
Outer Trust-Region method for Constrained Optimization∗

Ernesto G. Birgin † Emerson V. Castelani ‡ André L. M. Martinez ‡

J. M. Mart́ınez ‡

May 18, 2009§

Abstract

Given an algorithm A for solving some mathematical problem based on the iterative
solution of simpler subproblems, an Outer Trust-Region (OTR) modification of A is the
result of adding a trust-region constraint to each subproblem. The trust-region size is adap-
tively updated according to the behavior of crucial variables. The new subproblems should
not be more complex than the original ones and the convergence properties of the Outer
Trust-Region algorithm should be the same as those of the Algorithm A. Some reasons for
introducing OTR modifications are given in the present work. Convergence results for an
OTR version of an Augmented Lagrangian method for nonconvex constrained optimization
are proved and numerical experiments are presented.

Key words: Nonlinear programming, Augmented Lagrangian method, trust regions.

1 Introduction

Numerical methods for solving difficult mathematical problems use to be iterative. Successive
approximations x0, x1, x2, . . . seeking a solution x∗ are computed and, in general, each iterate
xk+1 is obtained after solving a simpler subproblem that uses information obtained at previ-
ous iterations. The point xk+1 may not be the solution of the subproblem defined after the
computation of xk. The solution of this subproblem, usually called trial point, is a “candidate
to next iterate”, being accepted only if it satisfies certain requirements. If the trial point is
rejected one computes a new one by means of two possible procedures: (i) Using some simple
computation that involves xk and the trial point (generally, line search) and (ii) defining a new
subproblem whose domain excludes the rejected trial point (trust regions). Iterations based
on the trust-region approach are more expensive than those based on line searches. However,
the information used in the trust-region philosophy is more complete than the one used in line

∗This work was supported by PRONEX-Optimization (PRONEX - CNPq / FAPERJ E-26 / 171.510/2006 -
APQ1), FAPESP (Grants 2006/53768-0 and 2005/57684-2) and CNPq.

†Department of Computer Science IME-USP, University of São Paulo, Rua do Matão 1010, Cidade Univer-
sitária, 05508-090, São Paulo SP, Brazil. e-mail: egbirgin@ime.usp.br

‡Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-
970 Campinas SP, Brazil. e-mails: emersonvitor@hotmail.com, andrelmmartinez@yahoo.com.br, mar-
tinez@ime.unicamp.br

§Typos corrected on July 10, 2009 and on April 5, 2010.

1

searches [8]. Therefore, greater progress is expected from a trust-region iteration than from a
line-search iteration.

The paragraph above is quite general. Although we generally address nonlinear programming
problems, we also have in mind nonlinear systems of equations [25, 30], variational inequality
problems [9], equilibrium and control problems both in finite and infinite dimensional setting.
The acceptance criterion for a trial point is usually associated with a merit function [10, 24] or a
filter scheme [11, 12, 13, 16, 17] in the optimization world. Both approaches provide the essential
tools for proving global convergence theorems of type “Every limit point is stationary”. In this
paper we wish to consider acceptance-rejection criteria not strictly associated with convergence
guarantees, but to practical robustness and efficiency of algorithms. This does not mean that
the new criteria inhibit convergence but that theoretical convergence is independent of using
them or not.

Numerical algorithms that incorporate trust regions not linked to convergence properties
(but not harming these properties in the sense mentioned above) will be called Outer Trust
Region (OTR) algorithms in the present paper. Some motivations for defining OTR algorithms
are given below:

1. A priori information. Many times, users have information about the solution of their
problems that they would like to express in the form “Probably, my solution belongs to the
n-dimensional region B”. Their a priori knowledge is not enough to define x ∈ B as a hard
constraint of the problem, but it exceeds the amount of knowledge that is necessary to set
an initial point. For these situations, it may be useful to define x ∈ B as constraint for the
first subproblem, preserving the algorithmic possibility of updating or even eliminating
the constraint at every iteration.

2. Initial multipliers. Solutions of constrained optimization problems are generally asso-
ciated with dual solutions (Lagrange multipliers). Most solvers simultaneously compute
approximations to the primal solution and the vector of multipliers. Users generally have
good guesses for the primal solution but not for the multipliers. A trust region of moderate
size at the first iteration may contribute to define a relatively easy subproblem from which
a suitable correction of poor multipliers can be computed.

3. Step control. Traditional experience in the nonlinear systems field [21, 23] shows that
adaptive step restrictions based on scaling considerations enhance the robustness of New-
tonian methods, albeit this contribution is not fully supported by rigorous convergence
theory. This experience is corroborated by modern computations in the nonlinear pro-
gramming framework [5]. Reconciliation between empirical procedures and rigorous theory
is, of course, desirable.

4. Inverse problems. Most inverse problems are defined by underdetermined or very ill-
conditioned mathematical problems. Regularization is the best known tool for dealing with
this situation, but trust-region variations are also well-known alternatives [33]. Asymp-
totically, many iterative methods converge to meaningless solutions (small residual, large
primal components) [29] but the trust-region approach, combined with a suitable stopping
criterion, may be useful to produce meaningful solutions with theoretical significance.

