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Abstract

An extended version of the flexible job shop problem is tackled in this work. The con-
sidered extension to the classical flexible job shop problem allows the precedences between
the operations to be given by an arbitrary directed acyclic graph instead of a linear order.
Therefore, the problem consists of allocating the operations to the machines and sequenc-
ing them in compliance with the given precedences. The goal in the present work is the
minimization of the makespan. A list scheduling algorithm is introduced and its natural
extension to a beam search method is proposed. Numerical experiments assess the efficiency
of the proposed approaches.
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1 Introduction

The classical job shop (JS) problem consists of scheduling n jobs on an environment with m
machines. Each job is composed by several operations with a linear precedence structure and has
a predetermined route through the machines. The flexible job shop scheduling (FJS) problem
is a generalization of the JS problem in which there may be several machines, not necessarily
identical, capable of processing each operation. The processing time of each operation on each
machine is known and no preemption is allowed. The objective is to decide on which machine
each operation will be processed, and in what order the operations will be processed on each
machine, so that a certain criterion is optimized.

This paper considers the extended version of the FJS problem that allows the precedences
between the operations to be given by an arbitrary directed acyclic graph instead of a linear
order. Therefore, the problem consists of allocating the operations to the machines and se-
quencing them in compliance with all given precedences. An example of a job with this general
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type of precedences is presented in Figure 1. This problem appears in practical and industrial
environments, such as the printing industry [38], where assembling and disassembling opera-
tions are part of the production process. Printing processes can be divided into three major
tasks: prepress steps, printing, and postpress steps [40]. Prepress steps include composition
and typesetting, graphic arts photography, image assembly, color separation, and image carrier
preparation. Printing can be performed by six separate and distinct processes: lithography,
letterpress, flexography, gravure, screen printing, and plate-less technologies. Postpress oper-
ations consist of four major processes: cutting, folding, assembling, and binding. There are
many additional lesser postpress finishing processes such as varnishing, perforating, drilling, etc.
In-line finishing may also be considered as a final step of the postpress operations. These three
major steps of the printing process have an obvious precedence constraint. However, within each
major step, there are operations with no precedence constraint among them. Pages of a book
are divided into signatures (bunch of 8, 16, or 32 individual pages) that can be printed, cut, and
folded in separate. The book cover is also an element that can be prepared in separate. Then,
all printed and non-printed elements need to be gathered in order to continue the process. See
Figure 2. It is easy to see that this arbitrary-precedences issue of the printing process may be
found in most of the practical industrial applications, making the considered problem a problem
with a potential wide range of applications. The scheduling performance measure considered in
the present work is the makespan minimization.

Figure 1: Example of the precedence constraints of a single job of an instance of the extended
version of FJS problem, in which precedences between operations are given by an arbitrary
directed acyclic graph.

The flexibility of representing the precedences between the operations of a job with an
arbitrary directed acyclic graph instead of a linear order is known as sequencing flexibility; while
routing flexibility refers to the possibility of an operation to be performed by a subset of machines
instead of a single machine (this is the flexibility that transform a JSP into a FJSP). Other types
of flexibility exist, like producing the same manufacturing feature with alternative operations or
sequences of operations, known as processing flexibility. The effects of sequencing flexibility on
the performance of dispatching rules used to schedule operations in manufacturing systems was
analysed in [29, 21] (see also the references therein). In [31], a flexible manufacturing system
with finite buffer capacities and that considers automated guided vehicles is tackled. Different
performance criteria are considered (mean flow time, mean tardiness, and makespan) and an
ad hoc filtered beam search method is developed. The results of the method are analysed in
order to investigate the effects in the performance of the manufacturing system of incorporating
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different types of flexibilities. A more recent study can be found in [14].
The extended FJS problem considered in the present work is NP-hard, since it has the JS

problem (that is known to be NP-hard [10]) as a particular case. Due to its complexity, the
number of publications concerned with the exact solution of the FJS problem is very small.
Fattahi, Mehrabad, and Jolai [7] proposed a mixed integer linear programming (MILP) model
for the FJS problem and used it to solve small and medium-sized instances with a commercial
software. A more concise MILP model, that modifies an earlier one presented in [22] in order
to incorporate routing flexibility, was introduced in [26]. More recently, a new MILP model for
the extended version of FJS considered in the present work was presented in [3]. This model
was analyzed using instances from the literature and instances inspired by the printing industry.
According to the numerical experiments, the software CPLEX produced better results with the
new model than with the one presented in [26].

Several works from the literature proposed heuristic methods to address the makespan min-
imization in the classical FJS problem. Brandimarte [4], one of the pioneers of this approach,
applied dispatching rules to assign each operation of each job to a machine and, in a second
phase, employed a tabu search heuristic to define the sequence of the operations on each machine.
This kind of strategy is known as hierarchical approach. Tabu search (TS) based heuristics to

Figure 2: Illustrative scheme including operations with no precedence constraints among them
(the different signatures and the cover) in the printing-industry task of producing a book.
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solve this problem, but in an integrated way (i.e. considering simultaneously the assignment
and schedule of the operations), were also developed in [6, 24]. Recent literature also includes
genetic algorithms (GA) to deal with the FJS problem in a integrated approach. The learnable
genetic architecture (LEGA), proposed in [12], provides an integration between evolution and
learning methodologies within a random search framework. In this context, the learning module
is used to influence the diversity and quality of offsprings. On the other hand, a traditional
GA with improved components selected from the literature and a new mutation assignment
operator named intelligent mutation was introduced in [27]. According to the presented compu-
tational tests the proposed GA outperformed other known GAs from the literature and obtained
solutions comparable with the ones obtained by the TS described in [24]. A hybrid GA that
follows the hierarchical approach can be found in [11]. First the algorithm uses GA to find
the assignments and crude schedules (feasibility is not guarantee), and next it applies repairing
heuristics. In [11], a quantitative comparison with recent works of the literature, including [24]
and considering benchmark problems from [4], was presented to illustrate the performance of
the proposed method. Aiming to join the best characteristics of different approaches Yuan and
Xu [37] proposed an integrated search heuristic composed by a hybrid harmony search (HHS)
and a large neighborhood search (LNS). In first place, the HHS algorithm runs until a solution
from which no significant improvement can be done is reached. Then, the operation-machine as-
signment information from the elite solutions is extracted. Finally, the LNS method is executed
on the reduced space to further improve the best solution obtained by the HHS. The authors
presented experiments with four different benchmarks from the literature and concluded that
the HHS/LNS integrated search shows a competitive performance with respect to the state-of-
the-art methods. Additionally, several works have considered the FSJ with multiple objectives
that include the makespan criterion. See, for example, [15, 39, 35, 20, 32], and the references
therein.

A few works, most of them inspired in practical applications, deal with the extension of the
FJS in which precedences are given by an arbitrary directed acyclic graph. An environment
coming from a glass factory, that requires an even more general variant of the FJS problem
including, for example, no-wait constraints, is described in [1]. The authors proposed heuristic
methods based on priority rules and a local search to minimize a criterion based on earliness
and tardiness penalties. A class of instances that includes arbitrary precedence relations among
operations (with the constraint of having an ending assembling operation in each job) of a prob-
lem from the printing and boarding industry is also tackled in [36]. Considering the makespan
and the maximum lateness criteria, TS and GA are applied with the aim of building an ap-
proximation of the Pareto frontier. A symbiotic evolutionary algorithm that considers routing,
sequencing, and processing flexibility in a job shop scheduling problem was introduced in [17].
Another extended version of the FJSP, inspired in real manufacturing environments, in which
precedence constraints are arbitrary and can be of AND/OR type, is studied in [19]. A real
scheduling problem in a mould manufacturing shop problem with several kind of flexibilities is
described in [9]. The considered problem possesses process planning flexibility, that includes
sequencing flexibility. In the proposed method, process planing and scheduling are tackled in
an integrated way.

Due to the limited amount of works that approach the extended version of the FJS problem
and its practical applicability, the purpose of this paper is to contribute to the development of
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heuristic techniques able to produce reasonable results in acceptable time. First, a list scheduling
algorithm is proposed, motivated by its simplicity and applicability to job scheduling in produc-
tion environments (see, for example, [16, 18, 23]). The natural extension of the list scheduling
algorithm to a filtered beam search method is also investigated. The filtered beam search is a
technique for searching decision trees that involves systematically developing a small number of
solutions in parallel so as to attempt to maximize the probability of finding a good solution with
minimal search effort [25]. The evaluation process that determines which partial solutions are
the promising ones is a crucial component of this method [28]. The main idea of the presented
filtered beam search method is to apply a customized version of the list scheduling algorithm
to locally and globally evaluate partial solutions in an effective way. After the pioneer work
of Ow and Morton [25], other authors addressed scheduling environments with this approach.
Sabuncuoglu and Bayiz [30] tackled the JS problem minimizing the makespan and conducted
several numerical experiments to analyze the influence of some of the filtered beam search pa-
rameters on its performance. Moreover, a comparison considering metaheuristic algorithms and
dispatching rules was also conducted to expose the competitive performance of the proposed
method. More recently, a filtered beam search approach for the flexible job shop minimizing
the weighted sum of three objectives (the makespan, the total workload of machines, and the
workload of the most loaded machine) was introduced in [33].

Considering the component-based view of metaheuristics suggested in [34], it can be said
the beam search method is a matheuristic that combines the search-tree strategy of branch-and-
bound methods with a constructive heuristic used for potentially pruning apparently fruitless
nodes of the search tree. Some of the highlights of the introduced methods are that they
both have finite termination and that they depend on a very reduced set of parameters whose
meaning is very simple to interpret. In fact, the list scheduling algorithm has no parameters
while the beam search method has only three parameters. Other than the promising numerical
results, additional main features of the heuristic methods presented in this work are (a) their
precise description (all possible ties are decided with explicitly given rules) and (b) availability of
their C/C++ implementation. Moreover, together with a complete description of the obtained
solutions, these facts allow full reproducibility of the presented results and open the possibility
of using them as a benchmark for future developments. The remaining of this work is organized
as follows. Section 2 gives the description of the tackled problem by presenting its mixed-integer
linear programming formulation. Section 3 presents a list scheduling algorithm while Section 4
introduces the proposed beam search method. Section 5 is devoted to numerical experiments.
Section 6 presents some final remarks and lines for future research.

