New and improved results for packing identical unitary radius circles within triangles, rectangles and strips*

Ernesto G. Birgin ${ }^{\dagger} \quad$ Jan M. Gentil ${ }^{\dagger}$

June 3rd, 2009

Abstract

The focus of study in this paper is the class of packing problems. More specifically, it deals with the placement of a set of N circular items of unitary radius inside an object with the aim of minimizing its dimensions. Differently shaped containers are considered, namely circles, squares, rectangles, strips and triangles. By means of the resolution of nonlinear equations systems through the Newton-Raphson method, the herein presented algorithm succeeds in improving the accuracy of previous results attained by continuous optimization approaches up to numerical machine precision. The computer implementation and the data sets are available at http://www.ime.usp.br/~egbirgin/packing/.

Keywords: packing, nonlinear equations system, Newton's method, nonlinear programming.

1 Introduction

Packing problems commonly arise in practical life. Hence, strategies capable of efficiently solving them are of great interest, not only from a purely mathematical but also from an economical standpoint. Some of the techniques available in the published literature consist of reasonably fast discrete heuristics [21,22], but which are not guaranteed to converge to global optima. Others employ nonlinear models [5-7, 12-15, 17-20], which can be solved by nonlinear programming algorithms. Of special relevance to this paper, such iterative methods generate linearly convergent sequences to whose set of accumulation points the looked-for answer is expected to belong.

[^0]In particular, in a recently published work [8], twice differentiable models for both two and three-dimensional packing problems were introduced and further solved with the aid of Algencan [1-4], a modern Augmented Lagrangian routine for optimization of smooth minimization problems with general constraints. Although feasible answers were obtained for all discussed cases, they were of poor precision in comparison to the known optimal results [16]. Motivated by these achievements, this study aspired to develop a method of quadratic convergence rate that would improve their accuracy and hopefully also provide optimal solutions not yet reported in the literature.

This paper is organized as follows. In Section 2 the problem is formally stated and the proposed approach is fully described. Section 3 details the most significant challenges faced in its implementation. In Section 4 the numerical experiments are delivered. Finally, Section 5 concludes the paper.

2 Nonlinear model and suggested approach

The problem at hand is that of packing a set of N identical circles of radius $r=1$ (hereinafter called items) in a fixed-shaped figure (denominated object) while minimizing the latter's dimensions. Throughout this work, several geometric forms were treated, namely circles, squares, rectangles, triangles and strips, defined as a rectangle that has got one of its dimensions fixed.

In order for a setup to be accepted as valid, all items must obviously not overlap or violate the object's boundaries. Being solely dependent upon items' positions, the non-overlapping condition can be expressed, irrespective of the object's form, as:

$$
\begin{equation*}
\sqrt{\left(c_{i}^{x}-c_{j}^{x}\right)^{2}+\left(c_{i}^{y}-c_{j}^{y}\right)^{2}} \geq r_{i}+r_{j} \text { for all } i \neq j \tag{2.1}
\end{equation*}
$$

where $c_{i}=\left(c_{i}^{x}, c_{i}^{y}\right)$ and r_{i} denote the i-th item's centre and radius, respectively, for $1 \leq i \leq N$.
On the other hand, both the objective function and the non-boundaries-violation constraints vary according to the object and therefore must be individually studied.

Circular object Without loss of generality, assume the object's centre C to be located at the coordinate system's origin and let R represent its radius. It may be readily seen that all items will be completely contained within the object's boundaries if and only if the inequality $R \geq r_{i}+\sqrt{\left(c_{i}^{x}\right)^{2}+\left(c_{i}^{y}\right)^{2}}$ holds for every $i=1, \ldots, N$. Thus, the following nonlinear model can be written:

$$
\begin{align*}
& \text { minimize } R \\
& \text { subject to }\left(c_{i}^{x}\right)^{2}+\left(c_{i}^{y}\right)^{2} \leq\left(R-r_{i}\right)^{2} \text { for all } i \tag{2.2}
\end{align*}
$$

non-overlapping constraints (2.1)

Squared object Under the assumption that the coordinate system's origin coincides with the lower left-hand vertex of the square, the nonlinear model results naturally:

$$
\begin{align*}
\operatorname{minimize} & L \\
\text { subject to } & r_{i} \leq c_{i}^{x} \leq L-r_{i} \text { for all } i \tag{2.3}\\
& r_{i} \leq c_{i}^{y} \leq L-r_{i} \text { for all } i \\
& \text { non-overlapping constraints }(2.1)
\end{align*}
$$

Strip object Indicating by W the variable width of an strip with fixed height L and asserting as true the same assumption concerning the system's origin, one can derive the model below:

$$
\begin{align*}
& \operatorname{minimize} W \\
& \text { subject to } r_{i} \leq c_{i}^{x} \leq L-r_{i} \text { for all } i \tag{2.4}\\
& r_{i} \leq c_{i}^{y} \leq W-r_{i} \text { for all } i \\
& \text { non-overlapping constraints }(2.1)
\end{align*}
$$

Rectangular object Based on whether the objective function is intended to minimize the rectangle's perimeter or its area, two different and equally interesting models may be formulated:

$$
\begin{align*}
\operatorname{minimize} & L+W \text { or } L \times W \\
\text { subject to } & r_{i} \leq c_{i}^{x} \leq L-r_{i} \text { for all } i \tag{2.5}\\
& r_{i} \leq c_{i}^{y} \leq W-r_{i} \text { for all } i \\
& \text { non-overlapping constraints }(2.1)
\end{align*}
$$

Triangular object For the (equilateral) triangle of side length L, the coordinate system's origin is taken as the base's midpoint:

$$
\begin{align*}
& \operatorname{minimize} L \\
& \text { subject to } r_{i} \leq c_{i}^{y} \text { for all } i \\
& \tag{2.6}\\
& 2 \sqrt{3} c_{i}^{y}-6 c_{i}^{x} \leq 3 L-4 \sqrt{3} r_{i} \text { for all } i \\
& \\
& 2 \sqrt{3} c_{i}^{y}+6 c_{i}^{x} \leq 3 L-4 \sqrt{3} r_{i} \text { for all } i \\
& \\
& \text { non-overlapping constraints }(2.1)
\end{align*}
$$

The explicit resolution of problems (2.2) through (2.6) by utilizing an Augmented Lagrangian nonlinear solver was the technique attempted in [8]. Two main concerns were raised by the paper authors: (i) the quadratic relation between the number of items and the number of constraints, which makes their evaluation a costly task, and (ii) the difficulty of achieving high precision results with the employed routine.