5. Greediness. In a recent paper [7] the greediness phenomenon was described as the ten-
dency of some nonlinear programming solvers to be attracted, at least at the first outer

2

iterations, by infeasible points with very small objective function values, from which it is
very difficult to escape. A proximal augmented Lagrangian approach was proposed in [7]
to overcome this inconvenient. The outer trust-region scheme may be used with the same
purpose.

Compatibility issues must be taken into account. Assume that our original mathematical
problem has the form:

Find x ∈ D such that P (x) holds , (1)

where P (x) is a mathematical proposition. Suppose that a standard method for solving (1)
solves, at each iteration, the subproblem:

Find x ∈ D such that Pk(x) holds , (2)

where Pk(x) is the mathematical proposition that defines the subproblem. If Bk denotes the
trust region associated with iteration k, at this iteration we should solve, instead of (2):

Find x ∈ D ∩Bk such that Pk(x) holds . (3)

However, there is a compatibility restriction. It is not computationally admissible the pos-
sibility of subproblem (3) being more difficult than subproblem (2). Roughly speaking, the
problem (3) should be of the same type as (2). This means that the outer trust-region approach
should not be used to improve every numerical algorithm, but only those for which (2) and (3)
are compatible.

In this paper we concentrate ourselves in the finite dimensional nonlinearly constrained op-
timization problem. The basic method, on which we will introduce the OTR modification, is
the Augmented Lagrangian method of Powell-Hestenes-Rockafellar (PHR) form [26, 19, 28] in-
troduced in [1]. The standard implementation of this algorithm, called Algencan, is freely
available in [34]. The employment of Algencan is recommendable when one has problems
with many inequality constraints or problems with a Hessian-Lagrangian structure that does
not favor matrix factorizations. In spite of this basic recommendation, the method is perma-
nently being improved in order to enhance its performance in general problems. The basic form
of the method [1] has interesting theoretical properties that we aim to preserve in the OTR
modification. These are:

1. When the set of penalty parameters is bounded, limit points of sequences generated by
the method are feasible. Independently of penalty boundedness, cluster points are station-
ary points for the infeasibility measure, provided that the “lower-level set” satisfies the
Constant Positive Linear Dependence (CPLD) constraint qualification at the point under
consideration1.

2. If a cluster point is feasible and the constraints satisfy CPLD at this point, then the KKT
optimality conditions are fulfilled.

1The CPLD condition says that whenever some gradients of active constraints are linearly dependent with
non-negative coefficients corresponding with inequality constraints at a feasible point, the same gradients remain
linearly dependent in a neighborhood of the same point.

3

These properties are quite general. The CPLD property was introduced by Qi and Wei [27]
and its status as a constraint qualification was elucidated in [2]. Up to our knowledge, the
CPLD condition is the weakest constraint qualification associated with practical algorithms.
The convergence results using CPLD are naturally stronger than convergence results associated
with other constraint qualifications.

This paper is organized as follows. The basic OTR algorithm is presented in Section 2, where
two basic OTR properties are proved. Convergence results are proved in Section 3. Convergence
to global minimizers is analyzed in Section 4. Numerical experiments are given in Section 5.
Section 6 contains final remarks and lines for future research.

Notation

The symbol ‖ · ‖ denotes the Euclidean norm, although many times it may be replaced by
an arbitrary norm on IRn. We denote PB(x) the Euclidean projection of x onto B.

2 Algorithm

The problem considered in this section is:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω. (4)

The set Ω will be given by lower-level constraints of the form h(x) = 0, g(x) ≤ 0. In the most
simple cases, Ω will take the form of an n-dimensional box: Ω = {x ∈ IRn | ℓ ≤ x ≤ u}. We will
assume that the functions f : IRn → IR, h : IRn → IRm, g : IRn → IRp, h : IRn → IRm, g : IRn →
IRp have continuous first derivatives on IRn.

Given ρ > 0, λ ∈ IRm, µ ∈ IRp
+, x ∈ IRn the PHR- Augmented Lagrangian Lρ(x, λ, µ) is

given by:

Lρ(x, λ, µ) = f(x) +
ρ

2

{ m
∑

i=1

[

hi(x) +
λi

ρ

]2

+

p
∑

i=1

[

max

(

0, gi(x) +
µi

ρ

)]2}

. (5)

The main algorithm presented in this paper is an OTR modification of Algorithm 3.1 of [1].
The subproblems solved in the Augmented Lagrangian algorithm of [1] ordinary include box
constraints. Therefore, the introduction of additional box constraints in the subproblems do not
increase their complexity. In Algorithm 2.1 below the trust regions are defined by the infinity
norm, therefore the outer trust-region constraint merely adds a box to the constraints of the
subproblem. Therefore, the compatibility requirement mentioned in the Introduction is fulfilled.

Algorithm 2.1

The parameters that define the algorithm are: τ ∈ [0, 1), η > 1, λmin < λmax, µmax > 0, β1 >
0, β2 > 0, Rtol > 0. We assume that x0 ∈ IRn is an arbitrary initial point that coincides with the
initial reference point x̄0. We define R0 = max{Rtol, ‖h(x0)‖∞, ‖g(x0)+‖∞}. At the first outer
iteration we use a penalty parameter ρ1 > 0 and safeguarded Lagrange multipliers estimates
λ̄1 ∈ IRm and µ̄1 ∈ IRp such that

λ̄1
i ∈ [λmin, λmax] ∀i = 1, . . . , m and µ̄1

i ∈ [0, µmax] ∀i = 1, . . . , p.

