This happens
when A ; < 0 and 380 = 0 (because g¥ = 0), since in that case, we set Pk = OO
at Step 2. Note that, along this branch, the value of ; = 0 does not change and the
reduction of p(u) is achieved trivially by increasing the norm of s(u). Starting with a
sufficiently large ||s(u)||, and by means of successive reductions of ||s(u)]|| at Step 3.1.1,
we seek the fulfillment of (8). However, after a finite number of reductions of ||s(u)||
this norm becomes smaller than a multiple of the norm of the minimum-norm solution
(except in the case in which we have %0 = 0). If this happens, we enter Step 4 and
then initiate a search in the other branch in an analogous way as we do in the positive
definite case. In this situation, we have the guarantee that p(u) is suitable bounded
in the intersection point because, otherwise, the sufficient descent condition (8) would
have been satisfied.

If H* is not positive definite and the system (10) with u = 0 is not compatible
then the Levenberg-Marquardt path is an unbounded curve that, as p tends to O,
becomes tangent to an affine subspace generated by an eigenvector of H* associated
with A; x. In this case, the control goes to Step 5 and the algorithm proceeds as in
the already described situation in which H¥ is positive definite but the Newtonian
step does not satisfy the sufficient descent condition (8).

4. Well-definiteness results. In this section, we will show that Algorithm 3.2
is well-defined and that the computed increment s* that satisfies (8) also satisfies (3).
We start by describing how Algorithm 3.2 could be implemented considering the spec-
tral decomposition of H*. Of course, this is an arbitrary choice and other options are
possible like, for example, computing the left-most eigenvalue of H* only, and possible
its associated eigenvector, and then solving the linear systems by any factorization
suitable for symmetric matrices. In any case, the description based on the spectral
decomposition of H* introduces some useful notation for the rest of the section.

Consider the spectral decomposition H* = QrALQY, where Q) = [qVF ... q™F] is
orthogonal and Ay = diag(A1 k, ..., A k) With Ay < -+ < Ay k. Substituting H* by
its spectral decomposition in (10), we obtain [Ax + ([=A1x]+ + ) I1QFs = —QT g".
Therefore, for 1 = 0, the linear system (10) is compatible if and only if [Q% ¢*]; = 0
whenever \;  + [—A1 x]+ = 0. Assuming that the linear system (10) with p = 0 is
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8 E. G. BIRGIN AND J. M. MARTINEZ

compatible, its minimum norm solution is given by 9 = Qxy*, where

w_ QG Nk + [FAkl4), d€ Y,
Yi 0, jelJ,

J={je{l,...;n} | \jr + [-Axly #0}, and J = {1,...,n} \ J. Moreover, note
that

18590 = (37 (QEaH/ (e + [-Ari)))

JjeJ

The norm of §¥% = %0 4, ¢* (for any £3 > 1) computed at Step 3 is given by

165 = /I

where the last equality holds because §%° is orthogonal to ¢'* by definition. Thus,
given a desired norm ¢y, for 8%% (c,, = [~A14]4+/(3M) when ¢3 = 1 and cp, =
31187471 when €3 > 1), we have that tg, = \/c; — [|58%0]]2.

The following technical lemma establishes that Step 5 of Algorithm 3.2 can al-
ways be completed finding a regularization parameter p and an increment s(u) that
satisfies (13). The assumption ¢g¥ # 0 in the lemma is perfectly reasonable because,
as it will be shown later, it always holds at Step 5.

LEMMA 4.1. Suppose that g¥ # 0. At Step 5 of Algorithm 3.2, for any ls > 1,
there exists fig o, > 0 and %% solution to (10) with u = fig e, satisfying (13).

2440, 2(300, 1K) + 13 = \[[|5R0))2 + 83,

k,

Proof. For any p > 0, the matrix of the system (10) is positive definite and the
solution s(p) to (10) is such that

QT g*1; ’
(15) Is(p)l| = > <<m TS M)) :

{3 1 Q¥ g*1;#0}
Moreover, clearly,

(16) Jim [ls()l| = 0.
In order to analyze the case u — 0, the proof will be divided in two cases: (a) the
linear system (10) with u = 0 is compatible and (b) the linear system (10) with g =0
is not compatible.

Consider first case (a). In this case, since [QF g*]; = 0 whenever \; ; + [~ A1 4]+ =
0, (15) is equivalent to

B QT g"); ’
st =\ 2 ((m s +u)> |

Jje€J

Therefore,
(17) lim [|s()[| = [18%°]| >0
n—0
because g* # 0 implies 50 £ 0. Thus, by (16) and (17), we have that

(18) lim 7[_)\1’k]+ o =00 and lim [FAuele 4+ = [_)\Alk’%h.
n=oo 3[s(u) n=0 3ls(p)l 3| 8RO
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Since, by definition, for any ¢5 > 1,

[—A1k]+
> L S Lk BLE
Pk.ts = PEk,0 3”§k70” ,

the desired result follows by continuity from (18).
Consider now case (b). In this case, there exists j such that A; i + [-A1x]4 =0
and [QT g*]; # 0. Therefore, from (15), we have that

(19) Lim fls(u)ll = co.

Thus, by (16) and (19), we have that

[“Aikly +p

(20) i SRR i —0.

oo 3|s(p)| u=0 3|s(p)l
Since, by definition, for any £5 > 1, in this case we have py ¢, > pr,0 = 0.1, the desired
result follows by continuity from (20). |

Below we state the main assumption that supports the complexity results. Essen-
tially, we will assume that the objective function is twice continuously differentiable
and that V2f satisfies a Lipschitz condition on a suitable region that contains the
iterates z* and the trial points ¥ + s™ial. Of course, a sufficient condition for the
fulfillment of this assumption is the Lipschitz-continuity of VZf on R™, but in some
cases this global assumption may be unnecessarily strong.

ASSUMPTION Al. The function f is twice continuous differentiable for all x € R™
and there erists a constant L > 0 such that, for all x* computed by Algorithm 3.1
and every trial increment s™? computed at Steps 2, 3, 8.1.1, 5, 5.1.2, 6, or 6.1.2 of
Algorithm 3.2, we have that

f(.Tk + Strial) S f(a:k) + (Strial)Tgk + %(Strial)THkStrial + LHStriaIHS

and . _ _
Hg(mk +Str1al) _ gk o HkstrlaIH < LHStnalHQ.

In the following lemma we prove that any trial increment necessarily satisfies the
sufficient descent condition (8) if the regularization parameter is large enough.