The central idea of this study stems from the observation that in an optimal configuration (i.e. one that realizes the global minimum of the above stated optimization problems) a number of items are placed in contact with each other and with the object's boundaries (see Figure 1), making active the matching constraints. Consequently, if those contacts were known a priori, an overdetermined system of nonlinear equations could then be constructed, to whose solution set an optimal arrangement must belong. Moreover, it will be shown that the number of such equations is linear with respect to the number of items (in contrast to the quadratic number of constraints in the nonlinear optimization models).

Figure 1: Optimal setup of 5 items in a circle

More formally, let Φ and Ψ designate the supposedly known sets of contacts, in an optimal solution, of items with the object and with other items, respectively.

$$
\begin{aligned}
i \in \Phi & \Longleftrightarrow \text { item } i \text { makes contact with object, } \\
(i, j) \in \Psi & \Longleftrightarrow \text { item } i \text { makes contact with item } j
\end{aligned}
$$

Besides, allow G to be the undirected graph whose vertices are the items' centres and such that two vertices are adjacent if and only if the corresponding items are in contact. Note that, since G is planar (i.e. it can be drawn on the plane in such a way that its edges intersect only at their endpoints; see Figure 1), it holds true that $|\Psi|=O(N)$ (see, for example, [9]). (The same conclusion stems from the fact that each circular item cannot touch more than six others, so that 6 N serves as an upper bound on the number of such contacts.) Likewise, $|\Phi| \leq N$.

Now, consider a nonlinear system $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ where the number of equations m equals the number of contacts - $|\Phi|+|\Psi|$, already known to belong to $O(N)$ - and the number of variables n may assume one of the values below (coordinates (x, y) of each item's centre plus the number of variable dimensions of the containing object):

$$
n= \begin{cases}2 N+1 & \text { for the circle, square, strip and triangle } \\ 2 N+2 & \text { for the rectangle }\end{cases}
$$

To each $(i, j) \in \Psi$ corresponds an active constraint $\sqrt{\left(c_{i}^{x}-c_{j}^{x}\right)^{2}+\left(c_{i}^{y}-c_{j}^{y}\right)^{2}}=2 r$ or, equivalently, $\left(c_{i}^{x}-c_{j}^{x}\right)^{2}+\left(c_{i}^{y}-c_{j}^{y}\right)^{2}=(2 r)^{2}$. This translates into the addition of the following equation to the system F :

$$
\begin{equation*}
f_{i j}^{\psi}(\cdot)=\left(c_{i}^{x}-c_{j}^{x}\right)^{2}+\left(c_{i}^{y}-c_{j}^{y}\right)^{2}-4 r^{2} . \tag{2.7}
\end{equation*}
$$

Clearly, the equation $f_{i}^{\phi}(\cdot)$ that shall be included in F for each $i \in \Phi$ depends on the form of the object. In the circular case, for instance, to each $i \in \Phi$ corresponds an active constraint $R=r_{i}+\sqrt{\left(c_{i}^{x}\right)^{2}+\left(c_{i}^{y}\right)^{2}}$ or, equivalently, $\left(R-r_{i}\right)^{2}=\left(c_{i}^{x}\right)^{2}+\left(c_{i}^{y}\right)^{2}$. This translates into the addition of the following equation to the system F :

$$
\begin{equation*}
f_{i}^{\phi}(\cdot)=\left(R-r_{i}\right)^{2}-\left(c_{i}^{x}\right)^{2}+\left(c_{i}^{y}\right)^{2} . \tag{2.8}
\end{equation*}
$$

The analogous procedure for differently shaped containers, being trivially deducible from the appropriate nonlinear problem, will be omitted herein for the sake of brevity.

It should be noted, however, that while overdetermined (as a rule, $m>n$), the system deduced above will be compatible as long as the contacts are assumed to be known in advance. That is because many of the equations it comprises are redundant. This observation is

Figure 2: Optimal configuration for 7 items in a circle (overdetermined compatible system with 15 variables and 18 equations)
illustrated by Figure 2, where the central item's position is uniquely dictated, for example, by its contacts (depicted by dashed lines) with items 2 and 5 , rendering the equations relative to its contacts with other surrounding items superfluous.

One critical question that arises from this strategy is how the information about the contacts made in an optimal solution could be learned. It occurs that, by way of a straightforward analysis of the poor-precision answers found by [8], such knowledge may be acquired to a high degree of confidence. For that purpose, it must be adopted a value $\varepsilon \in \mathbb{R}_{+}$amounting to the minimum distance between the border of two items that should not be regarded as adjacent and the inequality below has to be tested for all i, j satisfying $1 \leq i<j \leq N$:

$$
\begin{equation*}
\sqrt{\left(c_{i}^{x}-c_{j}^{x}\right)^{2}+\left(c_{i}^{y}-c_{j}^{y}\right)^{2}}-2 r \leq \varepsilon \tag{2.9}
\end{equation*}
$$

where the values of c_{i} and c_{j} are taken from the output of [8]. If it holds, then the related equation $f_{i j}^{\psi}$ is incorporated into the nonlinear system F. Similarly, the equations f_{i}^{ϕ} are originated by an analogous mechanism conducted for the detection of contacts between each item and the object.

Bear in mind that the value of ε is crucial to the success of the method and cannot be dissociated from the quality of the answers given by Algencan. In such configuration, three are the possibilities for each pair of items: (i) they overlap, (ii) they do not overlap and are far away from each other, or (iii) they do not overlap but are very close to each other. Hence, considering a poor-precision result acquired via the resolution of the corresponding nonlinear model (2.2)-(2.6), contacts between pairs of items will be forced in cases (i) and (iii). In order to distinguish between cases (ii) and (iii), ε plays a vital role.

Let ω be the maximum overlapping between any pair of items in a solution to the NLP model. If ω is such that it were considered a "reasonable" overlapping for the underlying packing problem by the employed solver, then it is safe to assume that any pair of items that do not overlap but whose borders are at a distance less than ω may be in contact. In this manner, ω is a satisfactory initial candidate for ε.

Starting from this knowledge, as a large number of optimal solutions for packing problems within circles and squares had already been made publicly available, the value of ε was empirically adjusted around ω in a way that would correctly identify the contacts in those instances.

Once this task has been accomplished, a root of F is looked for utilizing the NewtonRaphson method. The rationale behind this choice is the expectation that, if initially fed with a guess $x^{(0)}$ sufficiently close to the true solution x^{*}, the algorithm will produce a sequence $\left\{x^{(k)}\right\}$ quadratically convergent to x^{*} (see, for example, [10]). The equations that describe the iterative process are:

$$
\begin{align*}
J_{F}\left(x^{(k)}\right) d & =-F\left(x^{(k)}\right) \tag{2.10}\\
x^{(k+1)} & =x^{(k)}+d,
\end{align*}
$$

where J_{F} is the Jacobian matrix of F.
We consider two different ways of solving the overdetermined (albeit compatible, as long as all contacts have been detected correctly) linear system (2.10):

QR decomposition of the Jacobian matrix Due to the absolute lack of information on the rank of $J_{F}\left(x^{(k)}\right)$, a variant of the $Q R$ method, the $Q R$ decomposition with column pivoting [11], is calculated. Thanks to its highly desirable numerical stability characteristics when $J_{F}\left(x^{(k)}\right)$ is not well conditioned, this is the strategy of choice in the algorithm developed.