4

Let ∆1 > 0 be an arbitrary ℓ∞ trust-region radius. For all k ∈ {1, 2, . . .} we define

Bk = {x ∈ IRn | ‖x− x̄k−1‖∞ ≤ ∆k}.

Finally, let {εk} be a sequence of positive numbers that tends to zero.

Step 1. Initialization.
Set k ← 1.

Step 2. Solve the subproblem.
Compute xk ∈ Bk such that there exist vk ∈ IRm, wk ∈ IRp satisfying

‖PBk
[xk − (∇Lρk

(xk, λ̄k, µ̄k) +
∑m

i=1 vk
i∇hi(x

k) +
∑p

i=1 wk
i∇g

i
(xk))]− xk‖ ≤ εk, (6)

wk ≥ 0, g(xk) ≤ εk, (7)

g
i
(xk) < −εk ⇒ wk

i = 0 for all i = 1, . . . , p, (8)

‖h(xk)‖ ≤ εk. (9)

and
Lρk

(xk, λ̄k, µ̄k) ≤ Lρk
(x̄k−1, λ̄k, µ̄k). (10)

Step 3. Compute feasibility and complementarity measurements.
For all i = 1, . . . , p, compute

V k
i = max

{

gi(x
k),− µ̄k

i

ρk

}

,

and define
Rk = R(xk) = max{‖h(xk)‖∞, ‖V k‖∞}. (11)

Step 4. Update reference point.
If Rk 6= min{R0, . . . , Rk}, define x̄k = x̄k−1. Else, define x̄k = xk.

Step 5. Estimate multipliers.
For all i = 1, . . . , m, compute

λk+1
i = λ̄k

i + ρkhi(x
k) (12)

and
λ̄k+1

i ∈ [λmin, λmax].

For all i = 1, . . . , p, compute

µk+1
i = max{0, µ̄k

i + ρkgi(x
k)}, (13)

and
µ̄k+1

i ∈ [0, µmax].

Step 6. Update penalty parameter.

5

If k > 1 and Rk > τRk−1, define ρk+1 = ηρk. Else, define ρk+1 = ρk.

Step 7. Update trust-region radius.
Choose ∆k+1 > 0 in such a way that

∆k+1 ≥
β1

Rk

(14)

and
∆k+1 ≥ β2ρk+1. (15)

Set k ← k + 1 and go to Step 2.

Remarks

1. The conditions (6–9) say that xk is an approximate KKT point of the subproblem

Minimize Lρk
(x, λ̄, µ̄k) s.t. h(x) = 0, g(x) ≤ 0, x ∈ Bk.

Therefore, at each outer iteration we aim to minimize (approximately) the augmented
Lagrangian subject to the lower level constraints defined by the set Ω and the trust-region
constraint x ∈ Bk.

2. At Step 7 the trust-region radius is updated. The rule (14) imposes that the trust-region
radius must tend to infinity if the feasibility-complementarity measure Rk tends to zero.
The rule (15) says that, if the penalty parameter is taking care of feasibility, it makes no
sense to take care of feasibility using the trust region restriction.

The following lemma is a technical result that says that, if the feasibility-complementarity
measure Rk tends to zero along a subsequence, then Rk tends to zero along the full sequence
generated by Algorithm 2.1. This result, and the one that follows, will be used in the conver-
gence theory of Section 3.

Lemma 2.1. Let {xk} be a bounded sequence generated by Algorithm 2.1 and suppose that there
exists an infinite set of indices K such that limk∈K Rk = 0. Then,

lim
k→∞

Rk = 0. (16)

Proof. If {ρk} is bounded we have that Rk ≤ τRk−1 for all k large enough, so the thesis is
proved.

Let us assume, from now on, that limk→∞ ρk =∞.
By (10), we have that, for all k ∈ IN ,

f(xk) +
ρk

2

{ m
∑

i=1

[

hi(x
k) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x
k) +

µ̄k
i

ρk

)]2}

≤ f(x̄k−1) +
ρk

2

{ m
∑

i=1

[

hi(x̄k−1) +
λ̄k

i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x̄
k−1) +

µ̄k
i

ρk

)]2}

.

6

Dividing by ρk we get:

1

ρk

f(xk) +
1

2

{ m
∑

i=1

[

hi(x
k) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x
k) +

µ̄k
i

ρk

)]2}

≤ 1

ρk

f(x̄k−1) +
1

2

{ m
∑

i=1

[

hi(x̄
k−1) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x̄
k−1) +

µ̄k
i

ρk

)]2}

. (17)

By the definition of x̄k−1 we can write {x̄0, x̄1, x̄2, . . .} = {xk0 , xk1 , xk2 , . . .}, where k0 ≤ k1 ≤
k2 ≤ Moreover, since limk∈K Rk = 0, we have that

lim
j→∞

Rkj
= 0. (18)

Clearly, (18) implies that limj→∞ ‖h(xkj)‖2+∑p
i=1 max{0, g(xkj)}2 = 0. Thus, limk→∞ ‖h(x̄k−1)‖2+

∑p
i=1 max{0, g(x̄k−1)}2 = 0. Therefore, the right-hand side of (17) tends to zero when k tends

to infinity.
Thus,

lim
k→∞

1

2

{ m
∑

i=1

[

hi(x
k) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x
k) +

µ̄k
i

ρk

)]2}

= 0.