2 Extended flexible job shop scheduling problem

A precise description of the considered problem can be given by the MILP formulation introduced
in [3], that we reproduce in this section for completeness and to introduce the notation that will
be used in the present work.

Let n, o, and m be the number of jobs, operations, and machines, respectively. The number of
jobs will not play any explicit role in the problem formulation. For each operation i (i = 1, . . . , o),
let Fi ⊆ {1, 2, . . . ,m} (Fi 6= ∅) be the subset of machines that can process operation i and let pik
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(i = 1, . . . , o, k ∈ Fi) be the corresponding processing times. Moreover, let A be a set of
pairs (i, j) with i, j ∈ {1, . . . , o} such that, if (i, j) belongs to A, this means that operation i
precedes operation j, i.e. operation j can not start to be processed until operation i ends to be
processed. This set of precedences A is the place where jobs are implicitly defined, since it is
expected to exist precedences between operations of the same job but not to exist precedences
between operations of different jobs. Moreover, it is assumed that if the elements of A represent
the arcs of a directed graph with vertices labeled from 1 to o then this graph is a directed acyclic
graph, i.e. there are no cyclic precedences and, in consequence, the problem is well defined. The
problem consists in assigning each operation i to a machine k ∈ Fi and to determine a starting
processing time si such that precedences are satisfied. Of course, a machine can not process
more than an operation at a time and preemption is not allowed. The objective is to minimize
the makespan, i.e. the completion time of the last operation (or, equivalently, last job).

The model uses binary variables xik (i = 1, . . . , o, k ∈ Fi) to indicate whether operation i is
allocated to be processed by machine k (in this case xik = 1) or not (in this case xik = 0). It also
considers binary variables yij (i, j = 1, . . . , o, Fi ∩ Fj 6= ∅) to indicate, whenever two operations
are allocated to the same machine, which one is processed first. Assume, for example, that
there are two operations i and j such that k ∈ Fi ∩ Fj and that both operations are allocated
to machine k, i.e. xik = xjk = 1. In this case, we must have exactly one between yij and yji
equal to 1. If yij = 1 and yji = 0 then operation i is processed on machine k before operation j.
On the other hand, if yij = 0 and yji = 1 then operation i is processed on machine k after
operation j. Finally, the model uses variables si (i = 1, . . . , o), to represent the starting time
of operation i (on the machine to which it was allocated) and a variable Cmax to represent the
makespan. With these variables, the MILP model of the extended flexible job shop problem
introduced in [3] can be written as:

Minimize Cmax (1)
subject to

∑
k∈Fi xik = 1, i = 1, . . . , o, (2)

p′i =
∑
k∈Fi xikpik, i = 1, . . . , o, (3)

Cmax ≥ si + p′i, i = 1, . . . , o, (4)

si + p′i ≤ sj , i, j = 1, . . . , o such that (i, j) ∈ A, (5)

yij + yji ≥ xik + xjk − 1, i, j = 1, . . . , o, i 6= j, and k ∈ Fi ∩ Fj , (6)

si + p′i − (1− yij)L ≤ sj , i, j = 1, . . . , o and i 6= j such that Fi ∩ Fj 6= ∅, (7)

si ≥ 0, i = 1, . . . , o. (8)

Constraint (2) says that each operation i must be assigned to exactly one machine k ∈ Fi.
Constraint (3) defines the actual processing time p′i of each operation i (that depends on the
machine to which it was assigned). In fact, there is no need to consider p′i in (3) as a variable
of the model. It can be seen as an auxiliary value that simplifies the model presentation, while
it can be avoided by removing constraint (3) and replacing each appearance of p′i in the other
constraints with the expression in the right hand side of (3). Constraint (4), together with
the minimization of the objective function in (1) defines Cmax as the makespan. Constraint (5)
represents the precedence constraints. For every pair of operations assigned to the same machine,
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constraints (6,7) say that both operations can not be processed at the same time and determine
which one is processed first. If two operations i and j that could have been both assigned to a
machine k (i.e. k ∈ Fi ∩ Fj 6= ∅) are not then we have that at most one between xik and xjk
is equal to 1. In this case, constraints (6,7) are trivially satisfied with yij = yji = 0. In (7), L
represents a sufficiently large positive constant (see [3] for a suggested value that may be used
in practice). Finally, constraint (8) says that the starting times of the operations must be not
smaller than the beginning of the considered planning horizon that, without loss of generality,
was set to 0.

Model (1–8) was introduced in [3], where a comparison with a simple extension of the model
presented in [26] was given. Up to the authors acknowledge these two models are the only
published ones that include the possibility of the precedences between the operations to be
given by an arbitrary directed acyclic graph.

3 List scheduling algorithm

In this section we describe a non-hierarchical list scheduling algorithm. It is non-hierarchical in
the sense that, at each iteration, it selects an operation, assigns it to a machine, and determines
a starting time. This is in contrast with hierarchical methods that in a first phase assign the
operations to the machines and in a second phase determine the starting times. A similar but
simpler heuristic (named EST) was very briefly described in [3, p.1426], where it was used, in
the context of evaluating a MILP model, to provide an upper bound on the solution (i.e. an
initial feasible solution) to the exact solver CPLEX.

The proposed list scheduling algorithm iterates o times and, at each iteration, selects an
operation i, assigns it to a machine k ∈ Fi, and determines the starting time st of operation i
on machine k. This process is guided by customized rules for the extended version of the FJS
problem. The decision is recorded by setting s[i]← st (starting time of operation i) and w[i]← k
(machine to which operation i was assigned). In the context of the algorithm, if the values of
s[i] and w[i] were defined, we say that operation i was already handled (by the algorithm) or
scheduled. Otherwise, if s[i] and w[i] are undefined, we say that operation i is still unhandled. At
a given iteration, operations that are candidates to be handled are those that are still unhandled
and such that do not have unhandled predecessors.

Parameters n, m, o, Fi (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi), and A, that determine an
instance of the FJS problem, are the input data of the list scheduling algorithm. From them,
some auxiliary instance data that aid to apply the algorithm can be computed. Those quantities,
that are defined for each operation i (i = 1, . . . , o), are:

(a) The predecessors and successors sets Pi and Si given by

Pi = {j ∈ {1, . . . , o} | (j, i) ∈ A}

and
Si = {j ∈ {1, . . . , o} | (i, j) ∈ A}.

(b) The average processing times p̄i given by

p̄i =
1

|Fi|
∑
k∈Fi

pik.
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(c) The remaining (or blocked) work RWi given by the longest (directed) path from i to any
other operation j in the digraph with set of arcs A, set of nodes {1, . . . , o}, and nodes’
weights p̄1, . . . , p̄o.

3.1 Characterization of partial solutions

To support, at each iteration, the selection of an operation (plus the machine that will process
it and its corresponding starting time), the algorithm keeps track of the following information:

s[i] that saves, for each handled operation i, its processing starting time. The value is unde-
termined if operation i is still unhandled.

w[i] that saves, for each handled operation i, the machine to which it was assigned. The value
is undetermined if operation i is still unhandled.

Cmax the maximum among the completion times of the handled operations, i.e. the makespan of
the partial solution (where by “partial solution” we mean the solution, not yet complete,
composed by the already handled operations).

u[i] that saves, for each operation i, the maximum among the completion times of its handled
predecessors.

v[k] that saves, for each machine k, the maximum among the completion times of the handled
operations that were assigned to it.

L[k] that saves, for each machine k, the sum of the processing times of the unhandled operations
that can potentially be assigned to it (this is an upper bound on the future load of the
machine).

η[i] that says, for each operation i, how many unhandled predecessors it has.

Ω the set of unhandled operations that have no unhandled predecessors (i.e. operations that
are natural candidates to be handled).

A partial solution with ` handled operations is characterized by the 9-tuple (`, s, w,Cmax, u, v,
L, η,Ω), that carries all the information needed (by the list scheduling algorithm that will be
presented below) to generate a new partial solution with ` + 1 handled operations. For the
particular case of the partial solution with ` = 0 scheduled operations, we have that:

s[i] undetermined for i = 1, . . . , o,

w[i] undetermined for i = 1, . . . , o,

Cmax = 0,

u[i] = 0 for i = 1, . . . , o,

v[k] = 0 for k = 1, . . . ,m,

L[k] =
∑
{i | k∈Fi} pik for k = 1, . . . ,m,

η[i] = |Pi| for i = 1, . . . , o,

Ω = {i ∈ {1, . . . , o} | Pi = ∅}.
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Let (`, s, w,Cmax, u, v, L, η,Ω) be a partial solution with 0 ≤ ` < o. If an operation i ∈ Ω
is assigned to a machine k ∈ Fi and scheduled to start its processing at time st, the 9-
uple that characterizes the new partial solution with ` + 1 handled operation is given by
(`+ 1, s′, w′, C ′max, u

′, v′, L′, η′,Ω′), where s′, w′, C ′max, u′, v′, L′, η′, and Ω′ receive, respectively,
the values of s, w, Cmax, u, v, L, η, and Ω and then are updated as follows:

s′[i] ← st,

w′[i] ← k,

C ′max ← max{C ′max, st+ pik},

u′[j] ← max{u′[j], st+ pik} for all j ∈ Si,

v′[k] ← max{v′[k], st+ pik},

L′[r] ← L′[r]− pir for all r ∈ Fi,

η′[j] ← η′[j]− 1 for all j ∈ Si,

Ω′ ← Ω′ \ {i} ∪ {j ∈ Si | η′[j] = 0}.