Cholesky's method applied to the normal equations In spite of its inferior numerical properties, the normal equations approach has been more successful in computing $x^{(k+1)}$ whenever $J_{F}\left(x^{(k)}\right)$ is found to be rank deficient. Such phenomenon may be justified by the realization that, in this situation, there are infinitely many solutions to (2.10), among which only one interest us - the one that minimizes the object's dimensions.

For that reason, a sensible approach is to solve the least squares problem, with the new linear system becoming:

$$
\begin{equation*}
J_{F}^{T}\left(x^{(k)}\right) J_{F}\left(x^{(k)}\right) d=-J_{F}^{T}\left(x^{(k)}\right) F\left(x^{(k)}\right) \tag{2.11}
\end{equation*}
$$

It should be remarked that $M=J_{F}^{T}\left(x^{(k)}\right) J_{F}\left(x^{(k)}\right) \in \mathbb{R}^{n \times n}$ is both symmetric and positive semidefinite. More importantly, it is singular, seeing that $\operatorname{rank}(M)=\operatorname{rank}\left(J_{F}\left(x^{(k)}\right)\right)$ and also that this path is used only when $\operatorname{rank}\left(J_{F}\left(x^{(k)}\right)\right)<n$. For that reason, to solve the linear system (2.11), the Modified Cholesky decomposition [10] is preferred, which actually factorizes a slight perturbation of the matrix $J_{F}^{T}\left(x^{(k)}\right) J_{F}\left(x^{(k)}\right)$. The vector d easily follows by forward and back substitution.
After each iteration, Newton's method is checked for convergence, which is characterized by the verification of $x^{(k+1)}=x^{(k)}$ and constitutes the main stopping criterion. Still, if the initial value $x^{(0)}$ is too far from the true zero, the method might fail to converge, and a cap on the number of iterates is made necessary as a secondary stopping criterion.

3 Implementation aspects

In this section the most important practical implementation details are discussed.

3.1 System indetermination

Contrary to the logical intuition that the constructed nonlinear system would be typically overdetermined, its indetermination was of one the earliest challenges that had to be coped with. A plausible explanation is the fact that, even on an optimal configuration, there can be items taking part in less than two contacts, thus contributing with the addition of more variables than equations to the system (causing it to become undetermined). Those which exhibit such attribute are named loose items (see Figure 3(a)).

As a means to overcome this obstacle, a preprocessing routine detects and temporarily removes all loose items from the set to be packed. The proposed technique is then ordinarily carried out for the remaining items and only when their optimal placement is determined (see Figure 3(b)) are the "rattlers" reintroduced into the problem.

Such job may be thought of as a further optimization problem, just with a largely decreased number of variables (proportional to the number of loose items). Let $L \subseteq\{1, \ldots, N\}$ be the set of indices of loose items and l its cardinality. The variables of the aforementioned optimization problem are the centre $c_{i} \in \mathbb{R}^{2}$ and the radius $r_{i} \in \mathbb{R}$ for all $i \in L$. The underneath model therefore follows:

$$
\begin{align*}
& \text { maximize } \\
& \text { subject to } \tag{3.1}\\
& \qquad \begin{aligned}
& r_{i} \geq D \text { for all } i \in L \\
& d\left(c_{i}, c_{j}\right)^{2} \geq\left(r_{i}+r_{j}\right)^{2} \text { for all } i, j \in L, i \neq j \\
& d\left(c_{i}, c_{j}\right)^{2} \geq\left(r_{i}+r\right)^{2} \quad \text { for all } \quad i \in L, j \notin L \\
& \text { corresponding non-violation constraints (see Section 2) }
\end{aligned} \tag{3.2}
\end{align*}
$$

Figure 3: Example of arrangement exhibiting system indetermination: (a) greyed items making less contacts (0 and 1) than the number of equations they introduce; (b) optimal layout after removing those items.
where $d(\cdot, \cdot)$ stands for the Euclidean distance and the values of r and c_{j} for each $j \notin L$ are considered constant and are taken from the output of the method for the contracted set (see Figure 3(b)).

By solving it with Algencan, two are the possible outcomes: either an optimal packing of the original set is found (see Figure 4) or, should the reincorporation of the once withdrawn items fail, it can be concluded that the contacts have been erroneously detected in the first place and that the method must be re-executed with a more properly estimated ε parameter.

Figure 4: Layout after reintegration of loose items with the loose items centrally placed in the room available

If the optimal value D^{*} obtained is such that $D^{*} \geq r$, then all loose items have been fit into the object. It should also be noted that whenever $D^{*}>r$, their radius is taken as being equal to r and, as a result, they will be centrally placed in the room available.

3.2 Loss of convergence

It has been verified that, for circular objects, there usually exists a neighbourhood of arbitrarily close optimal solutions, derived from the mere rotation of the whole set of items in the interior of the object (see Figure 5).

Figure 5: Distinct optimal setups for 3 items in a circle, where (b) is attainable by rotating the items in (a).

Since it severely impairs the convergence of Newton's method, such ill behaviour had to be avoided by selecting one of the items to have one of its centre's coordinates unchanged by the algorithm. Unfortunately, though, none of the heuristics assessed for the selection of that item showed themselves to be consistently satisfactory. Because of that, each of the $n-l$ non-loose items is successively iterated to assume this role and the best solution gets saved.

3.3 Post-optimization overlapping and violation elimination

In order to guarantee that the given answers are eligible for comparison to the best ever published [16], it is mandatory to first eliminate any overlapping or violations that might remain. In other words, it should be guaranteed that the arrangements associated with them are correct under the analytical rigour. The accomplishment of this requirement is achieved by subjecting the solution to the nonlinear system of equations given by Newton's method to scaling.