Since ρk →∞ and µ̄k, λ̄k are bounded, this implies that

lim
k→∞

‖h(xk)‖ = 0 (19)

and
lim

k→∞
max{0, gi(x

k)} = 0 ∀ i = 1, . . . , p.

Then,
lim

k→∞
V k

i = 0 ∀ i = 1, . . . , p. (20)

By (19) and (20) we obtain (16). �

Lemma 2.2. Let {xk} be a bounded sequence generated by Algorithm 2.1 and suppose that there
exists an infinite set of indices K such that

lim
k∈K

Rk = 0.

Then,
lim

k→∞
∆k =∞.

Proof. The desired result follows from (14) and Lemma 2.1. �

7

3 Convergence

In this section we prove that Algorithm 2.1 is globally convergent in the same sense as Algorithm
3.1 of [1]. In Lemma 3.1 we show that, at each iteration of Algorithm 2.1 one obtains an approx-
imate KKT point of the problem of minimizing the upper-level Lagrangian (with multipliers
λk+1, µk+1) subject to the lower-level constraints and the trust-region constraint. In Lemma 3.2
we prove that the same approximate KKT property holds, asymptotically, eliminating the the
trust-region constraint, if ρk tends to infinity.

Lemma 3.1. Assume that {xk} is a sequence generated by Algorithm 2.1. Then, for all k =
1, 2, . . . we have that xk ∈ Bk and:

‖PBk
[xk − (∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 +∇h(xk)vk +∇g(xk)wk)]− xk‖ ≤ εk, (21)

where
wk ≥ 0, wk

i = 0 whenever g
i
(xk) < −εk,

g
i
(xk) ≤ εk ∀ i = 1, . . . , p, ‖h(xk)‖ ≤ εk.

Proof. The proof follows from (6–9) using the definitions (12) and (13). �

Lemma 3.2. Assume that {xk} is a bounded sequence generated by Algorithm 2.1 and that
limk→∞ ρk =∞. Then, there exists c > 0 such that for all k large enough we have that:

‖∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 +∇h(xk)vk +∇g(xk)wk)‖ ≤ cεk,

where
wk ≥ 0, wk

i = 0 whenever g
i
(xk) < −εk,

g
i
(xk) ≤ εk ∀ i = 1, . . . , p, ‖h(xk)‖ ≤ εk.

Proof. Define:

gk = ∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 +∇h(xk)vk +∇g(xk)wk. (22)

Then, by (21), ‖PBk
(xk − gk) − xk‖ ≤ εk for all k = 1, 2, By the equivalence of norms in

IRn, there exists c1 > 0 such that ‖PBk
(xk − gk)− xk‖∞ ≤ c1εk for all k = 1, 2,

Now, by the definition of Bk,

[PBk
(xk − gk)]i = max{x̄k−1

i −∆k, min{x̄k−1
i + ∆k, x

k
i − gk

i }}.

Therefore, for all k ∈ IN , i ∈ {1, . . . , n},

|max{x̄k−1
i −∆k, min{x̄k−1

i + ∆k, x
k
i − gk

i }} − xk
i | ≤ c1εk.

Thus,
−c1εk ≤ max{x̄k−1

i −∆k, min{x̄k−1
i + ∆k, x

k
i − gk

i }} − xk
i ≤ c1εk.

8

Dividing by ρk we get:

−c1εk + xk
i

ρk

≤ max

{

x̄k−1
i

ρk

− ∆k

ρk

, min

{

x̄k−1
i

ρk

+
∆k

ρk

,
xk

i

ρk

− gk
i

ρk

}}

≤ c1εk + xk
i

ρk

. (23)

Since {x̄k−1} and {xk} are bounded, we have that x̄k−1
i /ρk and xk

i /ρk tend to zero. By (15),
this implies that for k large enough:

x̄k−1
i

ρk

− ∆k

ρk

≤ −β2

2
,

x̄k−1
i

ρk

+
∆k

ρk

≥ β2

2

and
∣

∣

∣

∣

±c1εk + xk
i

ρk

∣

∣

∣

∣

≤ β2

3
.

Therefore, by (23), for k large enough we have:

−c1εk + xk
i

ρk

≤ xk
i

ρk

− gk
i

ρk

≤ c1εk + xk
i

ρk

.

Then,
−c1εk

ρk

≤ −gk
i

ρk

≤ c1εk

ρk

. (24)

Multiplying both sides of (24) by ρk, we have that, for k large enough:

|gk
i | ≤ c1εk.