3.2 Selecting rules

The list scheduling algorithm introduced in this section starts with the partial solution with ` = 0
handled operations, handles a single operation per iteration, and ends after o iterations with a
feasible solution to the given instance of the FJS problem. We now describe the rules to choose,
at each iteration, the operation to be scheduled, the machine to which the operation is assigned,
and the operation’s starting time.

At each iteration, the set of candidate pairs operation/machine Ψ0 is given by

Ψ0 = {(i, k) | i ∈ Ω and k ∈ Fi}. (9)

The three rules below are sequentially applied until a single pair operation/machine (i, k) ∈ Ψ0

is selected and a processing starting time st is determined for the schedule of operation i on
machine k.

Rule 1: Pairs operation/machine with the earliest starting time.

In accordance with the minimization of the makespan, the first attribute used to select a
pair (i, k) from Ψ0 is based on the earliest starting time stik for operation i on machine k, given
by the maximum between two quantities: (a) the maximum between the completion times of the
(already handled) predecessors of operation i, given by u[i], and (b) the time at which machine k
ends to process all the already handled operations assigned to it, given by v[k]. Thus, we have
that

stik = max{u[i], v[k]} (10)

for all (i, k) ∈ Ψ0. Let
ŝt = min{stik | (i, k) ∈ Ψ0} (11)

be the smallest possible starting time among the candidate pairs (i, k) ∈ Ψ0. Only pairs (i, k)
such that stik = ŝt remain as a possibility for the iteration assignment (with the natural choice

9



s[i] = ŝt and w[i] = k), while the other pairs are discarded. Thus, let

Ψ1 = {(i, k) | (i, k) ∈ Ψ0 and stik = ŝt}. (12)

Rule 2: Fastest machine for each operation.

Let
Ψi

1 = {(j, k) | (j, k) ∈ Ψ1 and j = i} for i = 1, . . . , o,

i.e. Ψi
1 is the subset of pairs in Ψ1 that correspond to the same operation i (associated with

different machines in Fi). The focus of this rule is on the operations i such that |Ψi
1| > 1 and

the objective is to select, for each one of those operations, a single machine among the several
possibilities.

Let i be such that |Ψi
1| > 1 and let (i, k1), (i, k2), . . . be the elements of Ψi

1. Each machine
k1, k2, . . . is associated with the processing time pik1 , pik2 , . . . and the upper bound on the machine
load L[k1], L[k2], . . . Consider the triplets

(pik1 , L[k1], k1), (pik2 , L[k2], k2), . . .

and let Ψi
1.5 = {(i, kν)} be the singleton such that (pikν , L[kν ], kν) is the smallest triplet in the

lexicographical order. It means that, among all possible machines that can process operation i,
we select the one with the smallest processing time. In the case of a tie, the smallest upper bound
on the machine load is used as a tie-break and, in the case of a second tie, the machine with the
smallest index is chosen with no purpose other than defining a deterministic rule. Define

Ψ2 = {∪Ψi
1 | |Ψi

1| ≤ 1} ∪ {∪Ψi
1.5 | |Ψi

1| > 1}.

We have that Ψ2 ⊆ Ψ1 contains no more than one pair operation/machine for each operation
and, for the operations that had more than one possible machine, it preserves only the most
promising one (fastest and, in case of tie, less loaded).

Rule 3: Operation with the largest remaining or blocked work.

The next attribute used to reduce the number of candidate pairs (i, k) ∈ Ψ2 is based on an
estimate of the remaining (or blocked) work RWi that is associated with an operation i. Recall
that RWi is defined as the longest path from i to any other operation j in the digraph with set
of arcs A, set of nodes {1, . . . , o}, and nodes’ weights p̄1, . . . , p̄o. Note that if the longest path
starting at operation i ends at an operation j then Sj = ∅ and i and j belong to the same job t.
Moreover, stik + RWi may be seen as an estimate of the completion time of job t, computed
from the perspective of the candidate pair (i, k). However, since stik = ŝt for all (i, k) ∈ Ψ2, we
simple consider the value of RWi as an estimate of the remaining or blocked work associated
with operation i.

For the pairs (i1, k1), (i2, k2), . . . ∈ Ψ2 consider the triplets

(−RWi1 ,−L[k1], i1), (−RWi2 ,−L[k2], i2), . . .

and let (−RWiν ,−L[kν ], iν) be the smallest triplet in the lexicographical order, associated with
the pair (iν , kν). This means that a final selection was made and that it consists in assigning

10



operation iν to machine kν with starting time ŝt. In this way, we selected the operation with the
largest remaining or blocked work as the one to be scheduled. The idea behind this choice is to
rapidly handling operations that impair the processing of a large amount of work. In the case
of a tie, the upper bound on the future load of the machines is used as a tie-break, in order to
assign as soon as possible operations to a machine that has a large expected future load (trying
to minimize its idle time). Finally, in the case of a second tie, the operation with the smallest
index is chosen with no purpose other than defining a deterministic rule.

3.3 Pseudo-code and complexity

The computation of the auxiliary instance data (items (a–c) at the beginning of Section 3), the
initialization of the empty partial solution (Section 3.1), and the iterative application of rules 1–
3 (Section 3.2) plus the update of the partial solution characterization (Section 3.1) define the
method introduced in this section, that is fully described in Algorithm 1.

Sets Pi and Si are computed in lines 2–3, the average processing times p̄i are computed in
lines 4–7, the remaining work estimates RWi are computed in lines 8–16 by Dijkstra’s shortest
path method [5, pp.655–658] (adapted to compute the longest path and to the case in which
there may be several sources and several targets). The values of Cmax, u, v, L, η, and the set Ω
are initialized in lines 17–21. The main loop, from line 22 to line 41, executes o times rules 1–3.
The selected pair at each iteration is named (λ, θ) and the determined starting time is named ŝt.
The starting time s[λ] for operation λ is set at line 36, as well as the the machine θ to which
operation λ is assigned is recorded, in the same line, in w[λ]. The quantities Cmax, u, v, L, η,
and the set Ω are updated in lines 36–41.

A few words regarding the worst-case time complexity of Algorithm 1 are in order. Initializa-
tions from line 2 to 7 and from line 17 to 21 are O(|A|+m+

∑o
i=1 |Fi|). The Dijkstra’s algorithm

implemented in lines 8–16 has complexity O(|A|+ o). It remains to analyze the main loop that
goes from line 22 to line 41 and is executed o times. If we consider that at each iteration we
have that |Ω| ≤ o then we have that the loop is O(o

∑o
i=1 |Fi| + |A|). Thus, summing up, we

have that Algorithm 1 is

O

(
|A|+m+ o

o∑
i=1

|Fi|
)
.

On the other hand, a better bound for |Ω| can be given. Consider the directed acyclic graph
D = ({1, . . . , o}, A). An antichain in D is a set of nodes, no two of which are included in any
path of D. Noting that operations in Ω are operations that have no precedence constraints
among each other, it is not hard to see that the number of elements in Ω is limited by the size
of a maximum antichain in D (that can be computed in polynomial time [8]). Let w be the size
of a maximum antichain in D and let

q = |Fi1 |+ |Fi2 |+ . . .+ |Fiw |, (13)

where Fi1 , Fi2 , . . . , Fiw are the w largest sets among the sets Fi, i = 1, . . . , o. We can say that
the main loop (from line 22 to line 41) is O(oq + |A|). Then, we have that Algorithm 1 is

O(|A|+m+ oq),

that provides a tighter bound on the worst-case time complexity of the algorithm.
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Algorithm 1: List Scheduling.

Input: m, o, Fi (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi), A
Output: s[i], w[i] (i = 1, . . . , o), Cmax

ListScheduling(m, o, F, p,A)
begin1

for i← 1 to o do Pi ← ∅, Si ← ∅2

foreach (i, j) ∈ A do Pj ← Pj ∪ {i}, Si ← Si ∪ {j}3

for i← 1 to o do4

p̄i ← 05

foreach k ∈ Fi do p̄i ← p̄i + pik6

p̄i ← p̄i/|Fi|7

Q ← {i | |Si| = 0}8

for i← 1 to o do9

if i ∈ Q then RWi ← p̄i else RWi ← 010

while Q 6= ∅ do11

Let z ∈ Q, Q ← Q \ {z}12

foreach i ∈ Pz do13

if RWz + p̄i > RWi then14

RWi ← RWz + p̄i15

if i /∈ Q then Q ← Q∪ {i}16

Cmax ← 0, u[1 . . . o]← 0, v[1 . . .m]← 0, L[1 . . .m]← 017

for i← 1 to o do18

foreach k ∈ Fi do L[k]← L[k] + pik19

for i← 1 to o do η[i]← |Pi|20

Ω← {i | η[i] = 0}21

do o times22

ŝt←∞, R̂W ← 023

foreach i ∈ Ω do24

s̃t←∞, p̃t←∞25

foreach k ∈ Fi do26

st← max(u[i], v[k])27

if st < s̃t or ( st = s̃t and pik < p̃t )28

or ( st = s̃t and pik = p̃t and L[k] < L[k̃] )29

or ( st = s̃t and pik = p̃t and L[k] = L[k̃] and k < k̃ ) then30

s̃t← st, p̃t← pik, k̃ ← k31

if s̃t < ŝt or ( s̃t = ŝt and RWi > R̂W )32

or ( s̃t = ŝt and RWi = R̂W and L[k̃] > L[θ] )33

or ( s̃t = ŝt and RWi = R̂W and L[k̃] = L[θ] and i < λ ) then34

ŝt← s̃t, R̂W ← RWi, θ ← k̃, λ← i35

s[λ]← max(u[λ], v[θ]), w[λ]← θ, Cmax ← max(Cmax, s[λ] + pλθ)36

v[θ]← s[λ] + pλθ, Ω← Ω \ {λ}37

foreach k ∈ Fλ do L[k]← L[k]− pλk38

foreach i ∈ Sλ do39

η[i]← η[i]− 1, u[i]← max(u[i], s[λ] + pλθ)40

if η[i] = 0 then Ω← Ω ∪ {i}41

return s[i], w[i] (i = 1, . . . , o), Cmax42

end43
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4 Beam search method

At each iteration of the list scheduling algorithm described in the previous section, an operation
is selected, assigned to a machine, and its starting time is determined. On the one hand, all
decision are made based on heuristic rules. On the other hand, even if we were able to make a
decision based on a local optimal strategy, it is well-known that greedy algorithms not necessarily
provide good quality solutions. Therefore, paying the price of increasing the complexity of the
method, it makes sense to select, at each iteration, not a single operation to be handled, but a
small set of operations to be handled. In this way, a partial solution can be split into several
partial solutions with one more handled operation. This strategy gives rise to a search tree and
fits into the framework of a beam search method. In this sense, we say that the presented beam
search method is a “natural extension” of the list scheduling method described in the previous
section.