Taking the items in pairs, the distance between their centres is evaluated. Let δ be the minimum of all such values. If $\delta \geq 2 r$, then there are no overlapping constraints being disobeyed and no adjustments to be made. On the other hand, if $\delta<2 r$, then the items must be spread out so that $\delta \geq 2 r$ holds. A new placement such that $d\left(c_{i}^{\prime}, c_{j}^{\prime}\right) \geq 2 r$ for every $i \neq j$ can be attained by simply making

$$
\begin{equation*}
c_{i}^{\prime}=\frac{2 r}{\delta} \cdot c_{i} \tag{3.4}
\end{equation*}
$$

for each item i.
In fact, since it holds true that $d\left(c_{i}, c_{j}\right) \geq \delta$ for every $i \neq j$, it easily follows that

$$
\begin{equation*}
d\left(c_{i}^{\prime}, c_{j}^{\prime}\right)=\frac{2 r}{\delta} \cdot d\left(c_{i}, c_{j}\right) \geq \frac{2 r}{\delta} \cdot \delta=2 r \tag{3.5}
\end{equation*}
$$

which is the intended result.
As for the eventual violation of the object's boundaries, there is no option other than enlarging the object's dimensions until all items are entirely contained within its boundaries. For the circular case, for instance, it suffices to make

$$
\begin{equation*}
R^{\prime}=\max _{\{i=1, \ldots, N\}} \sqrt{\left(c_{i}^{x}\right)^{2}+\left(c_{i}^{y}\right)^{2}}+r . \tag{3.6}
\end{equation*}
$$

After those post-optimization corrections have been made, it is safe to assert that a solution with the maximum machine precision has been found. It finally turns out practicable to draw all the desired comparisons, which are the subject of the next section.

To end this section, Algorithm 1 provides an overview of the methods introduced for the circular case.

```
Algorithm 1 Pseudocode for the circular case
Require: \(N:=\) number of items
Require: \(r:=\) item's radius (if other than 1.0)
Require: \(T:=\) maximum processing time allotted
Require: \(K:=\) cap on the number of Newton steps
    \(R^{*} \leftarrow+\infty\)
    while elapsed time \(\leq T\) do
        Run Algencan with its default parameters to solve the nonlinear model (2.2) with feasibility and
        optimality tolerances equal to \(10^{-4}\) and consider its answer ( \(x_{\text {NLP }}, R_{\text {NLP }}\) ) as an initial guess for Newton's
        method.
        Temporarily remove all loose items, as detailed in Subsection 3.1, and redefine ( \(x_{\mathrm{NLP}}, R_{\mathrm{NLP}}\) ) accordingly.
        Detect all contacts between items and with the object, as explained in Section 2, and construct an
        appropriate system of nonlinear equations \(F\).
        \(\hat{R} \leftarrow+\infty\)
        for all non-loose items \(i\) do
            \(k \leftarrow 0,\left(x^{(0)}, R^{(0)}\right) \leftarrow\left(x_{\mathrm{NLP}}, R_{\mathrm{NLP}}\right)\)
            Remove variable \(c_{i}^{x}\) from \(\left(x^{(0)}, R^{(0)}\right)\) and replace it in \(F\) with its value from ( \(x_{\text {NLP }}, R_{\text {NLP }}\) ).
            while \(k<K\) do
                \(k \leftarrow k+1\)
                Solve the Newtonian system (2.10) for \(F\) and obtain \(\left(x^{(k)}, R^{(k)}\right)\).
                    if \(\left(x^{(k)}, R^{(k)}\right)=\left(x^{(k-1)}, R^{(k-1)}\right)\) then
                    Break. \{Newton's method converged\}
                end if
            end while
            Reintroduce variable \(c_{i}^{x}\) to \(\left(x^{(0)}, R^{(0)}\right)\), taking its value from ( \(x_{\mathrm{NLP}}, R_{\mathrm{NLP}}\) ).
            Update the best computed result \((\hat{x}, \hat{R})\) (i.e. if \(\left.R^{(k)}<\hat{R}\right)\).
        end for
        Reintroduce all loose items previously removed, as explained in Subsection 3.1.
        Evaluate the minimum distance \(\delta\) between the centres of each pair of items.
        if \(\delta<2 r\) then
            for all items \(i\) do
                    Redefine \(\left(\hat{c}_{i}^{x}, \hat{c}_{i}^{y}\right)\) as \(2 r / \delta \cdot\left(\hat{c}_{i}^{x}, \hat{c}_{i}^{y}\right)\).
            end for
            Redefine \(\hat{R}\) as \(\max _{\{i=1, \ldots, N\}} \sqrt{\left(\hat{c}_{i}^{x}\right)^{2}+\left(\hat{c}_{i}^{y}\right)^{2}}+r\).
        end if
            Update the best computed result \(\left(x^{*}, R^{*}\right)\) (i.e. if \(\left.\hat{R}<R^{*}\right)\).
    end while
    return \(\left(x^{*}, R^{*}\right)\)
```

Remark. The most noteworthy difference between Algorithm 1 and the method developed for differently shaped containers is the absence of lines $6,7,18$ and 19 in the latter variant, since there is no neighbourhood of arbitrarily close optimal solutions to be tackled in the first place.

4 Numerical results

All tests were conducted on a 2.4 GHz Intel Core 2 Quad with 4GB of RAM memory and running GNU/Linux operating system. The code, fully written in Fortran 77, was compiled by the G77 Fortran compiler of GCC with the -03 optimization directive enabled. The values of T and K that yielded the results presented later in this section are 5 h and 1000 , respectively.

We solved instances with the number of items varying from 1 to 50 . Tables 1 and 2 show the resulting values for the circular object's radius and the squared object's side, respectively, and their confrontation with the best ever reported [16]. Their first column holds the number of items; the second, the solution found by the developed method; the third, the reference values from [16]; the fourth, the difference between them; the fifth, the elapsed CPU time (in seconds).

It should be noticed that the answers obtained coincide with the values of reference. More precisely, in 48 of the cases of packing in a circle and in 44 of those of packing in a square, the results matched to all decimal places, i.e. up to the machine precision, with an absolute error of less than 10^{-16} for circles and 10^{-12} for squares (the difference being due to the number of digits in the data sets available in [16]). In the other 8 instances where maximal precision has not been achieved, the absolute error is always of the order of 10^{-6}.

Tables 3 and 4 present unpublished results for the packing problems of minimizing the area and the perimeter of an enclosing rectangle, while Table 5 exhibits unprecedented solutions for the area minimization of triangular and strip objects. Lastly, Figure 6 illustrates a few selected solutions.

5 Concluding remarks

This study addressed itself to the problem of packing unitary radius circles within differently shaped containers with the aim of minimizing its dimensions. The approach developed builds upon approximate solutions provided by continuous optimization techniques formerly developed. By pursuing the zero of a nonlinear equations system properly deduced from the contacts established in a candidate solution, refinement of those approximate results up to the machine precision were made possible.

For all studied problems, feasible solutions comparable to the best results already known were achieved. However, the treatment of packing problems in triangles, rectangles and strips, whose answers had not been published in the literature before, can be regarded as an even more remarkable contribution.

The Fortran 77 source code of the routines implemented during this work and a complete description of all solutions, each of which being composed of its items' positions and a graphical representation of the contacts they make, are available at http: //www.ime.usp.br/~egbirgin/packing/, as well as the best results given by them.