LEMMA 4.2. Suppose that Assumption Al holds and p > 0. If 0 # stial ¢ R™
computed at Steps 2, 3, 8.1.1, 5, 5.1.2, 6, or 6.1.2 of Algorithm 3.2, that by definition
satisfies

(21) [H* + ([~ k] s + w)]s™™ = —g",
is such that

[—ALk)+ +p

22 -
( ) 3||Str1alH

> L+«

then (8) is satisfied with s = s™ial,
Proof. Let us define, for all s € R™,

1
q(s) = sTgk + isTHks.

This manuscript is for review purposes only.
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10 E. G. BIRGIN AND J. M. MARTINEZ

Since H* + ([=A1)4+ + p)1 is positive semidefinite for any pu > 0, by (21),

. 1
(23) sl minimizes g(s) + 3 ([FALk]+ + )l
Define
[—Akl+ +
24 — L AR+ TR
( ) P 3||Str1alH

By Lemma 3.1 of [5], sl is a minimizer of ¢(s) + p||s/|®. In particular,
(25) q(s™) + plls™™|* < q(0) = 0.
Now, by Assumption A1, we have that

f(a?k—I—strial) < f(Ik)-‘r(Strial)Tgk—f—%(Strial)THkStrial+L|‘Stria1||3
= F) + g™+ plls P (L= p)lst

Thus, by (22), (24), and (25), f(2* + stral) < f(2*) — a|s'™@!||3. This completes the
proof. 0

The lemma below shows that Algorithm 3.2 may return a null increment only at
Step 4.

LEMMA 4.3. Suppose that A1 holds. Algorithm 3.2 returns a null increment s = 0
if and only if g* = 0 and Ak 2> 0. Moreover, an increment s = 0 may only be returned
by Algorithm 3.2 at Step 4 (i.e. Steps 8, 3.1.2, 5, 5.1.83, and 6.2 always return non
null increments).

Proof. Assume that g = 0 and A1,k > 0. Then, we have that the minimum norm
solution %0 to the linear system (10) with u = 0 computed at Step 2 is null and that
pr.o = 0 < M. Therefore, the algorithm goes to Step 4 and returns s = 8*% = 0 since
it satisfies (8).

Assume now that Algorithm 3.2 returned an increment s = 0. Since every trial
increment computed by the algorithm is a solution to the linear system (10) for some
@ > 0, we must have gk =0. If Ay 1 > 0, the first part of thesis holds and it remains
to show that the null increment is returned at Step 4. Note that, since g* = 0 implies
g0 =0 and A1 x > 0 means [~ ]+ = 0, at Step 2 we have pro = 0 < M. Thus,
the algorithm goes to Step 4 where the null increment is returned since it satisfies (8).
We now show that assuming A, < 0 leaves to a contradiction. Since A ; < 0 means
[~A1x]+ > 0 and g¥ = 0 implies §¥° = 0, by the way pj o is defined at Step 2, we
have that p; 0 = oo £ M. In this case the algorithm goes to Step 3. On the one hand,
note that §%9 = 0 implies that the algorithm never leaves the loop in Step 3.1 becasue
its condition reduces to [|3%%|| > 0. On the other hand, note that, by halving the
norm of the trial increments 553, since u = 0 is fixed, in a finite number of trials,
(22) holds and, by Lemma 4.2, the algorithm returns s = §%3 # 0 for some f3 > 1,
contradicting the fact that the algorithm returned a null increment. 0

We finish this section proving that the increment s* computed at Algorithm 3.2,
that satisfies (8) and defines 2**! in Algorithm 3.1, is such that it also satisfies (3).
Note that this result assumes the existence of s* by hypothesis. Up to the present
moment we proved that Algorithm 3.2 is well defined. The existence of s* for all k will
be proved in the following section when proving that Algorithm 3.2 always computes
s* performing a finite number of operations.

This manuscript is for review purposes only.
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LEMMA 4.4. Suppose that Assumption Al holds. Then, there exist v, > 0 and
~vu > 0 such that, for all k € N, the increment s* computed by Algorithm 3.2 and the
new iterate 1 = 2% 4 s* computed at Step 2 of Algorithm 5.1 satisfy

10 < st ama 2081 < o,
9
Moreover,
(26) vy < max {3M + L,3000(L + a) + L,30 + L}
and
(27) v < max {3M,3000(L + «), 30} .

Proof. If s* = 0 then, by Lemma 4.3, we have that g = 0 and A\, > 0 and,
therefore, the thesis follows trivially. We now assume s* # 0. Since s* is a solution
to (10) for some p > 0, we have that H*s* + g* + ([=A1 ]+ + p)s® = 0. Therefore,

Nals
H*s* + gk + <[ 1”];1;“ N) |s*||s* = 0.

Then

[ A k]+ + 1
VH* S 4 g = (”k| 5 2.

But, by Assumption Al and the triangle inequality,
lg" 1 = llg® + H " || < [lg"** — " — H*s"|| < L||s"|*.

Therefore,

(A k)+ + 1
(28) 19 < (”;' L) .

We now analyze in separate the cases in which s* # 0 is returned by Algorithm 3.2
at Steps 3, 3.1.2, 4, 5, 5.1.3, and 6.2
Case s* = §%% with ¢3 = 1 was returned at Step 3: In this case, s*3 is a
solution to (10) with g = 0 and, by (11), it satisfies

(29) [kl /s | = 3M.

Case s* = §¥% with (3 > 1 was returned at Step 3.1.2: This means that there
exists §¥%~1 £ 0 that is a solution to (10) with z = 0 and for which (8) with s =
%=1 did not hold. Therefore, by Lemma 4.2, we have that [—X1 ]/ (3[|§%1]) <
L + «. Thus, by (12), we have that

(30) [=Awu]+ /1851 < 6(L + a).

k _ k0

Case s §
(31) [=Awkl+/ (B18™0N) < M

or that there exists §¥% # 0 with ¢3 > 1 such that

was returned at Step 4: In this case, we have that

(32) 185 < 2(18™]l,
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§F%3 is a solution to (10) with 4 = 0, and (8) did not hold with s = §%3. Therefore,
by Lemma 4.2, we have that

(33) [“Aukle/ BI8540) < L+a

and, by (32) and (33),

(34) [~ ALkl + /1850 < 6(L + a).

Thus, by (31) and (34),

(35) [~ Al /I8l < max{3M,6(L + a)}.