The introduced beam search method is a filtered beam search method with approximately f(β)
nodes at each level of the search tree, where β ∈ (0, 1] is a given real parameter and f : IR→ IN
is a function to be defined later. Each node at a given level ` of the search tree represents a par-
tial solution with ` handled operations. From the point of view of the beam search method, we
can say that the (simple, thus non-expensive) rules 1–3 described in the previous section place
the role of the local evaluation used to choose the g(α) more promising operations that would
be considered to add one more handled operation to a given partial solution (where α ∈ (0, 1]
is a given real parameter and g : IR→ IN is a function to be defined later). Therefore, a partial
solution may be split into g(α) partial solutions with one more handled operation. Then, a
global (and more time consuming) evaluation is considered in order to select one partial solu-
tions among the set of g(α) partial solutions. As expected, the global evaluation consists in
completing each partial solution by running to the end the list scheduling algorithm described
in the previous section. The one with the smallest makespan is chosen as the child of the parent
being considered and, in this way, a new level of the search tree is built. In this work, we adopted
the strategy of keeping a single child for each node as suggested in [30].

4.1 Local and global strategies

We now describe how rules 1–3 from the list scheduling algorithm are used to generate the
children of a given node or partial solution. Consider a partial solution with ` < o scheduled op-
erations, or, equivalently, a node at level ` of the search tree, given by (`, s, w, u, v, L, Cmax, η,Ω).
Rules 1–3 can be applied to select a pair (i1, k1) ∈ Ψ0 and a starting time sti1k1 for operation
i1 on machine k1; and the pair (i1, k1) with the starting time sti1k1 can be used to generate a
partial solution with an additional handled operation. We will say that the generated child is
the most promising child from the point of view of the local strategy. Assume now that the
pair (i1, k1) is forbidden and that rules 1–3 are applied again (to the node at level `). Then,
another pair (i2, k2) ∈ Ψ0 is selected and a starting time sti2k2 for operation i2 on machine k2
determined. This pair can also be used to generate a second child. We will say that this second
child is the second more promising child from the point of view of the local strategy.

In the way described in the previous paragraph, several children may be generated. On the
one hand, since a relatively expensive global strategy must be applied to all children in order
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to keep a single child, a limit on the number of generated children is imposed. This limit is
a function of the input parameter α ∈ (0, 1] and, ideally, should be independent of the size of
the instance. However, to avoid a degradation on the method’s performance for instances of
increasing sizes, we considered a limit given by α̂1 ≡ dα|Ψ0|e. Note that Ψ0 (as defined in (9))
depends on the partial solution being considered and, therefore, α̂1 may vary from node to
node. On the other hand, a second limit that depends on the input parameter ξ > 0 and aims
to preserve the children’s quality is also imposed. Note that rule 1 constructs the set Ψ1 (see 12)
picking up from Ψ0 (see (9)) the pairs (i, k) such that stik = ŝt, where stik and ŝt are given
by (10) and (11), respectively. This means that (in the list scheduling algorithm) only pairs
operation/machine with the earliest possible starting time are candidates for producing a new
partial solution with an additional handled operation. However, this may not be the case when
rules 1–3 are applied iteratively to pick several pairs up from Ψ0. Therefore, it makes sense to
impose an upper bound on the starting time of the selected pairs. Consider the set

Ψ0.5 = {(i, k) | (i, k) ∈ Ψ0 and stik ≤ ŝt+ ξ p̂} ⊆ Ψ0, (14)

where
ŝt = min{stik | (i, k) ∈ Ψ0} and p̂ = max{pik | (i, k) ∈ Ψ0}. (15)

By imposing that no more than α̂2 ≡ |Ψ0.5| children can be generated, we guarantee that the
children’s starting time will not be larger than ŝt + ξ p̂. This means that the bound on the
number of children is given by α̂ ≡ min{α̂1, α̂2}. This defines the function g(α) that depends
on the node and determines how many children will be chosen by the local strategy.

We aim at generating a single child for each node (or, in other words, keeping a single
child open and closing or bounding all the others). Given the node (`, s, w, u, v, L, Cmax, η,Ω),
a natural way to do that would be to complete the partial solution it represents in different
ways by selecting every possible pair in (i, k) ∈ Ψ0 (associated with the earliest starting time
of operation i on machine k) and then completing all those partial solutions, that have ` + 1
scheduled operations, using the list scheduling algorithm. Since applying the list scheduling
algorithm to all the |Ψ0| children may be too expensive, the strategy described in the previous
paragraph filters the children preserving only the α̂ more promising children.

After having selected a small set of promising children, the so called global strategy is
used to pick a single child from the set. As already suggested, the global strategy consists of
computing the makespan of a solution that can be obtained by completing each child using the
list scheduling algorithm. Note that we are not interested in the completed solution, but only
in its makespan. The completed solution has an associated makespan that we will name Cest

max.
Among all children, the one with the smallest Cest

max is the chosen one, while all the others are
discarded, closed, or bounded. A few technical details related to tie breaks between children and
some other minor details will be given below, when describing the pseudo-code of the introduced
beam search method.

4.2 Pseudo-code and complexity

The whole beam search method is described in Algorithms 2–5. Algorithm 2 corresponds to
the initializations and to the construction of the first level of the search tree, that is slightly
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different from the construction of the other levels. Algorithm 5 is the core of the beam search
method that iterates o− 1 times generating the successive levels of the search tree. Algorithm 4
consists of subroutine Select that receives a partial solution and implements rules 1–3 to select
a pair operation/machine that can be used to expand the given partial solution. Algorithm 3
consists of subroutine CmaxEst that receives a partial solution and, by completing it using the
list scheduling algorithm, computes an estimate of the completion time that could be obtained
by completing the given partial solution. Algorithm 3 is a re-implementation of Algorithm 1 in
the form of a subroutine that does not perform the initializations and receives a partial solution.
Subroutine Select plays the role of the local evaluation while subroutine CmaxEst plays the
role of the global evaluation.

The input parameters of Algorithm 2 are the data that describes the instance (n, m, o,
Fi (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi), A) plus the scalar real values ξ > 0 and α, β ∈
(0, 1]. Parameter ξ is related to the tolerance for the earliest starting time stik of a candidate
operation/machine pair (i, k) with respect to the minimum earliest starting time ŝt among all
pairs in Ψ0, as described in (14,15). Parameter α is related to the number of children of a given
node that are selected by the local strategy and to which the global strategy is applied in order
to keep a single child per node. Parameter β determines the number of nodes that remain open
at each level of the search tree.

Lines 2 to 16 of Algorithm 2 initializes (in the same way it is done in Algorithm 1) Pi, Si, p̄i,
and RWi (i = 1, . . . , o). Quantities C ′max, u′, v′, L′, η′, and the set Ω′ associated with the partial
solution with none scheduled operation (i.e. the root node of the search tree) are initialized in
lines 17–21. Since the “quality” of the partial solutions at the first level of the search tree has
a strong influence in the overall performance of the method, no filter is considered to construct
the first level. It means that all possible pairs operation/machine will be evaluated by the global
strategy and the most promising ones will constitute the first level of the search tree (partial
solutions with a single scheduled or handled operation). Lines 22 to 34 are devoted to this task.
All possible pairs operation/machine (i.e. the ones in Ψ0 as defined in (9)) are considered, the
partial solutions are constructed, its estimated completion times are computed (see the call to
subroutine CmaxEst at line 33), and the partial solutions are saved in the set N ′. In lines 35
and 36, the fraction β of the most promising partial solutions in N ′ is saved into the set N that
turns out to be the first level of the search tree. Note that due to possible ties, the cardinality
of N may be larger than β̂ ≡ dβ |N ′|e. In line 37 subroutine BeamSearch (implemented in
Algorithm 5) is called. It receives the first level of the search tree, constructs the remaining of
the tree, and returns the best leave.

Algorithm 5 implements subroutine BeamSearch. It iterates o−1 times (see the main loop
in line 2). Each iteration starts with the set N composed by the nodes of the current level of
the search tree. Nodes in N are temporary labeled (numbered from 1 to |N |) with the identifier
nid (that stands for “node identifier”) (see lines 3 and 5) and a set of children Dnid for each
node is constructed. The limit on the number of children of each node was already described in
the previous subsection and is implemented in lines 6–16. Then, a single child for each node is
selected and saved into the set N ′. The iteration finishes replacing N by N ′. It means that no
tree structure is in fact build, since only the nodes of the current level are needed as each node
carries full information of the partial solution it represents.

The set of childrenDnid of a given node identified by nid is build in lines 17–28. The setDnid is
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initialized as the empty set in line 17. Exactly min{α̂1, α̂2} children are generated, where α̂1 is the
one computed in line 6 and α̂2 is computed in lines 12–16. A copy (s′, w′, C ′max, u

′, v′, L′, η′,Ω′) of
the current solution (s, w,Cmax, u, v, L, η,Ω) is made at line 19. A pair operation/machine (λ, θ)
is selected (at line 20) by calling to subroutine Select. The new partial solution with an extra
handled operation is build (lines 21–26) and its estimated completion time Cest

max is computed
by calling to subroutine CmaxEst at line 27. The new partial solution, together with λ, θ, and
Cest
max, is saved in Dnid. To guarantee that a different pair operation/machine will be selected

in the forthcoming calls to subroutine Select (to generate the siblings of the just generated
partial solution), the selected pair (λ, θ) is added to the set F , that stands for “forbidden pairs”.
Subroutine Select (see Algorithm 4) implements rules 1–3 with the only difference that the
most promising pair is chosen from Ψ0 \ F .