Figure 6: Optimal layouts for 50 items in a: (a) circle; (b) rectangle, minimizing its area; (c) rectangle, minimizing its perimeter; (d) square; (e) strip, with fixed length $L=9.5$; and (f) equilateral triangle.

\# of items	Circle radius	Reference	Difference	Time
1	1.0000000000000000	1.0000000000000000	$0.0 \mathrm{E}+00$	0.00
2	2.0000000000000000	2.0000000000000000	$0.0 \mathrm{E}+00$	0.11
3	2.1547005383792515	2.1547005383792515	$0.0 \mathrm{E}+00$	0.00
4	2.4142135623730949	2.4142135623730949	$0.0 \mathrm{E}+00$	0.00
5	2.7013016167040798	2.7013016167040798	$0.0 \mathrm{E}+00$	0.09
6	3.0000000000000000	3.0000000000000000	$0.0 \mathrm{E}+00$	0.10
7	3.0000000000000000	3.0000000000000000	$0.0 \mathrm{E}+00$	0.00
8	3.3047648709624866	3.3047648709624866	$0.0 \mathrm{E}+00$	0.05
9	3.6131259297527527	3.6131259297527532	$-4.4 \mathrm{E}-16$	271.82
10	3.8130256313981246	3.8130256313981246	$0.0 \mathrm{E}+00$	0.13
11	3.9238044001630872	3.9238044001630872	$0.0 \mathrm{E}+00$	29.90
12	4.0296019301161836	4.0296019301161836	$0.0 \mathrm{E}+00$	16.43
13	4.2360679774997898	4.2360679774997898	$0.0 \mathrm{E}+00$	0.90
14	4.3284285548608370	4.3284285548608370	$0.0 \mathrm{E}+00$	9.67
15	4.5213569647061647	4.5213569647061647	$0.0 \mathrm{E}+00$	28.79
16	4.6154255948731944	4.6154255948731944	$0.0 \mathrm{E}+00$	72.64
17	4.7920337483105797	4.7920337483105788	$8.9 \mathrm{E}-16$	6.42
18	4.8637033051562728	4.8637033051562728	$0.0 \mathrm{E}+00$	9.62
19	4.8637033051562728	4.8637033051562728	$0.0 \mathrm{E}+00$	12.20
20	5.1223207369915293	5.1223207369915285	$8.9 \mathrm{E}-16$	8.94
21	5.2523174750102433	5.2523174750102424	$8.9 \mathrm{E}-16$	36.89
22	5.4397189590722146	5.4397189590722137	$8.9 \mathrm{E}-16$	86.94
23	5.5452042225748590	5.5452042225748581	$8.9 \mathrm{E}-16$	147.69
24	5.6516610917654377	5.6516610917654369	$8.9 \mathrm{E}-16$	29.95
25	5.7528243308571163	5.7528243308571154	$8.9 \mathrm{E}-16$	464.85
26	5.8281765369429506	5.8281765369429497	$8.9 \mathrm{E}-16$	44.52
27	5.9063978473941567	5.9063978473941550	$1.8 \mathrm{E}-15$	2535.80
28	6.0149380973715152	6.0149380973715125	$2.7 \mathrm{E}-15$	14142.00
29	6.1385979039781473	6.1385979039781455	$1.8 \mathrm{E}-15$	100.01
30	6.1977410708792275	6.1977410708792258	$1.8 \mathrm{E}-15$	267.66
31	6.2915026221291814	6.2915026221291814	$0.0 \mathrm{E}+00$	71.14
32	6.4294629709501150	6.4294629709501132	$1.8 \mathrm{E}-15$	790.47
33	6.4867381281037089	6.4867031235604333	$3.5 \mathrm{E}-05$	14955.90
34	6.6109570900010040	6.6109570900010031	$8.9 \mathrm{E}-16$	13744.63
35	6.6971710917902456	6.6971710917902438	$1.8 \mathrm{E}-15$	3260.99
36	6.7467537934241761	6.7467537934241752	$8.9 \mathrm{E}-16$	259.48
37	6.7587704831436346	6.7587704831436337	$8.9 \mathrm{E}-16$	1092.96
38	6.9618869652281514	6.9618869652281488	$2.7 \mathrm{E}-15$	641.64
39	7.0578841626240081	7.0578841626240045	$3.6 \mathrm{E}-15$	245.79
40	7.1238464359431282	7.1238464359431246	$3.6 \mathrm{E}-15$	273.25
41	7.2600123286770479	7.2600123286770462	$1.8 \mathrm{E}-15$	637.95
42	7.3469494647914715	7.3467964069427687	$1.5 \mathrm{E}-04$	5287.91
43	7.4199448563412131	7.4199448563412114	$1.8 \mathrm{E}-15$	3610.53
44	7.4980366829952523	7.4980366829952487	$3.6 \mathrm{E}-15$	1232.29
45	7.5729123263675255	7.5729123263675211	$4.4 \mathrm{E}-15$	3264.80
46	7.6501799146936715	7.6501799146936680	$3.6 \mathrm{E}-15$	856.59
47	7.7241700525980201	7.7241700525980184	$1.8 \mathrm{E}-15$	2506.63
48	7.7912714305586714	7.7912714305586679	$3.6 \mathrm{E}-15$	12961.80
49	7.8868709588028691	7.8868709588028647	$4.4 \mathrm{E}-15$	14312.55
50	7.9475152747835143	7.9475152747835107	$3.6 \mathrm{E}-15$	1605.08