By (22) and the equivalence of norms on IRn this implies the desired result. �

We finish this section proving that the main global convergence theorem given in [1] also
holds for our OTR Algorithm 2.1. Theorem 3.1 condenses results of feasibility and optimality.
If the penalty parameter is bounded, every limit point is feasible. Moreover, every cluster point
is a stationary point of the sum of squares of infeasibilities, unless the lower level constraints fail
to satisfy the CPLD constraint qualification. Non-fulfillment of CPLD is unlike to occur in prac-
tice, since the lower level constraints use to be simple. From the point of view of optimality, we
prove that every feasible limit point that satisfies the CPLD constraint qualification necessarily
fulfills the KKT conditions. In practical terms the results of Theorem 3.1 mean that Algorithm
2.1 generally finds feasible points or local minimizers of the infeasibility, and that feasible limit
points are, very likely, local minimizers.

Theorem 3.1. Assume that x∗ is a cluster point of a bounded sequence generated by Algo-
rithm 2.1. Then:

1. At least one of the following two possibilities holds:

• The point x∗ fulfills the KKT conditions of the problem

Minimize ‖h(x)‖2 + ‖g(x)+‖2 s.t. h(x) = 0, g(x) ≤ 0.

9

• The CPLD constraint qualification is not fulfilled at x∗ for the lower level constraints
h(x) = 0, g(x) ≤ 0.

Moreover, if {ρk} is bounded, x∗ is feasible.

2. Assume that x∗ is a feasible cluster point of (4). Then, at least one of the following two
possibilities holds:

• The point x∗ fulfills the KKT conditions of (4).

• The CPLD constraint qualification is not satisfied at x∗ for the constraints h(x) =
0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0.

Proof. Consider the first part of the thesis. If {ρk} is bounded, it turns out that ρk is not
increased from some iteration on, therefore the feasibility of every limit point follows from Step
6 of Algorithm 2.1. By Lemma 3.2, if {ρk} is unbounded, Algorithm 2.1 may be considered a
particular case of Algorithm 3.1 of [1] for k large enough. Therefore, the thesis follows from
Theorem 4.1 of [1].

Let us prove the second part of the thesis. In this case, by Lemma 2.1, we have that
limk→∞ Rk = 0. Therefore, by (14), limk→∞ ∆k = ∞. As in Lemma 3.2, we define: gk =
∇f(xk)+∇h(xk)λk+1+∇g(xk)µk+1+∇h(xk)vk+∇g(xk)wk. Then, by (21), ‖PBk

(xk−gk)−xk‖ ≤
εk for all k = 1, 2,

By the equivalence of norms in IRn, there exists c1 > 0 such that ‖PBk
(xk−gk)−xk‖∞ ≤ c1εk

for all k = 1, 2,
By the definition of Bk,

[PBk
(xk − gk)]i = max{x̄k−1

i −∆k, min{x̄k−1
i + ∆k, x

k
i − gk

i }}.

Therefore, for all k ∈ IN , i ∈ {1, . . . , n},

|max{x̄k−1
i −∆k, min{x̄k−1

i + ∆k, x
k
i − gk

i }} − xk
i | ≤ c1εk. (25)

Thus,
−c1εk + xk

i ≤ max{x̄k−1
i −∆k, min{x̄k−1

i + ∆k, x
k
i − gk

i }} ≤ c1εk + xk
i .

Therefore, by the boundedness of {xk}, there exists c2, c3 ∈ IR such that

−c2 ≤ max{x̄k−1
i −∆k, min{x̄k−1

i + ∆k, x
k
i − gk

i }} ≤ c3.

Since ∆k →∞ and {x̄k−1} is bounded, this can only occur if, for k large enough,

x̄k−1
i −∆k < xk

i − gk
i < x̄k−1

i + ∆k.

Therefore, by (25), |gk
i | ≤ c1εk for k large enough. This implies that, for k large enough, the

sequence {xk} may be thought as generated by Algorithm 3.1 of [1]. Therefore, the thesis of
Theorem 4.2 of [1] holds. This implies the desired result. �

Remark. Boundedness of the penalty parameter also holds using the same arguments of [1].

10

4 Convergence to global minimizers

One of the most attractive properties of the Augmented Lagrangian method is that it converges
to global minimizers if the iterates are global minimizers of the subproblems. This property
has been exploited in [3], where a global PHR Augmented Lagrangian algorithm was rigorously
defined and numerical experiments were presented. In this section we will prove that the OTR
variation of the method also exhibits convergence to global solutions of the nonlinear program-
ming problem.

We will use two basic assumptions on problem (4):

Assumption G1. There exists a global minimizer z of problem (4).

Assumption G2. The lower-level set Ω is bounded.

Algorithm 4.1

This algorithm is identical to Algorithm 2.1, except for the definition of the sequence {εk}
and Step 1. The sequence {εk} is assumed to be a nonincreasing sequence that tends to ε ≥ 0.
Step 1 is defined as follows.

Step 1.

Let Pk ⊂ IRn be a closed set such that a global minimizer z (the same for all k) belongs to Pk.
Find an εk-global minimizer xk of the problem Min Lρk

(x, λk, µk) subject to x ∈ Ω ∩ Pk ∩ Bk.
That is xk ∈ Ω ∩ Pk ∩Bk is such that:

Lρk
(xk, λk, µk) ≤ Lρk

(x, λk, µk) + εk

for all x ∈ Ω ∩ Pk ∩ Bk. The εk-global minimum can be obtained using a deterministic global
optimization approach as in [3].