Case s* = §%% with (5 = 1 was returned at Step 5: In this case there are two
possibilities: the linear system (10) with u = 0 is compatible or not. In the first case,

§%0 was computed,

pro = [=Ael+/ (313°1)
and, since (8) with s = §%° did not hold, by Lemma 4.2, py 0 < L + . In the second
case, we simple have that py o = 0. Thus, by (13) and by the fact that, by definition,
pr,1 = max{0.1, px o}, in the first case, we have

[=A1k]+ + Dk

36 —
(36) 3]

< 100pg ¢, = 100 max{0.1, pg0} < max{10,100(L + o)}

and, in the second case, we have

[kl + fke

(37) e 5 < 100pg.¢, = 100max{0.1,0} = 10.

Therefore, fig e, > 0, (36), and (37) imply that

[kl _ [=Ak]+ + fine
k45 = [| %45 |

(38) 2 < max{30,300(L + «)}.

Case s* = 5%% with (5 > 1 was returned at Step 5.1.3: This means that there
exists fix¢,—1 > 0 and §kt5=1 solution to (10) with pu = fik,es—1 for which (8) did not
hold. Thus, by Lemma 4.2,

[=ALk)+ + fkees—1

<L+a.
35401 o

Moreover, by (13) and (14),

)\ i g
< 100pk,e; = 1000 <[ LE+ Pkt 1>

S BT
Thus,
- - (L
(39) [||~,j;’§]|* < 1’H’€J,jf”“’“f5 < 3000(L + o).
5k §kots
Case s* = 5%% was returned at Step 6.2: If /5 = 1 then [iy ¢, = 2fix ¢, for some

5 > 1 and the solution §%% to (10) with u = fi ¢, is such that (8) with s = 3%
does not hold. Thus, by Lemma 4.2,

<L .
S o

This manuscript is for review purposes only.



160

461

462

463

464

465

466

467

468

169

470

QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION 13

On the other hand, and since fix ¢, = 2fir,¢;, We have that

(40)
: Q7 g*); ? QT g1, 2
57| = \/Z]‘e.i (Aj‘ﬁ[fx'i,k]fmk‘eﬁ) = \/ZjeJ (Aj1k+[—/\1’€,k]+J+2ﬂk,z5)
_ [QF gkl 2 [QF g*1; 2
= 2jes (2(%(>\j,k+[*’§\1,klj+)+ﬂk,e5)> = Yjes (Q(Aj,k+[*>’\€1,k]i+ﬂk,z5))
Q7 ¢*1; ? .
= % ZjeJ (Aj,k‘i’[*)‘lii-]-:ﬁ'ﬂkiS) = %Hsk,zt’)“ > 0.
Therefore,
(41)
[FAele M)t e[S+ 2000 2 (B[ Ak] e + fikges)
< = =
R Bl FE
2 ()t + Anes) _ 2([FAk]+ + i) (ALK + ks
[ Y 2 i W 2 B A s

If g > 1 then fig ¢, = 2[ig ¢,—1 and the solution ghte=1 to (10) with pu = fk tg—1
is such that (8) with s = 8% ~! does not hold. Thus, by Lemma 4.2,

[=ALk)+ + Bkyg—1

<L+a.
351 o

(42)

Moreover, [iy ¢ = 2fix,es—1 implies, as shown above, that
1
(43) |8* %] > §||§’“’“_1||-

Therefore, by (42) and (43), and since fig ¢, > 0, we have that

Akl o ALK A

44
(44) R < sk

< 12(L + a).

The desired result (27) follows from (29), (30), (35), (38), (39), (41), and (44);
while (26) follows from the same set of inequalities plus (28). |

5. Complexity results. In this section, complexity results on Algorithm 3.2 are
presented. In particular, we show that the number of functional evaluations required
to compute the increment s* using Algorithm 3.2 is O(1), i.e. it does not depend
on g4 nor 4. The section finishes establishing the complexity of Algorithm 3.1-3.2
in terms of the number of functional (and derivatives) evaluations. The sufficient
condition (8) is tested at Steps 3, 3.1.2, 4, 5, 5.1.3, and 6.1. These are the only steps
of Algorithm 3.2 in which the objective function is evaluated. Condition (8) is tested
only once per iteration at Steps 3, 4, and 5. Therefore, in order to assess the worst-
case evaluation complexity of Algorithm 3.2, we must obtain a bound for the number
of executions of the remaining mentioned steps, namely, Steps 3.1.2, 5.1.3, and 6.1.

Step 3.1 of Algorithm 3.2 describes the loop that corresponds to the hard case,
in which we seek an increment along an appropriate eigenvector of H*. For each trial
increment, f is evaluated and the condition (8) is tested (at Step 3.1.2). Therefore,
it is necessary to establish a bound on the number of executions of Step 3.1.2. This
is done in Lemma 5.1.

LEMMA 5.1. Suppose that Assumption Al holds. If Step 3.1.2 of Algorithm 3.2
is executed, it is executed at most |logy((L + «)/M)]| + 1 times.
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Proof. By (11) when ¢3 = 1 and by (12) when ¢35 > 1, %% £ 0 for all £3 > 1 and

R [=A1k]+/(BM), L3 =1,
18541 /2, 3> 1,

or, equivalently,
(45) 270 M = [=Auxl+/ (311851) -

Thus, by Lemma 4.2, if (8) does not hold with s = %3 we must have 2~'M < L+a,
ie. 3 < |logo((L+ «)/M)] 4+ 1 as we wanted to prove. d

Step 5.1 of Algorithm 3.2 describes a loop where one tries to find an “initial”
sufficiently big regularization parameter. Each time the regularization parameter is
increased one tests the condition (8) (at Step 5.1.3). Therefore, it is necessary to
establish a bound on the number of evaluations that may be performed at Step 5.1.3.
This is done in Lemma 5.2.

LEMMA 5.2. Suppose that Assumption Al holds. If Step 5.1.8 of Algorithm 3.2
is executed, it is ezecuted at most |log;o(L + )] + 2 times.