Table 1: Optimal results for the packing of unitary circles in a circle

\# of items	Square side	Reference	Difference	Time
1	2.0000000000000000	2.0000000000000000	$0.0 \mathrm{E}+00$	0.00
2	3.4142135623730949	3.4142135623783694	-5.3E-12	0.00
3	3.9318516525781364	3.9318516525819986	$-3.9 \mathrm{E}-12$	0.01
4	4.0000000000000000	4.0000000000000000	$0.0 \mathrm{E}+00$	0.00
5	4.8284271247461898	4.8284271247356418	$1.1 \mathrm{E}-11$	0.01
6	5.3282011773513762	5.3282011773649129	$-1.4 \mathrm{E}-11$	0.48
7	5.7320508075688776	5.7320508075691876	-3.1E-13	2.29
8	5.8637033051562746	5.8637033051581451	$-1.9 \mathrm{E}-12$	4.56
9	6.0000000000000000	5.9999999999879998	$1.2 \mathrm{E}-11$	0.69
10	6.7474415232381135	6.7474415232485301	-1.0E-11	43.44
11	7.0225095034303822	7.0225095034205376	$9.8 \mathrm{E}-12$	456.84
12	7.1449575542752672	7.1449575542971164	$-2.2 \mathrm{E}-11$	126.30
13	7.4631768820241113	7.4630478288597386	$1.3 \mathrm{E}-04$	2.96
14	7.7320508075688776	7.7320508075709107	$-2.0 \mathrm{E}-12$	13.44
15	7.8637033051562764	7.8637033051639973	$-7.7 \mathrm{E}-12$	135.58
16	8.0000000000000000	8.0000000000000000	$0.0 \mathrm{E}+00$	0.00
17	8.5326603474980978	8.5326603474943603	$3.7 \mathrm{E}-12$	109.89
18	8.6564023547027524	8.6564023547027134	$3.9 \mathrm{E}-14$	13.93
19	8.9074609393260822	8.9074609393257855	$3.0 \mathrm{E}-13$	5.78
20	8.9780833528217379	8.9780833528604074	$-3.9 \mathrm{E}-11$	5.56
21	9.3580199588727577	9.3580199588783994	$-5.6 \mathrm{E}-12$	758.56
22	9.4639295431339381	9.4638450909735710	$8.4 \mathrm{E}-05$	12.73
23	9.7274066103125492	9.7274066102921175	$2.0 \mathrm{E}-11$	4447.51
24	9.8637033051562764	9.8637033051186727	$3.8 \mathrm{E}-11$	233.46
25	10.0000000000000000	10.0000000000000000	$0.0 \mathrm{E}+00$	0.84
26	10.3774982039134294	10.3774982039012666	$1.2 \mathrm{E}-11$	96.25
27	10.4799830400508842	10.4799830400439067	$7.0 \mathrm{E}-12$	974.71
28	10.6754536943453164	10.6754536943208187	$2.4 \mathrm{E}-11$	80.53
29	10.8151200175936939	10.8151200176298907	-3.6E-11	21.42
30	10.9085683308339956	10.9085683308326153	$1.4 \mathrm{E}-12$	28.21
31	11.1934033520469818	11.1934033520763752	$-2.9 \mathrm{E}-11$	155.25
32	11.3819824265232441	11.3819824264966716	$2.7 \mathrm{E}-11$	438.73
33	11.4641016151377571	11.4639440323935258	$1.6 \mathrm{E}-04$	115.67
34	11.7274066103125492	11.7274066102475238	$6.5 \mathrm{E}-11$	6428.40
35	11.8637033051562764	11.8637033052067267	$-5.0 \mathrm{E}-11$	1802.77
36	12.0000000000000000	12.0000000000480007	-4.8E-11	29.29
37	12.1818588307319349	12.1817863967843891	$7.2 \mathrm{E}-05$	6577.27
38	12.2389635913615287	12.2384376438652254	$5.3 \mathrm{E}-04$	6889.47
39	12.2899151085505363	12.2899151085466070	$3.9 \mathrm{E}-12$	112.60
40	12.6283749264972833	12.6283749265423863	-4.5E-11	2133.86
41	12.7469384531873313	12.7469384531744172	$1.3 \mathrm{E}-11$	198.40
42	12.8532221454500828	12.8532221454774298	$-2.7 \mathrm{E}-11$	67.83
43	13.0994720835212828	13.0993251411339831	$1.5 \mathrm{E}-04$	2055.75
44	13.1958675394493774	13.1957481262430427	$1.2 \mathrm{E}-04$	8522.40
45	13.3819824265232477	13.3819824265206115	$2.6 \mathrm{E}-12$	510.51
46	13.4641016151377588	13.4639878881361117	$1.1 \mathrm{E}-04$	151.07
47	13.6775877082279198	13.6774298825312073	$1.6 \mathrm{E}-04$	4731.81
48	13.8059970535441412	13.8059970536389738	-9.5E-11	2214.69
49	13.9484250865937067	13.9484250865204586	$7.3 \mathrm{E}-11$	1334.68
50	14.0124815721935416	14.0100949163104573	$2.4 \mathrm{E}-03$	12245.42

Table 2: Optimal results for the pafking of unitary circles in a square

\# of items	Rectangle length	Rectangle width	Rectangle area	Time
1	2.0000000000000000	2.0000000000000000	4.0000000000000000	0.00
2	4.0000000000000000	2.0000000000000000	8.0000000000000000	0.00
3	6.0000000000000000	2.0000000000000000	12.0000000000000000	0.00
4	8.0000000000000000	2.0000000000000000	16.0000000000000000	0.00
5	10.0000000000000000	2.0000000000000000	20.0000000000000000	0.00
6	4.0000000000000000	6.0000000000000000	24.0000000000000000	0.34
7	2.0000000000000000	14.0000000000000000	28.0000000000000000	0.66
8	8.0000000000000000	4.0000000000000000	32.0000000000000000	1.50
9	6.0000000000000000	6.0000000000000000	36.0000000000000000	0.01
10	10.0000000000000000	4.0000000000000000	40.0000000000000000	0.00
11	8.0000000000000018	5.4641016151377553	43.7128129211020493	11.20
12	8.0000000000000000	6.0000000000000000	48.0000000000000000	4.40
13	26.0000000000000000	2.0000000000000000	52.0000000000000000	7.24
14	5.4641016151377553	10.0000000000000018	54.6410161513775634	12.46
15	3.7320508075688776	16.0000000000000036	59.7128129211020564	8.70
16	3.7320508075688776	17.0000000000000036	63.4448637286709314	15.01
17	5.4641016151377553	12.0000000000000018	65.5692193816530704	31.35
18	3.7320508075688776	19.0000000000000036	70.9089653438086884	61.10
19	7.4641016151377562	10.0000000000000018	74.6410161513775705	8.64
20	14.0000000000000036	5.4641016151377553	76.4974226119285987	0.01
21	15.0000000000000036	5.4641016151377553	81.9615242270663487	0.02
22	3.7320508075688776	23.0000000000000036	85.8371685740842025	26.52
23	5.4641016151377553	16.0000000000000036	87.4256258422040986	8.07
24	5.4641016151377553	17.0000000000000036	92.8897274573418628	35.01
25	3.7320508075688776	26.0000000000000071	97.0333209967908488	23.36
26	5.4641016151377553	18.0000000000000036	98.3538290724796127	114.36
27	5.4641016151377553	19.0000000000000036	103.8179306876173627	10.10
28	12.0000000000000036	8.9282032302755123	107.1384387633061834	80.71
29	20.0000000000000036	5.4641016151377553	109.2820323027551268	82.37
30	5.4641016151377553	21.0000000000000036	114.7461339178928768	10.10
31	3.7320508075688776	32.0000000000000071	119.4256258422041128	58.06
32	5.4641016151377553	22.0000000000000036	120.2102355330306409	176.39
33	14.0000000000000053	8.9282032302755123	124.9948452238572258	1687.60
34	7.1961524227066338	18.0000000000000036	129.5307436087194333	140.46
35	24.0000000000000036	5.4641016151377553	131.1384387633061408	53.59
36	25.0000000000000071	5.4641016151377553	136.6025403784439334	185.56
37	5.4641016151377553	25.8612097182042078	141.3082777906558363	2353.71
38	26.0000000000000071	5.4641016151377553	142.0666419935816691	38.55
39	27.0000000000000071	5.4641016151377553	147.5307436087194333	301.99
40	7.1961524227066338	21.0000000000000036	151.1192008768393293	333.47
41	5.4641016151377553	28.0000000000000071	152.9948452238571974	244.77
42	22.0000000000000036	7.1961524227066338	158.3153532995459614	285.47
43	18.0000000000000071	8.9282032302755123	160.7076581449592823	389.22
44	5.4641016151377553	30.0000000000000071	163.9230484541326973	1447.03
45	5.4641016151377553	31.0000000000000071	169.3871500692704615	503.78
46	7.1961524227066338	24.0000000000000036	172.7076581449592254	485.91
47	5.4641016151377553	32.0000000000000071	174.8512516844081972	520.40
48	20.0000000000000071	8.9282032302755123	178.5640646055103105	3034.99
49	5.4641016151377553	33.8612097182042078	185.0210907117578643	5101.41
50	5.4641016151377553	34.0000000000000071	185.7794549146837255	83.78