It remains to explain how a single child for node nid is chosen from the set Dnid for nid =
1, . . . , |N |. This selection is based on the value of Cest

max and it uses (λ, θ) to solve tie-breaks.
Other than that, there is an additional task that requires to inspect all Dnid simultaneously: to
avoid identical children of different partial solutions in N . Note that all nodes in the first level of
the search tree are different (since they consist of partial solutions with a single handled operation
coming from different pairs operation/machine). However, when expanded, by considering an
additional handled operation, two different partial solutions may become identical. Moreover, if
some level of the search tree has identical solutions, their expansions will continue being identical
to the end, affecting the diversity of the leaves (complete solutions). To avoid this situation,
before choosing a single child per node, identical partial solutions are removed from ∪Dnid. If
identical partial solutions exist, the one with smallest λ is preserved and, in case of ties, the one
with smallest θ. (This strategy solves all possible ties since identical partial solutions can not
have identical λ and θ. Otherwise, there must be identical parents, which is not the case.) This
elimination of identical partial solutions is done in the loop that goes form line 30 to line 36,
marking the solutions to be removed by setting Cest

max equal to ∞. Solutions are in fact removed
in line 37. Finally, the best child of each parent is chosen in lines 38 and 39 and saved in the
set N ′ that, at the end of the iteration, substitutes the current set of nodes N (see line 40).

A few words regarding the complexity of the beam search method described by Algorithms 2–
5 are in order. Algorithm 3 is O(oq + |A|) while Algorithm 4 is O(q) with q given by (13), as
already analysed in Section 3.3. Algorithms 2 (disregarding line 37 where subroutine Beam-
Search described by Algorithm 5 is called, i.e. considering initializations and construction of
the first level of the search tree only) has a worst-case time complexity

O

(
o∑
i=1

|Fi|+ r + oq2 + q|A|
)
,

where
r = |Fi1 ||Si1 |+ |Fi2 ||Si2 |+ . . .+ |Fiw ||Siw |,

w is the size of a maximum antichain in D = ({1, . . . , o}, A), and the indices i1, i2, . . . , io are
such that |Fi1 ||Si1 | ≥ |Fi2 ||Si2 | ≥ . . . ≥ |Fio ||Sio |. To analyze Algorithm 5, we will first assume
that α̂ and β̂ are constants that do not depend on the instance size. It implies that each level
of the search tree has |N | ≤ β̂ and that |Dnid| ≤ α̂ for nid = 1, . . . , |N |. Thus, we have that the
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worst-case time complexity of Algorithm 5 is given by

O
(
α̂β̂(o|A|+ o2q) + α̂2o

)
. (16)

However, in practice, we consider α̂ = O(q) and β̂ = O(q). Therefore, (16) becomes

O
(
oq2|A|+ o2q3

)
.

Summing up, the overal worst-case time complexity of the introduced beam search method is

O
(
r + q|A|+ α̂β̂(o|A|+ o2q) + α̂2o

)
,

if α̂ and β̂ are given constants or O
(
r + oq2|A|+ o2q3

)
, if α̂ and β̂ are O(q).
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Algorithm 2: Beam Search initialization and construction of the search tree’s first level.

Input: m, o, Fi (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi), A, α, β, ξ
Output: s∗[i], w∗[i] (i = 1, . . . , o), C∗max

BeamSearchIni(m, o, F, p,A, α, β, ξ)
begin1

for i← 1 to o do Pi ← ∅, Si ← ∅2

foreach (i, j) ∈ A do Pj ← Pj ∪ {i}, Si ← Si ∪ {j}3

for i← 1 to o do4

p̄i ← 05

foreach k ∈ Fi do p̄i ← p̄i + pik6

p̄i ← p̄i/|Fi|7

Q ← {i | |Si| = 0}8

for i← 1 to o do9

if i ∈ Q then RWi ← p̄i else RWi ← 010

while Q 6= ∅ do11

Let z ∈ Q, Q ← Q \ {z}12

foreach i ∈ Pz do13

if RWi < RWz + p̄i then14

RWi ← RWz + p̄i15

if i /∈ Q then Q ← Q∪ {i}16

C ′max ← 0, u′[1 . . . o]← 0, v′[1 . . .m]← 0, L′[1 . . .m]← 017

for i← 1 to o do18

foreach k ∈ Fi do L′[k]← L′[k] + pik19

for i← 1 to o do η′[i]← |Pi|20

Ω′ ← {i | η′[i] = 0}, N ′ ← ∅21

foreach λ ∈ Ω do22

L, η,Ω← L′, η′,Ω′23

foreach k ∈ Fλ do L[k]← L[k]− pλk24

foreach i ∈ Sλ do25

η[i]← η[i]− 126

if η[i] = 0 then Ω← Ω ∪ {i}27

Ω← Ω \ {λ}28

foreach θ ∈ Fλ do29

s, w,Cmax, u, v ← s′, w′, C ′max, u
′, v′30

s[λ]← max(u[λ], v[θ]), w[λ]← θ, Cmax ← max{Cmax, s[λ] + pλθ}, v[θ]← s[λ] + pλθ31

foreach i ∈ Sλ do u[i]← max(u[i], s[λ] + pλθ)32

Cest
max ← CmaxEst(m, o, F, p,S, RW, 1, s, w,Cmax, u, v, L, η,Ω)33

N ′ ← N ′ ∪ {(1, s, w,Cmax, u, v, L, η,Ω, C
est
max)}34

β̂ ← dβ |N ′|e and let Ĉest
max be the β̂-th smallest Cest

max such that (·, ·, ·, ·, ·, ·, ·, ·, ·, Cest
max) ∈ N ′35

N ← {(1, s, w,Cmax, u, v, L, η,Ω) | (1, s, w,Cmax, u, v, L, η,Ω, C
est
max) ∈ N ′ and Cest

max ≤ Ĉest
max}36

s∗, w∗, C∗max ← BeamSearch(m, o, F, p,S, RW,α, ξ,N )37

return s∗[i], w∗[i] (i = 1, . . . , o), C∗max38

end39
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Algorithm 3: Completion time estimation procedure (global evaluation).

Input: m, o, `, Cmax, Ω, u[i], RWi, Si, Fi, η[i], s[i], w[i] (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi),
v[k], L[k] (k = 1, . . . ,m)

Output: Cmax

CmaxEst(m, o, F, p,S, RW, `, s, w,Cmax, u, v, L, η,Ω)
begin1

do o− ` times2

λ, θ ← Select(m, o, F, p,RW, u, v, L,Ω, ∅)3

s[λ]← max(u[λ], v[θ]), w[λ]← θ, Cmax ← max{Cmax, s[λ] + pλθ}4

v[θ]← s[λ] + pλθ, Ω← Ω \ {λ}5

foreach k ∈ Fλ do L[k]← L[k]− pλk6

foreach i ∈ Sλ do7

η[i]← η[i]− 1, u[i]← max(u[i], s[λ] + pλθ)8

if η[i] = 0 then Ω← Ω ∪ {i}9

return Cmax10

end11

Algorithm 4: Selection procedure (local evaluation).

Input: m, o, u[i], RWi, Fi (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi), v[k], L[k] (k = 1, . . . ,m), Ω, F
Output: λ, θ
Select(m, o, F, p,RW, u, v, L,Ω,F)
begin1

ŝt←∞, R̂W ← 02

foreach i ∈ Ω do3

s̃t←∞, p̃t←∞4

foreach k ∈ Fi do5

if (i, k) /∈ F then6

st← max(u[i], v[k])7

if st < s̃t or ( st = s̃t and pik < p̃t )8

or ( st = s̃t and pik = p̃t and L[k] < L[k̃] )9

or ( st = s̃t and pik = p̃t and L[k] = L[k̃] and k < k̃ ) then10

s̃t← st, p̃t← pik, k̃ ← k11

if s̃t < ŝt or ( s̃t = ŝt and RWi > R̂W )12

or ( s̃t = ŝt and RWi = R̂W and L[k̃] > L[θ] )13

or ( s̃t = ŝt and RWi = R̂W and L[k̃] = L[θ] and i < λ ) then14

ŝt← s̃t, R̂W ← RWi, θ ← k̃, λ← i15

return λ, θ16

end17

19



Algorithm 5: Beam Search body.