Proof. For all 5 > 1, when (8) is tested at Step 5.1.3 with s = 3%, %6 s
a solution to (10) with p = fix e, > 0 and satisfies (13). Therefore, by Lemma 4.3,
gk £ 0 and, thus, by Lemma 4.2, if (8) does not hold with s = %% we must have

(46) Prs < L+ o

On the other hand, since, by definition, py1 > 0.1 and, by (13) and (14), pge, >
10pg,0;—1 for all £5 > 2, we have that

(47) pres > 10%72

for all 5 > 1. By (46) and (47), if (8) does not hold with s = §%% we must have
10572 < L+ a, ie. £5 < |log;o(L + )| + 2 as we wanted to prove. 0

Finally, at Step 6.1 we increase the regularization parameter by means of a
doubling process (fix,e; = 2fik,es—1)- This process guarantees, by Lemma 4.3 and
Lemma 4.2, that the sufficient condition will eventually hold. In Lemma 5.3, we
prove that the number of doubling steps is also bounded by a quantity that only
depends on characteristics of the problem and algorithmic parameters. For proving
this lemma, we need to assume boundedness of ||H*|| at the iterates generated by
the algorithm. Note that, since f(x**1) < f(z*) for all k, a sufficient condition for
Assumption A2 is the boundedness of ||[H(z)|| on the level set defined by f(z°).

ASSUMPTION A2. There exists a constant hyax > 0 such that, for all iterates xk
computed by Algorithm 3.1, we have that ||H*|| < hmax.-

LEMMA 5.3. Suppose that Assumption Al and Assumption A2 hold. If Step 6.1.2
of Algorithm 3.2 is executed, it is executed at most

0.2 . (L+ta
Hlog(l—i—hmax_i_OQ)} log< 01 )J-l—l

times.
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Proof. For all fg > 1, Lemma 4.3 implies that 5%% £ 0 and straightforward
calculations show that

_ 2
||Sk KGH _ Z ]k+[ )\1,k]+ —I—,Ltk’[e))) .
JjeJ

Moreover, it is easy to see that ||5%/6|| decreases when fix g, increases. Therefore,
since, by deﬁmtlon7 [k t+1 = 2fik,¢,, for all g > 1, we have that

gl

Is > 1.

(48) W =

Thus, for all g > 1,

[ A1 6]+ +ik,eg+1 / [ A1kl +Br,eg \ _ [ [=A ke AR g+1 l|s%% | S
R EER T\ [kl ke B /GHH -
[ e)++ikeg+1 SRl H20k0 Bk, eg
[= A1,k kg (Al ++ikeg + [—>\1,k]++ﬁk,26 = (1t Pmax+0.2 +0 3) > L

(49)

where the first inequality follows from (48) and the second inequality follows from the
fact that, by the definition of the algorithm, fiz ¢, > 0.2 and by Assumption A2.
From (49) and the fact that, by the definition of the algorithm, s = 1 implies

[ A1kl + fik g
[TALKE T Phts g
3|5k b |

it follows that

[ A1 k}+ + fik o6 0.2 b1
50 — - ° >(.1 —_
(50) 3| 5k-4s || hmax—|—0.2

for all ¢g > 1. For all 5 > 1, when (8) is tested at Step 6.1.2 with s = ghote  ghts
satisfies (10) with p = fig ¢, > 0. Therefore, by Lemma 4.2, if (8) does not hold with
s = 5% we must have, by (50),

lo—1
0.2
0114 —2= L+a.
<+hmax+0.2> <Lto

This implies the desired result. O

We finish this section summarizing the complexity and asymptotic results on
Algorithm 3.1-3.2.

THEOREM 5.1. Let fmin € R, ¢4 > 0, and ex > 0 be given constants, suppose that
Assumption Al and Assumption A2 hold, and let {mk}z‘;o be the sequence generated
by Algorithm 3.1-3.2. Then, the cardinality of the set of indices

(51) Ky={keN| f@") > fumin and [|¢""|| > &4}

18, at most,

1 f(fvo)—fmm>J.
52 — 4 Jmin ;
2 L&( (eo/70)*"”
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while the cardinality of the set of indices
(53) Ky={keN| f(a*) > fuin and A1, < —cu}

s, at most,

1 f(xo) — fmin
(54) —\ ==

a (en/7m)
where constants vg and vy are as in the thesis of Lemma 4.4 (i.e. they satisfy (26)
and (27), respectively).

Proof. Assumption Al and Assumption A2 imply, by Lemma 4.4, the the hy-
pothesis of Lemma 2.1 hold. Therefore, since Algorithm 3.1 is a particular case of
Algorithm 2.1, the thesis follows from Theorem 2.1. 0

Corollary 2.1, Corollary 2.2, and Corollary 2.3 also hold for Algorithm 3.1-3.2
under the hypothesis of Theorem 5.1, the most significant result being the complexity
rates that possess the same dependencies on €, and €, whether we consider iteration
or evaluation complexity. Note that the number of iterations is a direct consequence of
Theorem 5.1. On the other hand, Lemma 5.1, Lemma 5.2, and Lemma 5.3 show that,
every time Algorithm 3.2 is used by Algorithm 3.1 to compute an increment s*, it
performs O(1) evaluations of the objective function f; while, by definition, it performs
a single evaluation of g and H. Thus, the evaluation complexity of Algorithm 3.1-3.2
coincides with its iteration complexity.

6. Local convergence. Note that if H* is positive definite then the minimum
norm solution §%° to the linear system (10) with g = 0 computed at Step 2 of
Algorithm 3.2 is given by 880 = —(H*)~1g* i.e. §*0 is the Newton direction. More-
over, since, independently of having 80 = 0 or 880 #£ 0, Aix > 0 implies that
pr,0 =0 < M, in this case (H positive definite) the algorithm goes directly to Step 4
and checks whether the Newton direction satisfies the sufficient cubic decrease con-
dition (8). The lemma below shows that, if (55) holds then the Newton direction
satisfies (8). (If A1,z > 0 and ¢g* = 0 and, in consequence, s*0 = 0, it is trivial to
see that the (null) Newton direction satisfies (8) and there is nothing to be proved.
Anyway, the lemma below covers this case as well.)

LEMMA 6.1. Suppose that Assumption Al holds. If H* is positive definite and

1
k| < 2

then we have that the trial increment §%° computed at Step 2 of Algorithm 3.2 is such
that (8) holds with s = %0,

Proof. By Assumption Al,
. . 1. . .
f(l‘k + Sk,O) S f(zk) + (Sk,O)Tgk + 5(SIC,O)TI_IICSIC,O +L||Sk’0||3.
Then, since §¥0 = —(H*)~1g*

1
f(xk _|_§k,0) S f(xk) _ §(§k,O)THk§k,O _,'_LHék,OHlB.
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Therefore,
(56) fla® + 550 < f(z )f—AlkHé“II%LH
On the other hand, since §¥° = —(H*)~1g* we have that
(57) 181 = [1(E®) " g* (L < 1CE™) 9" (1 = )\ll,kllgkll-
Then, by (55), [|8*°] < Aix/(2(L + «)) or, equlvalently, —A1k/2 + L|IM0| <

kOH

—al|8 Therefore, multiplying by ||§%:°||? and adding f(z*), we have that

fah) - *Al k8007 + L3

< (@) - allSMOP.

and the thesis follows from (56). |

In the next theorem, we use the classical local convergence result of Newton’s
method plus continuity arguments (that imply that the hypothesis (55) always hold
in a neighborhood of a local minimizer with positive definite Hessian) to prove the
quadratic local convergence of Algorithm 3.1-3.2.