Theorem 4.1. Let Assumptions G1 and G2 hold and assume that x∗ is a limit point of a
sequence {xk} generated by Algorithm 4.1. Then, x∗ is an ε-global minimizer of (4).

Proof. Let us observe first that Lemmas 2.1 and 2.2 hold for Algorithm 4.1. The proofs for
Algorithm 4.1 are identical to the ones given in Section 2.

If {ρk} is bounded, we have that limk→∞ Rk = 0. Therefore, by (14), limk→∞ ∆k = ∞. If
ρk → ∞, then, by (15) we also have that ∆k → ∞. Therefore, by Assumption G2, for k large
enough, we have that Ω ⊂ Bk. Therefore, Ω∩Pk ∩Bk = Ω∩Pk for k large enough. This means
that there exists k0 ∈ IN such that, for k ≥ k0, Step 1 of Algorithm 4.1 coincides with Step 1
of Algorithm 2.1 of [3]. Therefore, after relabeling, we see that Algorithm 4.1 may be seen as a
particular case of Algorithm 2.1 of [3]. Thus, Theorems 1 and 2 of [3] apply to Algorithm 4.1.
This completes the proof. �

11

5 Numerical experiments

5.1 OTR algorithm as an Algencan modification

We coded an implementation of Algorithm 2.1, which will be called Algencan-OTR from now
on, based on Algencan 2.2.1 (see [1] and the Tango Project web page [34]).

The default parameters of Algencan 2.2.1 were selected in order to define a matrix-free
method (free of computing, storing and factorizing matrices) for large-scale problems. However,
in most of the small and medium-size problems (and even large problems with sparse and
structured Hessians), Algencan performs better if the following non-default options are used:
direct-solver, perform-acceleration-step and scale-linear-systems. Option direct-

solver is related to the employment of a direct solver instead of conjugate gradients for solving
the Newtonian systems within the faces of the active-set bound-constraint solver Gencan [4].
Gencan is used as a solver for the Augmented Lagrangian subproblems in Algencan. The
Newtonian system being solved (whose matrix is the Hessian of the Augmented Lagrangian
function) is described in [22]. Option perform-acceleration-step is related to the acceleration
step described in [6] intercalated with Augmented Lagrangian iterations when the method seems
to be approaching the solution. At the acceleration step one considers that the active constraints
at the solution have been identified and solves the KKT system by Newton’s method [6]. For
those two options, direct linear-system solvers MA27 or MA57 from HSL must be available.
Finally, option scale-linear-systems means that every time a linear system is solved, it will
be scaled. To use this option, the embedded scaling procedures of MA57 are used if this was
the user choice for solving the linear systems. Otherwise, subroutines MC30 or MC77 must be
present to be used in connection with subroutine MA27. In the numerical experiments we used
subroutine MA57 (December 1st, 2006. Version 3.0.2).

As the number of outer iterations of Algencan and Algencan-OTR have different mean-
ings, the stopping criterion of Algencan 2.2.1 related to attaining a predetermined maximum
allowed number of outer iterations was disabled. All the other default parameters of Algen-

can 2.2.1 were used in the numerical experiments as we now describe. Let ε > 0 be the desired
tolerance for feasibility, complementarity and optimality. At iteration k, if k 6= 1 and (6–9) is
satisfied replacing k by k−1, εk by

√
ε, with Rk ≤

√
ε, then we set εk = 0.1 εk−1. Otherwise, we

set εk =
√

ε. We stop Algorithm 2.1 at iteration k if (6–9) is satisfied substituting εk by ε and
Rk ≤ ε. We set ε = 10−8. As in [1], we set τ = 0.5, η = 10, λmin = −1020, λmax = µmax = 1020,
and we consider λ0 = 0 and µ0 = 0.

The description of the parameters and the algorithmic choices directly related to Algo-
rithm 2.1 follow. We set β1 = β2 = 10−8, Rtol = 0.1 and ∆1 = ∞. At Step 5, if Rk 6=
min{R0, . . . , Rk}, we set λ̄k+1

i = λ̄k
i , for i = 1, . . . , m, and µ̄k+1

i = µ̄k
i , for i = 1, . . . , p. Other-

wise, if Rk = min{R0, . . . , Rk}, we set

λ̄k+1
i = P[λmin,λmax](λ̄

k
i + ρk hi(x

k)), for i = 1, . . . , m,

and
µ̄k+1

i = P[0,µmax](µ̄
k
i + ρk gi(x

k)), for i = 1, . . . , p.

At Step 7, if R(xk) > 100 R(x̄k), we set

∆̄k+1 = 0.5‖xk − x̄k‖∞

12

and
∆k+1 ≡ max{∆̄k+1, β1/Rk, β2 ρk+1}.

Otherwise, we set ∆k+1 =∞.
The algorithms were coded in double precision Fortran 77 and compiled with gfortran (GNU

Fortran (GCC) 4.2.4). The compiler optimization option -O4 was adopted. All the experiments
were run on a 2.4GHz Intel Core2 Quad Q6600 with 4.0GB of RAM memory and Linux Operating
System.