Input: m, o, RWi, Si, Fi (i = 1, . . . , o), pik (i = 1, . . . , o, k ∈ Fi), α, ξ, N
Output: s∗[i], w∗[i] (i = 1, . . . , o), C∗max

BeamSearch(m, o, F , p, S, RW , α, ξ, N )
begin1

do o− 1 times2

nid← 03

foreach (`, s, w,Cmax, u, v, L, η,Ω) ∈ N do4

nid← nid + 15

α̂1 ← d α |{(i, k) | i ∈ Ω and k ∈ Fi}| e6

stmin ←∞, ptmax ← 07

foreach i ∈ Ω do8

foreach k ∈ Fi do9

st← max(u[i], v[k])10

stmin ← min{stmin, st}, ptmax ← max{ptmax, pik}11

α̂2 ← 012

foreach i ∈ Ω do13

foreach k ∈ Fi do14

st← max(u[i], v[k])15

if st ≤ stmin + ξ ptmax then α̂2 ← α̂2 + 116

Dnid ← ∅, F ← ∅17

do min{α̂1, α̂2} times18

s′, w′, C ′max, u
′, v′, L′, η′,Ω′ ← s, w,Cmax, u, v, L, η,Ω19

λ, θ ← Select(m, o, F, p,RW, u′, v′, L′,Ω′,F)20

s′[λ]← max(u′[λ], v′[θ]), w′[λ]← θ, C ′max ← max{C ′max, s
′[λ] + pλθ}21

v′[θ]← s′[λ] + pλθ, Ω′ ← Ω′ \ {λ}22

foreach k ∈ Fλ do L′[k]← L′[k]− pλk23

foreach i ∈ Sλ do24

η′[i]← η′[i]− 1, u′[i]← max(u′[i], s′[λ] + pλθ)25

if η′[i] = 0 then Ω′ ← Ω′ ∪ {i}26

Cest
max ← CmaxEst(m, o, F, p,S, RW, `+ 1, s′, w′, C ′max, u

′, v′, L′, η′,Ω′)27

Dnid ← Dnid ∪ {(λ, θ, `+ 1, s′, w′, C ′max, u
′, v′, L′, η′,Ω′, Cest

max)}, F ← F ∪ {(λ, θ)}28

N ′ ← ∅29

for nid1 ← 1 to |N | do30

foreach (λ1, θ1, `+ 1, s, w,Cmax, u, v, L, η,Ω, C
est
max) ∈ Dnid1

do31

for nid2 ← nid1 + 1 to |N | do32

foreach (λ2, θ2, `+ 1, s′, w′, C ′max, u
′, v′, L′, η′,Ω′, Cest

max
′
) ∈ Dnid2

do33

if ( s = s′ and w = w′ ) or ( `+ 1 = o and Cmax = C ′max) then34

if λ1 < λ2 or ( λ1 = λ2 and θ1 < θ2 ) then Cest
max
′ ←∞35

else Cest
max ←∞36

Remove from Dnid1
the elements with Cest

max =∞.37

if Dnid1
6= ∅ then38

Let (λ, θ, `+ 1, s, w,Cmax, u, v, L, η,Ω, C
est
max) ∈ Dnid1

with smallest Cest
max. In case39

of ties, consider the one with smallest λ and in case of ties consider the one with
smallest θ. N ′ ← N ′ ∪ {(`+ 1, s, w,Cmax, u, v, L, η,Ω)}.

N ← N ′40

Let (o, s∗, w∗, C∗max, u, v, L, η,Ω) ∈ N with smallest C∗max.41

return s∗[i], w∗[i] (i = 1, . . . , o), C∗max42

end43
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5 Numerical experiments

We implemented the list scheduling algorithm (Algorithm 1) and the beam search method
(Algorithms 2–5) in order to be able to evaluate their efficiency and efficacy. Codes, fully written
in C/C++ and available for download at http://www.ime.usp.br/∼egbirgin/, were compiled with
the g++ compiler of GCC (version 4.7.2, Debian 4.7.2-5) using the optimization option “-O3”.
All tests were conducted on a 2.40GHz Intel(R) Xeon(R) E5645 with 132GB of RAM memory
and running GNU/Linux operating system (Debian 7, kernel 3.7.6 SMP x86 64). Detailed
descriptions of the numerical results (including a complete description of the obtained solutions)
are also available for download together with the source codes of the implemented methods.

In order to have a way to evaluate the behavior of the introduced methods when applied to
small and medium-sized instances, we applied an exact solver to the 50 instances of model (1–8)
introduced in [3]. Instances YFJS01–YFJS20 correspond to instances composed by two inde-
pendent sequences of operations followed by an assembling operation that joins the previously
processed components (named Y-jobs in [3]); while instances DAFJS01–DAFJS30 correspond
to instances composed by jobs whose precedences are given by arbitrary directed acyclic graphs.
Tables 1 and 2 summarize the main characteristics of each instance. Figure 3 and 4 illustrate
the kind of operations’ precedence constraints that are present in each set of instances. It is
worth noting that other complicating issues of the instances (like the routing flexibility given by
the fact that each operation can be performed by a subset of machines) are not being displayed
in the pictures. As exact solver, we used the IBM ILOG CPLEX 12.1 solver with the following
settings: 1 for the maximum number of threads and 2048MB for working memory. All other
parameters were left at their default values. In a first run, the CPU time limit was set to 1
hour and, in a second run, considering only the instances for which the optimal solutions was
not found in the first run, the CPU time limit was set to 10 hours. Tables 3 and 4 show the
results for the sets of instances YFJS01–YFJS20 and DAFJS01–DAFJS30, respectively. In the
tables, “mks” stands for makespan and “CPU(s)” stands for the elapsed CPU time in seconds.
In the cases in which the exact solver achieved the CPU time limit without finding an optimal
solution, the tables report the obtained lower and upper bounds and the relative gap (given
by the difference between the bounds divided by the upper bound). It is worth noting (in
Table 3) that the exact solver was able to find the optimal solution in 14 (YFJS01–YFJS14)
out of the 20 instances YFJS01–YFJS20, while a gap smaller than 1% was also obtained in 2
other instances (YFJS15 and YFJS16). On the other hand, Table 4 shows that the exact solver
found the optimal solution in only 4 instances out of 30 and a gap smaller than 1% in a single
instance when considering the set of instances DAFJS01–DAFJS30. These results will explain
the “improvements” obtained by the introduced heuristic methods when compared against the
solutions obtained by the exact solver (with a CPU time limit).

In a first set of experiments, we aim to evaluate the numerical performance of the list
scheduling algorithm. Tables 5 and 6 show the results of applying the list scheduling algorithm to
the sets of instances YFJS01–YFJS20 and DAFJS01–DAFJS30, respectively. For each instance,
the tables display the makespan of the solution obtained by the list scheduling algorithm. A
comparison with the makespan obtained by the EST heuristic presented in [3] and the makespan
obtained by the exact solver with CPU time limits of 1 and 10 hours is also presented. In each
case, if v1 is the value of the makespan found by the list scheduling algorithm and v2 is the
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Name n m
# of operations |Fi| # of precedences
min max

∑
min max

∑
min max

∑
YFJS01 4 7 10 10 40 1 3 104 0 2 36
YFJS02 4 7 10 10 40 1 3 104 0 2 36
YFJS03 6 7 4 4 24 2 3 63 0 2 18
YFJS04 7 7 4 4 28 2 3 71 0 2 21
YFJS05 8 7 4 4 32 2 3 81 0 2 24
YFJS06 9 7 4 4 36 2 3 95 0 2 27
YFJS07 9 7 4 4 36 2 3 93 0 2 27
YFJS08 9 12 4 4 36 2 3 100 0 2 27
YFJS09 9 12 4 4 36 4 8 219 0 2 27
YFJS10 10 12 4 4 40 1 3 113 0 2 30
YFJS11 10 10 5 5 50 1 3 134 0 2 40
YFJS12 10 10 5 5 50 2 3 133 0 2 40
YFJS13 10 10 5 5 50 1 3 137 0 2 40
YFJS14 13 26 17 17 221 2 3 641 0 2 208
YFJS15 13 26 17 17 221 2 3 648 0 2 208
YFJS16 13 26 17 17 221 2 3 633 0 2 208
YFJS17 17 26 17 17 289 3 5 1328 0 2 272
YFJS18 17 26 17 17 289 3 5 1362 0 2 272
YFJS19 17 26 17 17 289 3 5 1347 0 2 272
YFJS20 17 26 17 17 289 3 5 1343 0 2 272

Table 1: Description of the instances with Y-jobs.

1 2 3 4 5 6 7 8 9 10

11 12 13

17 18

14 15 16

19 20

21 22

27 28

23 24 25 26

29 30

31 32

37 38

33 34 35 36

39 40

Figure 3: Graphical representation of the operations’ precedence constraints of instance YFJS02.
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Name n m
# of operations |Fi| # of precedences
min max

∑
min max

∑
min max

∑
DAFJS01 4 5 5 9 26 2 4 82 0 3 26
DAFJS02 4 5 5 7 25 2 4 79 0 3 23
DAFJS03 4 10 10 17 55 3 7 279 0 2 52
DAFJS04 4 10 9 14 43 3 7 220 0 2 40
DAFJS05 6 5 5 13 39 2 4 104 0 3 34
DAFJS06 6 5 5 13 44 2 4 136 0 3 41
DAFJS07 6 10 7 23 85 3 7 431 0 3 82
DAFJS08 6 10 6 23 85 3 7 403 0 3 82
DAFJS09 8 5 4 9 45 2 4 135 0 3 42
DAFJS10 8 5 4 11 58 2 4 168 0 3 52
DAFJS11 8 10 10 23 113 3 7 534 0 3 108
DAFJS12 8 10 9 22 117 3 7 603 0 3 114
DAFJS13 10 5 5 11 62 2 4 193 0 3 55
DAFJS14 10 5 4 10 69 2 4 206 0 3 62
DAFJS15 10 10 8 19 120 3 7 595 0 3 117
DAFJS16 10 10 6 20 120 3 7 602 0 3 114
DAFJS17 12 5 4 11 82 2 4 246 0 3 77
DAFJS18 12 5 5 9 74 2 4 231 0 2 64
DAFJS19 8 7 7 13 70 3 5 283 0 3 66
DAFJS20 10 7 6 17 92 3 5 361 0 3 87
DAFJS21 12 7 5 16 107 3 5 425 0 3 102
DAFJS22 12 7 5 17 116 3 5 450 0 3 109
DAFJS23 8 9 6 17 76 4 6 367 0 3 71
DAFJS24 8 9 6 25 92 4 6 463 0 2 87
DAFJS25 10 9 9 19 123 4 6 619 0 3 119
DAFJS26 10 9 8 17 119 4 6 606 0 3 116
DAFJS27 12 9 7 22 127 4 6 625 0 3 118
DAFJS28 8 10 8 15 91 3 7 457 0 3 89
DAFJS29 8 10 7 19 95 3 7 468 0 3 94
DAFJS30 10 10 8 19 98 3 7 509 0 3 94