ASSUMPTION A3. Let x* be a local minimizer of f. We say that this assumption
holds if H(x*) is positive definite with |[H(z*)~t|| < B and, in addition, there exist
r >0 and v > 0 such that |H(z) — H(z*)|| < ||z — *|| whenever ||z — z*|| < r.

THEOREM 6.1. Let x* be a local minimizer of f at which Assumption A3 holds

and suppose that Assumption Al also holds. Define 6; = min{r, ﬁ} Then, there
exists 6 € (0,91] such that

(58) | H(x)™| < 28 whenever ||z —z*|| <6

and such that, if |20 —x*|| < 8, the sequence {x*}32 ) generated by Algorithm 3.1-3.2
satisfies

(59) lo(*)]| < [ —

M] /(2B)?,

* 1 * * *
(60) 1247 = 2" < Slla® = 2™, and 2" = 27| < Balla® - 27?

forallk=0,1,2,....

Proof. By the classical Newton convergence theory (see, for example, [9, Th.5.2.1,
p.90]), whenever |20 — 2*|| < &; the sequence generated by z*+1 = 2% — (H*)~1gk
well defined and satisfies (60) for all k& > 0. By continuity of g(z), since g(z*) = 0,
there exists 6o € (0,6;] such that whenever ||z* — 2*|| < J5 one has that (59) holds;
while, by continuity of H(x), there exists § € (0, d3] such that whenever ||z —z*|| < ¢
one has that (58) holds.

On the other hand, by (59), if [|2* — 2*|| < J, we have that

lotl < | 5z ] M1 IP
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and, since ||(H®)7|| = 1/A1x,

1
B < ———X2,.
||g(£L' )” —= 2(L+OL) 1,k
Thus, by Lemma 6.1 and the definition of Algorithm 3.2, we have that ¥+ is, in fact,
defined by z**! = z¥ — (H*)~1g¥ and, therefore, the thesis follows by an inductive
argument. O

THEOREM 6.2. Let x* be a local minimizer of f at which Assumption A3 holds.
Suppose also that Assumption A1 holds and, in addition, that x* is a limit point of the
sequence {z*}52, generated by Algorithm 3.1-3.2. Then, the whole sequence {x*}3°
converges quadratically to x*.

Proof. Since z* is a limit point, there exists ko such that ||z — 2*|| < 6. Thus,
the convergence of {z*} follows from Theorem 6.1 replacing x° with a*o. ]

The following is a global non-flatness assumption that will allow us to prove a
complexity result that takes advantage of local quadratic convergence.

ASSUMPTION A4. Let 6 > 0 be as in the thesis of Theorem 6.1. There exists
k > 0 such that, for all x* generated by Algorithm 3.1-3.2, if ||z* — 2*| > & then
lg(a®)ll > .

Note that Assumption A4 holds under the uniform non-singularity assumption
that says that for all k € N and x € [2%, 2], H(z) is nonsingular and || H (x)~!|| >
1/n. In fact, by the Mean Value Theorem, the uniform non-singularity assumption
implies that, for all z¥ generated by Algorithm 3.1-3.2, ||g(z*)| > n||z* — z*|.

THEOREM 6.3. Let f be bounded below and let x* be a local minimizer of f at
which Assumption A3 holds. Suppose also that Assumption Al, Assumption A2 and
Assumption A4 hold, and, in addition, that =* is a limit point of the sequence {xk}iozo
generated by Algorithm 3.1-3.2. Then, after a number of iterations ko = O(k~3/?),
where k is as in Assumption A4 and it only depends on characteristics of the problem
and algorithmic parameters, we obtain that ||z* — 2*|| < & for all k > ko, where & is
as in the thesis of Theorem 6.1.

Proof. By construction (see Theorem 6.1), § only depends on characteristics of
the problem. By Assumption A4, ||g(z*)|| > & for all k such that ||z*—z*| > §. Then,
by Assumption Al, Assumption A2, and Theorem 5.1, after kg = 0(5_3/2) iterations,
we obtain that [|g(z*0)[| < &, i.e. [|z* —2*|| < §. This implies, by Theorem 6.1, that
|z% — 2*|| < 6 for all k > ko, as we wanted to prove. 0

THEOREM 6.4. Let f be bounded below and let x* be a local minimizer of f at
which Assumption A3 holds. Suppose also that Assumption Al, Assumption A2, and
Assumption A4 hold, and, in addition, that x* is a limit point of the sequence {xk}z‘;o
generated by Algorithm 3.1-3.2. Let ¢4 > 0 be a given constant. Then, in at most
k = O(log,(—logy(2y))) iterations we have that ||g(z*)|| < ey for all k > k.

Proof. By the Mean Value Theorem of Integral Calculus, we have that, for any
k>0,

(61) gt = | [ HlGn(O)ir] @40 o), where 610 =" + ot~ ),

By the triangle inequality, Theorem 6.1, and Theorem 6.3, since ||z*T! — 2*|| < 6 for
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all k > ko implies ||€(t) — x*|| < 0 for all k > kg and t € [0, 1], we have that
(62)  H (Err O = 1H (@) < [1H (E+1(1) — H(@")[| < AlI€r42(t) — 2] <6

for all k > ko and ¢ € [0.1]. Therefore, by (61) and (62),

03) Lot 1= || [ 1 H(Ea(0)dt] (51 o)

\ < ([H@")] + )"+ — 2]

for all & > kg.
On the other hand, by the Mean Value Theorem of Integral Calculus, we have
that, for any k& > 0,

-1

ok —a* = [/0 H(fk(t))dt} g(z%) where & (t) = z* + t(z* — %)

and, thus, by Theorem 6.1 and Theorem 6.3, since ||z* —2*|| < § implies ||& (t) —z*|| <
d for all k > ko and t € [0, 1], we have that

(64) 2% — %] < 28|lg(z®)]| for all k > k.
Now, by (63), (64), Theorem 6.1, and Theorem 6.3,

lg(z* 1)

.’17* .’L'k+1—l'*
(65) i (HH () +~d)l |

BY(IH ()l + 70) l2* — 27|12 < 48%y (| H ()| + v9)llg"*1*

for all & > kg.