Table 3: Optimal results for the packing of ${ }_{1}$ bnitary circles in a rectangle (min. $L \times W$)

\# of items	Rectangle length	Rectangle width	Rectangle semiperimeter	Time
1	2.0000000000000000	2.0000000000000000	4.0000000000000000	0.00
2	4.0000000000000000	2.0000000000000000	6.0000000000000000	0.00
3	3.7320508075688776	4.0000000000000000	7.7320508075688776	0.00
4	4.0000000000000000	4.0000000000000000	8.0000000000000000	0.17
5	4.0000000000000000	5.4641016151377544	9.4641016151377535	0.24
6	4.0000000000000000	6.0000000000000000	10.0000000000000000	0.32
7	5.8612097182041998	5.4641016151377553	11.3253113333419542	1.06
8	5.4641016151377553	6.0000000000000009	11.4641016151377571	1.50
9	6.0000000000000000	6.0000000000000000	12.0000000000000000	0.01
10	7.1961524227066338	6.0000000000000009	13.1961524227066356	44.93
11	6.0000000000000009	7.4641016151377562	13.4641016151377571	3.62
12	6.0000000000000000	8.0000000000000000	14.0000000000000000	3.79
13	7.4626564857803901	7.4632672693142670	14.9259237550946580	1944.55
14	7.1961524227066338	8.0000000000000018	15.1961524227066356	42.44
15	8.0000000000000018	7.4641016151377562	15.4641016151377571	14.93
16	8.0000000000000000	8.0000000000000000	16.0000000000000000	24.32
17	8.9282032302755123	7.9427193491449888	16.8709225794205011	737.93
18	8.0000000000000036	8.9282032302755123	16.9282032302755141	287.59
19	7.4641016151377562	10.0000000000000018	17.4641016151377571	7.37
20	8.9282032302755123	9.0000000000000036	17.9282032302755141	556.65
21	9.4337452285295686	9.2209018981307658	18.6546471266603362	113.34
22	9.9427193491449888	8.9282032302755123	18.8709225794205011	979.18
23	8.9282032302755123	10.0000000000000036	18.9282032302755141	421.24
24	9.4641016151377553	10.0000000000000000	19.4641016151377571	86.33
25	11.0000000000000036	8.9282032302755123	19.9282032302755141	213.47
26	10.6602540378443891	9.9427193491449888	20.6029733869893761	3528.82
27	10.6602540378443891	10.0000000000000036	20.6602540378443926	88.10
28	12.0000000000000036	8.9282032302755123	20.9282032302755141	74.90
29	9.4641016151377571	12.0000000000000018	21.4641016151377571	20.58
30	10.6602540378443891	11.0000000000000036	21.6602540378443926	436.24
31	10.9282032302755141	11.4265717909344140	22.3547750212099281	2237.26
32	11.9427193491449870	10.6602540378443891	22.6029733869893761	1417.69
33	12.0000000000000036	10.6602540378443891	22.6602540378443926	214.35
34	10.9282032302755123	12.0000000000000036	22.9282032302755141	731.71
35	12.3923048454132676	11.0000000000000036	23.3923048454132712	133.13
36	10.6602540378443891	13.0000000000000071	23.6602540378443962	82.16
37	12.3923048454132676	11.8612097182042024	24.2535145636174718	7399.74
38	11.9841557353269081	12.3924132707237522	24.3765690060506586	2891.91
39	12.3923048454132676	12.0000000000000036	24.3923048454132712	3329.17
40	12.9282032302755123	12.0000000000000036	24.9282032302755141	155.32
41	12.3923048454132676	12.9427193491449888	25.3350241945582582	6254.69
42	12.3923048454132676	13.0000000000000071	25.3923048454132747	1650.45
43	13.6029140930960750	12.3923268915991969	25.9952409846952719	1035.43
44	13.8844501917489893	12.3923048454132712	26.2767550371622605	13131.52
45	13.9841229965638760	12.3923048454132676	26.3764278419771436	1069.14
46	14.0000000000000071	12.6602540378443891	26.6602540378443962	1879.21
47	14.0000000000000071	12.9282032302755123	26.9282032302755212	1281.24
48	13.0000000000000071	14.1243556529821479	27.1243556529821532	1709.87
49	12.3923048454132676	15.0000000000000071	27.3923048454132747	7546.82
50	12.3923048454132712	15.6028097181778964	27.9951145635911658	6366.25

Table 4: Optimal results for the packing of ${ }_{1}$ nnitary circles in a rectangle (min. $L+W$)