Table 2: Description of the instances for which the precedence relations between the operations
are given by an arbitrary directed acyclic graph.

value of the makespan found by the other method, “diff”, that stands for relative difference, is
given by (v1−v2)/v2. This means that negative values of “diff” indicate that the list scheduling
algorithm found a solution of better quality. Both tables show that the introduced list scheduling
method improves the solutions obtained by the heuristic EST introduced in [3]. When compared
against the exact solver, we must consider the two sets of instances in separate. In the set of
instances YFJS01–YFJS20 for which the exact solver found optimal solutions in most of the
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Figure 4: Graphical representation of the operations’ precedence constraints of instance
DAFJS28.

cases, the difference is approximately 35%. In the set of instances DAFJS01–DAFJS30, in
which the exact solver was unable to find optimal solutions in most of the cases, the distance
is approximately 7%. Needless to say, the list scheduling algorithm runs, for every instance, in
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Instance
CPLEX with 1h of time limit CPLEX with 10h of time limit

mks CPU(s) mks CPU(s)

YFJS01 773 10.83 – –
YFJS02 825 9.25 – –
YFJS03 347 3.50 – –
YFJS04 390 7.31 – –
YFJS05 445 341.38 – –
YFJS06 [427;447] 4.47% 3600 446 15072.02
YFJS07 444 1277.35 – –
YFJS08 353 0.59 – –
YFJS09 242 13.09 – –
YFJS10 399 3.83 – –
YFJS11 526 168.72 – –
YFJS12 512 2843.79 – –
YFJS13 405 1427.47 – –
YFJS14 1317 3378.27 – –
YFJS15 [1239;1244] 0.40% 3600 [1239;1244] 0.40% 36000
YFJS16 [1222;1243] 1.69% 3600 [1222;1231] 0.73% 36000
YFJS17 [1133;1622] 30.15% 3600 [1133;1290] 12.17% 36000
YFJS18 [1220;2082] 41.40% 3600 [1220;1499] 18.61% 36000
YFJS19 [926;1525] 39.28% 3600 [926;1333] 30.53% 36000
YFJS20 [968;2020] 52.08% 3600 [968;1279] 24.32% 36000

Table 3: Numerical results of applying an exact MIP solver (CPLEX) to instances YFJS01–
YFJS20 of model (1-8). Following [3], an initial feasible solution computed with the heuristic
EST [3] was given to CPLEX.

less than a fraction of a second. In any case, it is not our intention to compare our heuristic
method against the exact solver but simple to evaluate the quality of the obtained solutions.

In a second set of experiments, we aim to evaluate the numerical performance of the in-
troduced beam search method. As every heuristic method, it is also relevant to evaluate the
influence of the method’s parameters in its performance. With that purpose, we considered all 80
combinations of α ∈ {0.25, 0.5, 0.75, 1}, β ∈ {0.25, 0.5, 0.75, 1}, and ξ ∈ {0, 0.25, 0.5, 0.75, 1}. For
each combination of parameters, we run the beam search method and we computed the average
difference against the solutions obtained by the exact solver running with a CPU time limit
of 1 hour and 10 hours. Tables 7 and 8 show those average distances for the sets of instances
YFJS01–YFJS20 and DAFJS01–DAFJS30, respectively. The same information is graphically
presented in Figures 5a and 5b, respectively. Additionally, Figures 6a and 6b present the average
elapsed CPU time (in seconds) of the beam search method for each combination of parameters.

A few comments are in order. We will focus in the comparison against the solutions obtained
by the exact solver with a CPU time limit of 1 hour (the other comparison is similar). Table 7
shows that the beam search method with the combination (α, β, ξ) = (1, 1, 1) achieves an average
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Instance
CPLEX with 1h of time limit CPLEX with 10h of time limit

mks CPU(s) mks CPU(s)

DAFJS01 257 50.17 – –
DAFJS02 289 794.66 – –
DAFJS03 576 10.22 – –
DAFJS04 606 0.76 – –
DAFJS05 [351.57;402] 12.54% 3600 [381;394] 3.30% 36000
DAFJS06 [326;431] 24.36% 3600 [326;410] 20.49% 36000
DAFJS07 [497.90;565] 11.88% 3600 [498.22;547] 8.92% 36000
DAFJS08 [628;631] 0.48% 3600 [628;631] 0.48% 36000
DAFJS09 [315;484] 34.92% 3600 [316.74;471] 32.75% 36000
DAFJS10 [336;569] 40.95% 3600 [336;538] 37.55% 36000
DAFJS11 [658;708] 7.06% 3600 [658;701] 6.13% 36000
DAFJS12 [530;720] 26.39% 3600 [530;720] 26.39% 36000
DAFJS13 [304;710] 57.18% 3600 [304;683] 55.49% 36000
DAFJS14 [358.95;838] 57.17% 3600 [358.95;775] 53.68% 36000
DAFJS15 [512;818] 37.41% 3600 [512;796] 35.68% 36000
DAFJS16 [640;831] 22.98% 3600 [640;798] 19.80% 36000
DAFJS17 [300;904] 66.81% 3600 [300;902] 66.74% 36000
DAFJS18 [322;951] 66.14% 3600 [322;878] 63.33% 36000
DAFJS19 [512;595] 13.95% 3600 [512;585] 12.48% 36000
DAFJS20 [434;815] 46.75% 3600 [434;810] 46.42% 36000
DAFJS21 [504;965] 47.77% 3600 [504;959] 47.45% 36000
DAFJS22 [464;902] 48.56% 3600 [464;896] 48.21% 36000
DAFJS23 [450;541] 16.82% 3600 [450;537] 16.20% 36000
DAFJS24 [476;660] 27.88% 3600 [476;648] 26.54% 36000
DAFJS25 [584;897] 34.89% 3600 [584;879] 33.56% 36000
DAFJS26 [565;903] 37.43% 3600 [565;898] 37.08% 36000
DAFJS27 [503;981] 48.73% 3600 [503;981] 48.73% 36000
DAFJS28 [535;662] 19.18% 3600 [535;572] 6.47% 36000
DAFJS29 [609;720] 15.42% 3600 [609;710] 14.23% 36000
DAFJS30 [467;637] 26.69% 3600 [467;615] 24.07% 36000

Table 4: Numerical results of applying an exact MIP solver (CPLEX) to instances DAFJS01–
DAFJS30 of model (1-8). Following [3], an initial feasible solution computed with the heuristic
EST [3] was given to CPLEX.

distance of 3.5% in the set of instances YFJS01–YFJS20. This is an interesting result if we recall
that for that set of instances the exact solver found optimal solutions in most of the cases. On
the other extreme of the table, with the choice of parameters (α, β, ξ) = (0.25, 0.25, 0), the
difference is 8.86%. On the other hand, Figure 6a shows that with the former combination
of parameters the beam search method requires, almost 2 650 seconds per instance in average,
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Instance mks
EST heuristic [3] CPLEX (1h limit) CPLEX (10h limit)
mks diff mks diff mks diff

YFJS01 1130 1318 -14.26 773 46.18 773 46.18
YFJS02 1133 1243 -8.85 825 37.33 825 37.33
YFJS03 575 439 30.98 347 65.71 347 65.71
YFJS04 576 569 1.23 390 47.69 390 47.69
YFJS05 608 566 7.42 445 36.63 445 36.63
YFJS06 633 633 0.00 447 41.61 446 41.93
YFJS07 628 628 0.00 444 41.44 444 41.44
YFJS08 485 531 -8.66 353 37.39 353 37.39
YFJS09 402 506 -20.55 242 66.12 242 66.12
YFJS10 513 541 -5.18 399 28.57 399 28.57
YFJS11 745 740 0.68 526 41.63 526 41.63
YFJS12 744 813 -8.49 512 45.31 512 45.31
YFJS13 553 717 -22.87 405 36.54 405 36.54
YFJS14 1555 2055 -24.33 1317 18.07 1317 18.07
YFJS15 1690 2296 -26.39 1244 35.85 1244 35.85
YFJS16 1769 2006 -11.81 1243 42.32 1231 43.70
YFJS17 1734 2408 -27.99 1622 6.91 1290 34.42
YFJS18 1735 2082 -16.67 2082 -16.67 1499 15.74
YFJS19 1604 2038 -21.30 1525 5.18 1333 20.33
YFJS20 1700 2369 -28.24 2020 -15.84 1279 32.92

Average -10.26 32.40 38.68

Table 5: Results of applying the list scheduling algorithm to the instances YFJS01–YFJS20.

while with the latter combination it requires approximately 5 seconds per instance in average.
Other than that, the table shows that, considering all the 80 combinations of parameters, the
differences range from 3.5% to 9.03%, showing a nice feature: the performance of the method
does not strongly depend on a precise choice of parameters. The relation between the choice of
parameters and the performance of the method can be easily seen in Figures 5a and 5b. For
fixed values of α and β, the optimal value of ξ is always greater than or equal to 0.5. Moreover,
as expected, the larger the value of α and β, the larger the search space and, in consequence,
the better the solutions’ quality and the larger the required CPU time.