Up to this point, we have that ||g"°|| < s with kg = O(k~3/2) and that, for
all > 0, [lg(@+ )| < cquaallg™+|2, where & and cquaa = 48%9(1H (@) + 70)
depend only on characteristics of the problem and algorithmic parameters. This
means that

241 241
12 < AL k2T for all £ > 0.

(66) (™0 < cifaallg@™ I < cghaa

quad

We now consider, with the simple purpose of simplifying the presentation, k1 > ko,
ki = O(cg/ 2 ), whose existence is granted by Assumption Al, Assumption A2, and

quad
Theorem 5.1, such that | g*|| < %c;ulad for all k > ky. Thus, (66) can be re-stated as
041 il 1 2 e41
d -
(O ot 0l < fillate P < S () <2 anezo
quad

Thus, since 272" < g4 if and only if £ > log, (—logy(g,)) + 1, we have that ||g¥|| < &,
for all k > k1 + logy(—logy(ey)) + 1. This implies the desired result recalling that kq
does not depend on &,. O

7. Numerical experiments. We implemented Algorithm 3.1-3.2 in Fortran 90.
At each iteration k, the spectral decomposition of matrix H* is computed by the
Lapack [1] subroutine DSYEV. At Step 5 and 5.1.2 of Algorithm 3.2, fix e, > 0 and
g6 solution to (10) with p = fig. ¢, such that (13) holds are computed using bisection.
In the numerical experiments, we arbitrarily considered o« = 108 and M = 103.
It should be noted that these two parameters, as well as the other constants that
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appeared hard-coded in Algorithm 3.1-3.2 (in order to simplify the exposition), were
not subject to tuning at all. All those values were chosen because they seemed to
be “natural choices” and the intention of the numerical experiments below is not to
deliver the most robust or efficient version of the proposed method but to illustrate
its practical behaviour.

The method proposed in the present work will be compared against the line-
search Newton’s method with quadratic regularization and Armijo descent introduced
in [16]. With this purpose, we implemented (also in Fortran 90) Algorithm 1 described
in [16, p.348]. In order to focus the comparison on the methods’ differences (mainly
the way in which the regularizing parameter is computed and the descent criterion),
our implementation uses the Lapack subroutine DSYEV for computing the spectral
decomposition of H*. This choice provides the value of the left-most eigenvalue of
HP* required by the algorithm and also trivializes solving the Newtonian linear system.
A classical quadratic interpolation (taking ¢/2 as a new trial step when the minimizer
of the quadratic model lies outside the interval [0.1¢,0.9¢]) was considered. In the
numerical experiments, we set, as suggested in [16], 8 = 1072, n = 0.25, Ly = 1079,
and § = 10716, We considered the two choices y, = y;, and px = pif and, thus the
method introduced in [16] with these two choices will be referred, from now on, as
“KSS with up = py, 7 and “KSS with p, = u:”.

The Fortan 90 implementation of Algorithm 3.1-3.2, as well as our implementa-
tion of the algorithm introduced in [16], is freely available at http://www.ime.usp.br/
~egbirgin/. Interfaces for solving user-defined problems coded in Fortran 90 as well
as problems from the CUTEst collection [13] are available. All tests reported below
were conducted on a computer with 3.5 GHz Intel Core i7 processor and 16GB 1600
MHz DDR3 RAM memory, running OS X Yosemite (version 10.10.5). Codes were
compiled by the GFortran compiler of GCC (version 5.1.0) with the -O3 optimization
directive enabled.

7.1. An ad hoc toy problem with expected hard case. In this section,
we illustrate the behaviour of Algorithm 3.1-3.2 in a simple problem in which the
hard case is expected to appear. Consider the function defined by f(z1,22) = 122+
0.1(zy — 22)* + (z1 +22)*. This function has two global minimizers at, approximately,
(0.559017,—0.559017) and (—0.559017,0.559017), at which the functional value is
approximately —0.15625. Moreover, (0,0) is a saddle point at which f vanishes. We
are interested in the behaviour of the considered algorithms when the initial point is
in the line 1 = x5 and relatively close to (0,0).

The Hessian is indefinite if 2; = x5 and the eigenvalues of V2f(z1,z2) tend to 1
and —1 when 1 = x5 and z; — 0. For all iterates satisfying 1 = z2 the minimum
norm solution of (10) satisfies s1 = s; & —x; = —xzo. Since the regularization
parameter tends to 1 when ;1 = x5 and xz; — 0, it turns out that the associated
p tends to infinity when 1 = z9 and 27 — 0. As a consequence, when an iterate
(ak,25) with ¥ = 25 is close to the origin, the test pro < M eventually fails at
Step 2 of Algorithm 3.2 and a search along the eigenvector orthogonal to x1 = x5 is
initiated. So, the process quickly converges to one of the global minimizers. On the
other hand, a Newtonian method like the one considered in [16] never leaves the line
x1 = x9 and convergence to the saddle point (0,0) is expected.

If we run Algorithm 3.1-3.2 starting from (29, 29) = (1,1), for all iterations k <
14, we observe that, in fact, the linear system (10) is compatible, px o < M, and §k0
satisfies the descent condition (8). Therefore, we have that z'4 ~ (2.53523, 2.53523) x
10~% still lies in the line x; = zo. At iteration k& = 15, we have that pro > M and
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a search along the eigenvector is performed. Having abandoned the line x; = o,
convergence to the global minimizer (—0.559017,0.559017) occurs and the algorithm
stops at iteration k = 20 satisfying ||V f(22°)]|oc < 1078 and A\ (V2 f(2?°)) > —1078
and performing, as a whole, 23 functional evaluations and having solved 30 linear
systems.

Methods KSS with pp = p, and KSS with p; = u',f, as expected, converge to
the saddle point (0,0) (using only two iterations, three functional evaluations, and
solving three linear systems). The considered ad hoc problem was presented in order
to highlight a property of the proposed method (related to robustness) that may not
be shared by other methods. Since different final iterates are being found, it would be
meaningless to compare the effort required by each method for achieving a stopping
criterion (first- or second-order criticality); while ignoring the objective functional
value at the final iterate.