5.2 Implementation features related to greediness

Algencan solves at each outer iteration the scaled problem:

Minimize f̂(x) subject to ĥ(x) = 0, ĝ(x) ≤ 0, x ∈ Ω = {x ∈ IRn | ℓ̂ ≤ x ≤ û}, (26)

where

f̂(x) ≡ sf f(x) and sf = 1/ max(1, ‖∇f(x0)‖∞)

ĥi(x) ≡ shi
hi(x) and shi

= 1/ max(1, ‖∇hi(x
0)‖∞), for i = 1, . . . , m,

ĝi(x) ≡ sgi
gi(x) and sgi

= 1/ max(1, ‖∇gi(x
0)‖∞), for i = 1, . . . , p,

and ℓ̂i ≡ max(−1020, ℓi) and ûi ≡ min(1020, ui) for all i. The stopping criterion associated with
success considers the feasibility of the original (non-scaled constraints) and the complementarity
and optimality of the scaled problem (26). In the particular case in which m = p = 0, we set
sf ≡ 1, as the desired scaling result may be obtained choosing the proper optimality tolerance.
No scaling on the variables is implemented.

Choice of the initial penalty parameter: The Augmented Lagrangian function (5) for
problem (26) and for the particular case (λ, µ) = (0, 0) reduces to

Lρ(x, 0, 0) = f̂(x) +
ρ

2
C(x),

where

C(x) =
m

∑

i=1

ĥi(x)2 +

p
∑

i=1

max(0, ĝi(x))2.

So, if C(x) 6= 0, the value of ρ that “keeps the Augmented Lagrangian well balanced” is given
by ρ = 0.5|f̂(x)|/C(x). In Algencan, assuming that we have (λ0, µ0) = 0, we set

ρ1 = min

{

max

{

10−8, 10
max(1, |f̂(x0)|)
max(1, C(x0))

}

, 108

}

. (27)

Moreover, trying to make the choice of the penalty parameter a little bit more independent of
the initial guess x0, x1 is computed as a rough solution of the first subproblem (limiting to 10 the
number of iterations of the inner solver) and ρ2 is recomputed from scratch as in (27) but using
x1. Finally the rules for updating the penalty parameter described at Step 6 of Algorithm 2.1
are applied for k ≥ 3.

The two implementation features described above aim to reduce the chance of Algencan

being attracted to infeasible points at early iterations by, basically, ignoring the constraints.
However, as any arbitrary choice of scaling and/or initial penalty parameter setting, problems
exist for which the undesired phenomenon still occur.

13

5.3 Examples

In the present subsection we show some examples that show some drawbacks of the algorithmic
choices described in the previous subsection. For the numerical experiments of the present
subsection we use Algencan 2.2.1 with its AMPL interface.

Problem A:

Minimize −
n

∑

i=1

(x8
i − xi) subject to

n
∑

i=1

x2
i ≤ 1.

Let n = 10 and consider the initial point x0 = 1
n
x̄, where the x̄i’s are uniformly distributed ran-

dom numbers within the interval [0.9, 1.1], generated by the intrinsic AMPL function Uniform01()

with seed equal to 1. Observe that x0 is feasible, sf = sg1
= 1.0D+00 and ρ1 = 1.0D+01. In

its first iteration for solving the first Augmented Lagrangian subproblem, the inner solver Gen-

can takes a huge step along the minus gradient direction arriving to the point x1 ≈ 4.0D+02

(1, . . . , 1)T at which the objective function being minimized (the Augmented Lagrangian) as-
sumes a value smaller than −1020. Gencan stops at that point guessing that the subproblem is
unbounded. The scaled objective function at x1 is, approximately, -6.5D+21 and the sup-norm
of the scaled constraints is, approximately, 1.6D+06. The re-initiated value of ρ2 (computed
using (27)) is 1.0D+08. Neither this value, nor the increasing values of ρk that follow, are able
to remove Algencan from that point. As a consequence, Algencan stops after a few outer
iterations at an infeasible point.

Problem B:

Minimize − exp [(
n

∑

i=1

x2
i + 0.01)−1] subject to

n
∑

i=1

xi = 1.

Let n = 10 and consider the same initial point used in Problem A. The behavior of Algencan

is mostly the same. In this case we have sf = 6.6D-06, sh1
= 1.0D+00 and ρ1 = 1.0D+01. The

scaled objective function value and sup-norm of the constraints at the initial point are -5.6D-02
and 1.4D-03, respectively. Gencan stops after 2 iterations guessing that the subproblem is
unbounded, at a point with scaled objective function and sup-norm of the constraints values
-1.2D+34 and 9.0D-01, respectively. The penalty parameter is re-initiated as ρ2 = 1.0D+08 but
the sup-norm of the constraints alternate between 9.0D-01 and 1.1D+00 at successive iterates.
At the end, with ρ14 = 1.0D+21, Algencan stops at an infeasible point.

Problem C:
Minimize −x exp(−xy)

subject to −(x + 1)3 + 3(x + 1)2 + y = 1.5
−10 ≤ x, y ≤ 10.