\# of items	Triangle side	Time	\# of items	Strip length	Time
1	3.4641016151377545	0.00	1	2.0000000000000000	0.00
2	5.4641015260409098	0.00	2	1.9999999999999998	0.04
3	5.4641015582188635	0.05	3	1.9999999999999998	0.02
4	6.9282031370137620	0.03	4	1.9999999999999998	0.04
5	7.4641015438602771	54.72	5	2.6959705453537524	0.02
6	7.4641015587429127	206.36	6	3.3228756555322954	0.00
7	8.9282031100914168	0.18	7	3.5612494995995996	0.01
8	9.2938099467443216	12.95	8	3.6887986310766987	0.07
9	9.4641015510046618	25.109	9	3.9996673748986948	9.17
10	9.4641015666630892	0.37	10	4.6959705453537524	0.04
11	10.7300878190524358	13.38	11	5.1224989991991992	0.05
12	10.9282031596736786	4.22	12	5.3775972621533974	2.42
13	11.4064957458284422	80.55	13	5.8538814987957917	840.02
14	11.4641015604162533	1122.57	14	5.9993347497973915	1112.34
15	11.4641015695434394	24.63	15	6.6959705453537559	0.02
16	12.7136286310567250	2186.82	16	7.0663958932300979	5.33
17	12.9282031457004436	49.64	17	7.4525364626094142	7.98
18	13.2937904231493249	121.93	18	7.8539155052528402	687.63
19	13.4480543405474720	223.02	19	7.9996778073991033	2515.58
20	13.4641015644155306	20.57	20	8.6959705453537559	40.77
21	13.4641015778907409	42.47	21	9.1732901304367189	3185.98
22	14.6125656032291964	413.39	22	9.4524415753023714	31.15
23	14.8826696938712466	2117.64	23	9.8537288511462791	2537.63
24	14.9282031609796402	373.50	24	9.9993623469257145	161.81
25	15.2938099693721306	1.18	25	10.6959705453537577	0.66
26	15.4589390002039853	1067.00	26	11.1733168632638993	2878.17
27	15.4641015656802985	6.78	27	11.4522265853969465	267.37
28	15.4641015817250107	782.69	28	11.8539308197359858	94.54
29	16.6056026842964179	2708.93	29	11.9993600450532973	857.99
30	16.7300878617292312	24.34	30	12.6959705453537595	1.32
31	16.9282031492725551	158.16	31	13.1733140056536673	10490.33
32	17.2474929494386764	179.30	32	13.4519215824209422	7042.79
33	17.4064957212102627	128.48	33	13.8515722749965562	663.65
34	17.4635536344819791	568.62	34	13.9993894685688876	2806.64
35	17.4641015734708560	82.36	35	14.6959705453537612	8.50
36	17.4641015898910545	48.32	36	15.1731171516082881	5723.33
37	18.5312410691358664	1463.95	37	15.4520220872811613	1503.56
38	18.7298248517387407	395.28	38	15.8330120530395764	504.22
39	18.9160916884815435	1210.17	39	15.9999999998085887	1014.63
40	18.9282031752999664	658.87	40	16.6959705453537595	14.86
41	19.2938099551359308	639.66	41	17.1729034249762442	6632.41
42	19.4064957825474025	26.92	42	17.4516358985406050	2548.92
43	19.4635536523988257	1459.48	43	17.8140606308452512	2577.70
44	19.4641015803674549	1370.20	44	17.9993696642869736	12212.56
45	19.4641015941498345	10.92	45	18.6959705453537630	3.66
46	20.5275000891198900	3295.17	46	19.1726994816344884	1476.64
47	20.7032882042547612	1837.24	47	19.4518331606560650	14077.38
48	20.8825408318815278	1526.27	48	19.7495596428938782	6813.48
49	20.9282031663479380	501.34	49	19.9993724839986804	3527.02
50	21.2464302653662145	569.27	50	20.6959705453537630	4.96

Table 5: Optimal results for the packing of unitary circles in a triangle and a strip ($L=9.5$)

References

[1] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification, Mathematical Programming 111 (2008), 5-32.
[2] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM Journal on Optimization 18 (2007), 1286-1309.
[3] E. G. Birgin, R. Castillo, and J. M. Martínez, Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems, Computational Optimization and Applications 31 (2005), 31-56.
[4] E. G. Birgin and J. M. Martínez, Structured minimal-memory inexact quasi-Newton method and secant preconditioners for Augmented Lagrangian Optimization, Computational Optimization and Applications 39 (2008), 1-16.
[5] E. G. Birgin, J. M. Martínez, W. F. Mascarenhas, and D. P. Ronconi, Method of sentinels for packing items within arbitrary convex regions, Journal of the Operational Research Society 57 (2006), 735-746.
[6] E. G. Birgin, J. M. Martínez, F. H. Nishihara, and D. P. Ronconi, Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization, Computers \& Operations Research $\mathbf{3 3}$ (2006), 3535-3548.
[7] E. G. Birgin, J. M. Martínez, and D. P. Ronconi, Optimizing the packing of cylinders into a rectangular container: a nonlinear approach, European Journal of Operational Research 160 (2005), 19-33.
[8] E. G. Birgin and F. N. C. Sobral, Minimizing the object dimensions in circle and sphere packing problems, Computers \& Operations Research 35 (2008), 2357-2375.
[9] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, vol. 244, SpringerVerlag, New York, 2008.
[10] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics in Applied Mathematics, SIAM Publications, Philadelphia, 1996.
[11] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.
[12] M. Locatelli and U. Raber, Packing equal circles in a square: a deterministic global optimization approach, Discrete Applied Mathematics 122 (2002), 139-166.
[13] C. D. Maranas, C. A. Floudas, and P. M. Pardalos, New results in the packing of equal circles in a square, Discrete Mathematics 142 (1995), 287-293.
[14] N. Mladenović, F. Plastria, and D. Urošević, Reformulation descent applied to circle packing problems, Computers \& Operations Research 32 (2005), 2419-2434.
[15] K. J. Nurmela and P. R. Östergård, Packing up to 50 equal circles in a square, Discrete \& Computational Geometry 18 (1997), 111-120.
[16] E. Specht, Packomania (January 20, 2009), available at http://www.packomania.com.
[17] Y. G. Stoyan, Mathematical methods for geometric design, Advances in CAD/CAM (T. M. R. Ellis and O. J. Semenkoc, eds.), Proceedings of PROLAMAT 82, Leningrad and Amsterdam, 1983, pp. 67-86.
[18] Y. G. Stoyan and G. N. Yas'kov, Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints, International Transactions in Operational Research 5 (1998), 45-57.
[19] Y. G. Stoyan and G. N. Yas'kov, A mathematical model and a solution method for the problem of placing various-sized circles into a strip, European Journal of Operational Research 156 (2004), 590-600.
[20] Y. G. Stoyan, G. N. Yas'kov, and G. Scheithauer, Packing spheres of various radii into a parallelepiped, Technical Report MATH-NM-15-2001, TU, Dresden, 2001.
[21] D. Zhang and A. Deng, An effective hybrid algorithm for the problem of packing circles into a larger containing circle, Computers \& Operations Research 32 (2005), 1941-1951.
[22] D. Zhang and W. Huang, A Simulated Annealing Algorithm for the Circles Packing Problem, Computational Science - ICCS 2004, Lecture Notes in Computer Science, vol. 3036, Springer-Verlag, Berlin and Heidelberg, 2004, pp. 206-214.

[^0]: *This research was partly supported by PRONEX-Optimization (PRONEX-CNPq / FAPERJ E-26 / 171.510/2006 - APQ1) and FAPESP (Grants 2006/53768-0 and 2006/57633-1).
 ${ }^{\dagger}$ Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Cidade Universitária - 05508-090 São Paulo, SP - Brazil (\{egbirgin|jgmarcel\}@ime.usp.br).