If we now run Algorithm 3.1-3.2 starting from (0,0), it converges to the same
global minimizer in 9 iterations using 11 functional evaluations and having solved
18 linear systems; while, as expected, methods KSS with uy = g, and KSS with
L = uﬁ satisfy the stopping criteria at the initial point.

7.2. A family of problems with “unreachable” second-order stationary
points. Let v : R™ — R and w : R" — R be such that Vw(0) = 0 and VZw(0)
is mot positive semidefinite. Consider f : R® — R with n = ny + no given by

f@)=v(x1,...,Tn,) + W(Tny+1s- -, Tny+ny)- Note that
V)T = (Volzr, ..., 20,)T, Vo(To, 41, Trygny) L)
and - .
V(o) ( o) O ) .

This means that any method for minimizing f based on iterations of the form z**! =

2% + ayd”, where d¥ is a solution to a linear system of the form (V f?(z*) + Dy) d =
~Vf(x*), for any diagonal matrix Dy, never leaves the subspace x,, 41 = -+ =
ZTny+n, = 0 if the initial point belongs to that subspace. Thus, since, by assumption,
this subspace does not contain any point satisfying second-order necessary optimality
conditions, methods of this type are fated to fail, in the sense that they (hopefully)
converge to first-order stationary points that do not satisfy second-order optimality
conditions.

A simple example of this family of problems is given by v(z1) = % and w(zy) =
22(z3 — 1), i.e. f(x1,72) = 2?2 + 23(22 — 1). This problem has two global minimizers
at (0,41/+/2) and a local maximizer at (0,0). Starting from the point (1,0), methods
KSS with pp, = p,; and KSS with py, = N: converge to an approximation to the
local maximizer (0, 0) in 21 iterations (using 22 functional evaluations and solving 21
linear systems). Starting from the same initial guess, Algorithm 3.1-3.2 converges
to the global minimizer (0,1/v/2). For k = 0,1,...,10, the minimum norm solution
580 to the linear system (H* + [—=\1 ]+ 1)s = —g* is such that the associated cubic
regularization parameter py o is smaller than or equal to M and §%0 satisfies the
cubic descent criterion. However ||§%9|| decreases, and, in consequence, py. o increases
for k = 0,1,...,10. Thus, at iteration k£ = 11, pyo £ M and a search along the
eigenvector (0, 1) makes the iterate ! to abandon the subspace zo = 0. The second-
order stopping criterion ||V f(z*)| < 107% and Ay > —1078 is satisfied at iteration
k = 18 (using 19 functional evaluations and having solved 25 linear systems).
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7.3. Massive comparison. In this section we consider the 87 problems from
the CUTEst collection already considered in the numerical experiments presented
in [16]. The same dimensions chosen in [16] were preserved (most of the problems have
n = 1000 variables). These problems correspond to all the unconstrained problems
from the CUTEst collection with available second-order derivatives.

For the stopping criteria, we set fuin = —10'0, €2 = 107%, and &) = 1075, Other
than stopping if an iterate z* satisfies f(z*) < fmin or

(68) "]l < e,
the methods also stop if

(69) lg*ll < e5llg°!l

or if the elapsed CPU time exceeds one hour. It should be noted that, in order to allow
a fair comparison, the same first-order criticality stopping criteria are being used for
KSS with puy, = p,; and KSS with p = uZ‘ as well as for Algorithm 3.1-3.2. However,
this choice does not affect the quality of the final points obtained by Algorithm 3.1—
3.2 because a simple inspection of the results reveals that, in the considered set of
problems, any time the stopping criteria (68) or (69) is satisfied, its second-order
counterpart, given by [|g¥|| < e and A\ > —ef and [|gF|| < ef[lg°l and Ay >
—epmax;j=1,{|\jol} (with ef = ¢ and e} = €}), respectively, is satisfied as well.
We will refer to these stopping criteria as "UN’ (unbounded f), ’AS’ (first- or second-
order absolute stopping), 'RS’ (first- or second-order relative stopping), and "TE’
(CPU time limit exceeded). Exceptionally, although || - || stands for the Euclidean
norm everywhere in the text, the sup-norm of the gradient was considered at the
stopping criteria described above. None other stopping criterion was considered.

Detailed information regarding the performance of each method on each problem
can be found at http://www.ime.usp.br/~egbrigin/. For a given problem, let f1, fa,
and f3 be the value of the objective function at the final iterate delivered by each of
the three methods. Following [3], we will say that the three methods found equivalent
solutions if

fi - fbest

max{l, |fbest‘}

where fpest = min{ f1, fo, f3}. The 87 problems will be separated into two sets.
Set 1 will be given by the 66 problems in which the three methods found equivalent
solutions and stopped satisfying the absolute or the relative stopping criterion. Set 2
will contain the remaining 21 problems. Problems in Set 1 will be used to analyze
the efficiency of the methods; while problems in Set 2 will be observed with an eye
on robustness.

For analyzing the efficiency of the methods through its performance on the 66
problems on Set 1, we used performance profiles [10]. See Figure 1. By definition of
the performance profiles and the way in which the problems were selected, all curves
reach the value 1 at the right-hand-side of the graphic. Thus, these pictures evaluate
efficiency only. The three pictures show the same thing: Algorithm 3.1-3.2 is more
efficient in most of the problems but there are a few problems in which it takes much
longer than the other two methods.

Table 1 shows the details of the final iterates found by the three methods on
problems in Set 2. It can be said that, considering these 21 problems, Algorithm 3.1—
3.2 satisfied the first-order criticality stopping criteria 13 times; while KSS with u; =

<1072 fori=1,2,3,
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Iterations Functional evaluations
1L
=
08 L~ ~ :
T 06 / | <
= ~
04 ¢ Algorithm 3.1-3.2 (I(1) = 0.75) 1 04 Algorithm 3.1-3.2 (I'(1) = 0.74) 1
02 L KSS with = g (I(1) = 0.52) | 02 L KSS with i = p; (I(1) = 0.52) |
KSS with g = py; (T(1) = 0.42) KSS with p = py; (0(1) = 0.37)
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CPU time
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0.8

= 0.6 b
[
04 Algorithm 3.1-3.2 (T'(1) = 0.65) 1
0.2 KSS with ju = pf (I'(1) = 0.20) —— ]

KSS with p, = py; (0(1) = 0.18)

—

10

log,4(7)

Fic. 1. Performance profiles considering the 66 problems in which the three methods stopped
satisfying the same stopping criterion related to absolute or relative criticality and found equivalent
solutions.

py, and KSS with py = uz satisfied the first-order criticality stopping criteria 5
and 11 times, respectively. Other than that, there are 3 problems (FLETCBV3,
FLETCHBYV, INDEF) in which the objective function appears to be unbounded from
below. KSS with uy = p, and KSS with pp = uﬁ were both able to identify this
situation and stopped by the UN stopping criterion. Algorithm 3.1-3.2 recognized
the situation in only one of the cases and stopped by TE in the other two. This may
indicate that Algorithm 3.1-3.2 takes longer to reduce the objective functional value
when it is unbounded below. There are also cases in which the three methods found
an approximate stationary point but did not find equivalent solutions. BROYDNT7D,
CHAINWOO, and NCB20 are examples of these cases. The methods take turn to be
the one that finds the stationary point with the lowest functional value and, therefore,
the presented experiment did not show whether any of the methods is able to find
better quality solutions.