If we now focus in Table 8, we can see that, in the set of instances DAFJS01–DAFJS30, for
which the exact solver was unable to find optimal solutions in most of the cases, the beam search
method improves the exact solver’s solutions displaying differences that range from −4.94% (for
the combination of parameters (α, β, ξ) = (0.5, 0.25, 0)) up to −6.36% (for the combination of
parameters (α, β, ξ) = (1, 1, 0.5)). In the former case, considering instances DAFJS01–DAFJS30
individually, differences ranges from 12.94% up to -17.18% with an average CPU time of 1.18
seconds per instance; while in the latter case, differences ranges from 8.95% up to -17.52% with
an average CPU time of 115.04 seconds per instance. Recalling that this comparison is being
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Instance mks
EST heuristic [3] CPLEX (1h limit) CPLEX (10h limit)
mks diff mks diff mks diff

DAFJS01 321 327 -1.83 257 24.90 257 24.90
DAFJS02 350 382 -8.38 289 21.11 289 21.11
DAFJS03 631 710 -11.13 576 9.55 576 9.55
DAFJS04 607 653 -7.04 606 0.17 606 0.17
DAFJS05 505 482 4.77 402 25.62 394 28.17
DAFJS06 497 489 1.64 431 15.31 410 21.22
DAFJS07 632 717 -11.85 565 11.86 547 15.54
DAFJS08 706 847 -16.65 631 11.89 631 11.89
DAFJS09 533 535 -0.37 484 10.12 471 13.16
DAFJS10 621 629 -1.27 569 9.14 538 15.43
DAFJS11 767 708 8.33 708 8.33 701 9.42
DAFJS12 727 720 0.97 720 0.97 720 0.97
DAFJS13 768 766 0.26 710 8.17 683 12.45
DAFJS14 888 871 1.95 838 5.97 775 14.58
DAFJS15 788 818 -3.67 818 -3.67 796 -1.01
DAFJS16 808 831 -2.77 831 -2.77 798 1.25
DAFJS17 935 910 2.75 904 3.43 902 3.66
DAFJS18 939 951 -1.26 951 -1.26 878 6.95
DAFJS19 598 601 -0.50 595 0.50 585 2.22
DAFJS20 854 815 4.79 815 4.79 810 5.43
DAFJS21 937 965 -2.90 965 -2.90 959 -2.29
DAFJS22 826 902 -8.43 902 -8.43 896 -7.81
DAFJS23 548 632 -13.29 541 1.29 537 2.05
DAFJS24 687 674 1.93 660 4.09 648 6.02
DAFJS25 885 897 -1.34 897 -1.34 879 0.68
DAFJS26 915 903 1.33 903 1.33 898 1.89
DAFJS27 982 981 0.10 981 0.10 981 0.10
DAFJS28 633 703 -9.96 662 -4.38 572 10.66
DAFJS29 800 760 5.26 720 11.11 710 12.68
DAFJS30 640 657 -2.59 637 0.47 615 4.07

Average -2.20 5.73 8.40

Table 6: Results of applying the list scheduling algorithm to the instances DAFJS01–DAFJS30.

done with the exact solver that run with a CPU time limit of 1 hour (that was achieved in
most of the cases; see Table 4), this means the beam search method is able to find high quality
solutions in a small elapsed time.

In a final experiment, we evaluate the performance of the introduced beam search method
(for the combination of parameters (α, β, ξ) = (1, 1, 1)) when applied to the classical FJSP
(without sequencing flexibility). We considered the sets of instances introduced in [2, 4, 6, 13].
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diff vs. CPLEX (1h limit) diff vs. CPLEX (10h limit)

α ξ
β β

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25

0.00 8.86 8.87 8.42 8.28 13.94 13.91 13.47 13.32
0.25 7.73 7.17 6.51 6.25 12.72 12.15 11.45 11.18
0.50 7.17 6.42 5.70 5.68 12.09 11.32 10.59 10.56
0.75 7.76 7.02 6.54 6.22 12.74 11.98 11.49 11.17
1.00 8.32 7.68 6.80 6.46 13.31 12.65 11.75 11.41

0.50

0.00 8.76 7.45 7.41 7.24 13.80 12.46 12.41 12.24
0.25 7.14 6.00 5.22 5.05 12.05 10.88 10.07 9.90
0.50 6.97 5.80 5.69 5.23 11.93 10.74 10.62 10.17
0.75 6.82 6.11 5.65 5.21 11.72 11.00 10.54 10.09
1.00 6.51 5.80 5.46 5.50 11.46 10.75 10.40 10.43

0.75

0.00 9.03 6.86 6.87 6.51 14.04 11.87 11.88 11.54
0.25 6.44 4.80 4.24 4.19 11.35 9.69 9.09 9.04
0.50 6.01 5.11 4.80 4.48 10.91 9.99 9.68 9.35
0.75 5.50 4.53 4.32 3.81 10.44 9.45 9.24 8.73
1.00 4.99 4.08 4.00 3.82 9.93 8.99 8.91 8.73

1.00

0.00 9.03 6.85 7.11 6.86 14.05 11.86 12.09 11.87
0.25 6.53 4.63 4.59 4.42 11.43 9.48 9.44 9.27
0.50 5.41 4.66 4.43 4.00 10.30 9.54 9.31 8.86
0.75 5.12 4.32 4.01 3.87 9.99 9.19 8.84 8.71
1.00 4.56 3.79 3.92 3.50 9.49 8.70 8.80 8.38

Table 7: Comparison of applying the Beam Search method, with different choices for parameters
α, β, and ξ, to instances YFJS01–YFJS20 against the CPLEX solver with two different CPU
time limits (1 hour and 10 hours).

Table 9 reports the relative error (RE) of the makespan mks found by our beam search method
with respect to the lower bounds mksLB available at [41] given by

RE = 100%× (mks−mksLB)/mksLB.

In the table, “# inst.” is the number of instances in each set. If these results are compared to
those associated with the state-of-the-art GA method introduced in [27, see Table 7 on p.3210],
it can be seen that the beam search method obtains competitive results; outperforming all the
three GA methods whose results are reported in [27] in the set “Dauzére-Pérés and Paulli” and
the set “Hurink VData” that is the set in which instances present the largest machine flexibility.
However, all possible warning applies to this comparison: (a) the beam search method is a
deterministic method, with no randomness and with finite termination; while the other methods
are run five times and the best makespan is used in the comparison; (b) in order to obtain a
comparison-at-a-glance, we run the beam search method fixing its parameters α, β, and ξ all
equal to 1 (while 80 different combinations were evaluated when the numerical experiments with
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diff vs. CPLEX (1h limit) diff vs. CPLEX (10h limit)

α ξ
β β

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25

0.00 -5.07 -5.57 -5.75 -5.72 -2.69 -3.20 -3.38 -3.35
0.25 -5.18 -5.74 -5.95 -6.01 -2.80 -3.37 -3.60 -3.65
0.50 -5.24 -5.70 -5.81 -5.91 -2.86 -3.33 -3.44 -3.55
0.75 -5.20 -5.67 -5.85 -5.90 -2.81 -3.30 -3.49 -3.54
1.00 -5.19 -5.66 -5.87 -6.03 -2.80 -3.28 -3.50 -3.68

0.50

0.00 -4.94 -5.56 -5.75 -5.77 -2.55 -3.19 -3.39 -3.41
0.25 -5.53 -6.01 -6.14 -6.19 -3.16 -3.65 -3.79 -3.84
0.50 -5.71 -6.07 -6.13 -6.19 -3.36 -3.72 -3.78 -3.85
0.75 -5.43 -5.91 -6.06 -6.11 -3.05 -3.54 -3.70 -3.75
1.00 -5.11 -5.86 -5.98 -5.96 -2.72 -3.49 -3.62 -3.60

0.75

0.00 -5.19 -5.62 -5.70 -5.77 -2.81 -3.25 -3.33 -3.40
0.25 -5.88 -6.02 -6.07 -6.25 -3.52 -3.66 -3.72 -3.90
0.50 -5.82 -6.06 -6.27 -6.32 -3.46 -3.71 -3.93 -3.98
0.75 -5.68 -5.93 -6.16 -6.25 -3.32 -3.58 -3.81 -3.90
1.00 -5.74 -6.07 -6.19 -6.34 -3.37 -3.71 -3.83 -3.99

1.00

0.00 -5.19 -5.65 -5.70 -5.77 -2.81 -3.27 -3.33 -3.40
0.25 -5.90 -6.10 -6.30 -6.33 -3.53 -3.74 -3.95 -3.98
0.50 -6.01 -6.28 -6.36 -6.36 -3.65 -3.94 -4.02 -4.02
0.75 -5.72 -6.04 -6.19 -6.29 -3.36 -3.69 -3.84 -3.95
1.00 -5.65 -6.01 -6.13 -6.22 -3.28 -3.65 -3.77 -3.86

Table 8: Comparison of applying the Beam Search method, with different choices for parameters
α, β, and ξ, to instances DAFJS01–DAFJS30 against the CPLEX solver with two different CPU
time limits (1 hour and 10 hours).

the FJSP with sequencing flexibility were done); and (c) methods being compared were run on
different machines and the CPU times of the GA methods considered in [27] were not reported.

6 Conclusions

An extension of the classical flexible job shop problem, in which precedences between the opera-
tions can be given by an arbitrary directed acyclic graph instead of a linear order, was considered
in this work. A list scheduling algorithm that fully exploits the characteristics of the problem
was introduced. Then, substituting the choice of a single operation to be scheduled and se-
quenced at each step of the method by a set of operations, a beam search method was naturally
developed. Numerical results assessed the effectiveness and efficiency of both approaches. The
precise description and full availability of methods and results allows them to be used as bench-
mark for future developments. There is vast range of extensions of the classical flexible job shop
problem that might be considered in order to deal with more realistic situations. Redesigning
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Data Set # inst. RE

Brandimarte 10 26.54
Dauzére-Pérés and Paulli 18 6.21
Barnes and Chambers 21 32.09
Hurink EData 43 8.52
Hurink RData 43 4.75
Hurink VData 43 0.26

Table 9: Performance of the beam search method when applied to all well-known instances of
the classical FJSP.

the presented methods to deal with those extensions would be the subject of future research.
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(a)

(b)

Figure 5: Graphical representation of the performance of the beam search method for different
choices of parameters α, β, and ξ (when compared against the results obtained by running the
exact solver with a CPU time limit of 1 hour). (a) Instances YFJS01–YFJS20. (b) Instances
DAFJS01–DAFJS30. 35



(a)

(b)

Figure 6: Graphical representation of the elapsed CPU time required by the beam search method
for different choices of parameters α, β, and ξ. (a) Instances YFJS01–YFJS20. (b) Instances
DAFJS01–DAFJS30.
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