8. Final remarks. The present paper explored the relation between quadratic
and cubic regularization with the principal objective of developing a quadratic-re-
gularization-based method while preserving the complexity results that hold in the
case of cubic regularization. Although there are good algorithms for solving the cubic
regularization subproblem, these algorithms, as well as the ones for solving the trust-
region subproblem, generally need to solve more than one linear system for computing
a trial point. Unfortunately, in the algorithm introduced in this paper we could
not preserve the property of “one linear system per trial point” at every iteration,
because the preservation of complexity needed safeguarded choices for computing the
first nonnull regularization parameter py. On the other hand, even a preliminary
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Problem Algorithm 3.1-3.2 KSS with pg = p, KSS with py, = ,u,f

name J(®) lo"___SC J@") Io"___SC J") lg"__SC
BROYDN7D | 3.54624D+02 2.1D—10 AS | 4.81627D+02 1.6D—11 AS | 4.60601D+02 6.7D—07 AS
CHAINWOO | 1.57548D+02 2.1D—12 AS | 1.00000D+00 1.7D—12 AS | 1.00000D+00 1.5D—09 AS
COSINE -9.99000D+02 1.1D—12 AS | -1.40035D+02 2.4D+04 TE | -9.44546D+02 1.6D+00 TE
ENGVALI1 1.10819D+03 1.3D—12 AS | 1.10819D+03 1.3D—12 AS | 1.10819D+03 1.8D-06 TE
FLETCBV3 | -1.54153D+03 3.0D—02 TE | -1.00026D+08 1.2D—01 UN | -1.00026D+08 1.4D—-01 UN
FLETCHBV | -1.84122D+09 2.8D+06 UN | -1.84122D+09 2.8D+06 UN | -1.84122D+09 2.8D+06 UN
GENHUMPS | 8.73814D+06 1.1D+02 TE | 5.90238D+06 1.3D4+02 TE | 7.70165D4+06 1.5D+02 TE
INDEF -2.72320D+06 1.0D4+00 TE | -1.09591D408 1.0D+00 UN | -1.09760D+08 1.0D4+00 UN
MANCINO 1.67148D—14 1.0D—03 RS | 2.14315D+17 3.0D+12 TE | 1.67797D—14 5.5D—-04 RS
MODBEALE | 1.10832D—20 9.5D—10 AS | 5.19223D+01 1.8D—04 TE | 8.04120D+00 1.7D—-05 TE
NCB20 9.32122D+02 4.5D—10 AS | 9.16688D+02 5.9D—-07 AS | 9.17763D4+02 5.6D—08 AS
NONCVXUN | 2.32878D+03 1.6D—-03 TE | 2.32595D+403 3.4D—08 AS | 2.31974D+03 1.4D-07 AS
NONMSQRT | 9.02177D+01 3.6D—04 TE | 8.99049D+01 3.1D—01 TE | 8.99048D+01 4.4D—-01 TE
PENALTY2 1.12970D+83 3.4D+75 TE | 1.44640D+83 2.1D+38 TE | 1.44640D+83 2.1D+38 TE
PENALTY3 9.99523D—-04 1.2D—-07 AS | 3.98575D+04 8.7D—-02 TE | 9.94993D—-04 7.2D—-04 TE
SBRYBND 8.80296D—27 3.5D—06 TE | 2.49040D+04 2.0D+07 TE | 1.85974D—-21 6.8D—07 AS
SCOSINE 1.09888D+02 2.9D+13 TE | 8.76705D+02 1.2D4+05 TE | 8.57518D+02 1.2D+11 TE
SCURLY10 -1.00316D+05 4.3D—08 AS | 0.00000D+00 1.8D4+05 TE | -1.00316D+05 1.5D—-07 AS
SCURLY20 -1.00316D+05 1.4D—-07 AS | 0.00000D4+00 3.4D+405 TE | -1.00316D+05 1.2D—-07 AS
SCURLY30 -1.00316D+05 1.1D—-07 AS | 0.00000D4+00 5.0D4+05 TE | -1.00316D+05 3.1D—-07 AS
SENSORS -2.10853D+05 6.8D—10 AS | -2.10916D+05 1.7D—-05 TE | -2.10633D+05 1.1D—-09 AS
SPMSRTLS 4.34760D—16 3.2D—11 AS | 4.373656D—16 3.1D—09 AS | 1.75675D4+00 2.4D-07 AS

TABLE 1
Details of the 21 problems in which it does not hold that “the three methods stopped satisfying
the first- or second-order criticality stopping criterion and found equivalent solutions”.

implementation in which algorithmic parameters were not tuned at all, produced
satisfactory results, in comparison with a well-established regularization method for
unconstrained optimization. In addition to first- and second-order complexity results,
we proved asymptotic convergence to first- and second-order stationary points, as well
as local convergence and a complexity result corresponding to the case in which local
quadratic convergence takes place.

The regularization method introduced in [16] and our present regularized method
were conceived with quite different purposes. While in our case we were worried about
the compatibility of the most simple updating rules of the regularization parameter
with the preservation of optimal complexity results, in [16] the main concern was the
determination of regularizing parameters that optimize the accuracy of the quadratic
model. The natural challenge that emerges is related, therefore, with the compatibility
between the updating rules of [16] and our updating rules and purposes. It should be
mentioned, moreover, that in [16] a line search follows the obtention of the adequate
point on the Levenberg-Marquardt path, motivating additional questions about the
compatibility of this search with complexity bounds. Needless to say, this type of
studies should be complemented with insightful and extensive numerical experiments.

Acknowledgments. The authors would like to thank the two anonymous refer-
ees whose valuable comments helped to improve this work.
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