Consider the initial point x0 = (−1, 1.5)T . For this problem we have sf = 8.9D-02 and sg1
=

1.0D+00, and ρ1 = 1.0D+01. The point x0 is feasible and the scaled objective function value
is f̂(x0) = 4.0D-01. When solving the first subproblem, Gencan proceeds by doing 7 internal
Newtonian iterations until that, at iteration 8, trying to correct the inertia of the Hessian of
the Augmented Lagrangian, it adds approximately 8.0D-01 to its diagonal. An extrapolation
is done in the computed direction and the method arrives to a point at which the value of the

14

Augmented Lagrangian is smaller that −1020. Gencan stops at that point claiming the sub-
problem seems to be unbounded. The penalty parameter is re-initiated with ρ2 = 1.0D+08 but
Algencan gets stuck at that point and stops after 10 iterations at an infeasible point.

We will see now that, in the three problems above, the artificial box constraints of Algencan-

OTR prevent the method to be attracted by the deep valleys of infeasible points where the
objective function appears to be unbounded. Detailed explanations follows:

Problem A: Recall that x0 is feasible for this problem. Due to this fact, only a point xk such
that Rk ≤ Rtol = 0.1 would be accepted as a new reference point. In other words, while
Rk > Rtol, we will have x̄k = x̄0 = x0. The solution of the first subproblem (the one that
made Algencan to be stuck at an infeasible point) is rejected by Algencan-OTR. At the
next iteration, Algencan-OTR uses ∆2 = 2.0D+02 which is still to large. In successive
iterations Algencan-OTR uses ∆3 = 1.0D+02, ∆4 = 5.0D+01, ∆5 = 2.5D+01, ∆6 =
1.2D+01, ∆7 = 6.2D+00, ∆8 = 3.1D+00. At outer iteration 8, using ∆8 = 3.1D+00,
Gencan finds a solution x8 of the subproblem such that R8 = 2.D-02. This point is
accepted as the new reference point, the Lagrange multipliers are updated and, in two
additional iterations (using ∆9 = ∆10 = ∞), Algencan-OTR arrives to a solution x∗

such that x∗
i ≈ -3.16227766016870D-01 for all i.

Problem B: For this problem we have R0 = 1.D-03. Using ∆1 = ∞, the solution of the first
subproblem (with R1 = 9.D-01) is not accepted as a new reference point. The arbitrary ∆-
box constraint is reduced and, using ∆2 = 4.9D-02, the solution of the second subproblem
with R2 = 1.D-02 is accepted. From that point on, with ∆k =∞, Algencan-OTR finds
the solution in four additional iterations, arriving, at iteration 6, at x∗ such that x∗

i = 0.1
for all i and f(x∗) = -8.8742D+03.

Problem C: Once again, the initial point is feasible. The point x1, with f̂(x1) = -8.159724D+32

and R1 = 4.D+02, is rejected. With ∆2 = 5.75D+00 Gencan converges to x2 with f̂(x2) =
-2.115861D+00 and R2 = 3.D-02, so, x̄2 = x2 is accepted as the new reference point. From
that point on, Algencan-OTR iterates two more times with ∆3 = ∆4 =∞ and converges
to x∗ ≈ (1.3186D+00,-2.1632D+00)T for which f(x∗) = -2.2849D+01.

The attraction to spurious minimizers or to regions where the subproblem is unbounded is
intensified when the global solution of the subproblems is pursued. We will consider now an
adaptation of Algencan for stochastic global minimization. When solving the Augmented La-
grangian box-constrained subproblem at iteration k, Algencan considers xk−1 as initial guess.
When pursuing a global minimizer, we modified Algencan to consider several random initial
guesses (in addition to xk−1) for solving the subproblem, in order to enhance the probability of
finding a global solution. In particular Ntrials = 100 random points generated by a normal dis-
tribution with mean xk−1

i and standard deviation 10 max{1, |xk−1
i |}, for i = 1, . . . , n, are used.

When generating a random initial guess z, components zi such that zi /∈ [ℓ̂i, ûi] are discarded.
For this reason, when max{ûi−xk−1

i , xk−1
i − ℓ̂i} < max{1, |xk−1

i |}, a uniform distribution within

the interval [ℓ̂i, ûi] is used instead of the normal distribution. We will call this version of Al-

gencan as Algencan-Global from now on. The corresponding version of Algencan-OTR,
that considers the random initial points within [ℓ̃i, ũi] ≡ Bk ∩ [ℓ̂i, ûi] instead of [ℓ̂i, ûi] will be
called Algencan-OTR-Global.

15

Let us show a problem in which Algencan finds a solution while Algencan-Global does
not. With this example we aim to show that the greediness problem is inherent to the global
optimization process and that it is much more harmful that in the local minimization case.

Problem D:

Minimize c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0 subject to x2 = 1,

where c0 = 2, c1 = 1.56, c2 = −2, c3 = −1.2916, c4 = 0.5 and c5 = 0.225. The problem
has a local minimizer x∗ = 1 such that f(x∗) = 1 and a global minimizer x∗∗ = −1 such that
f(x∗∗) = 0.

Consider the initial point x0 = 2. The iterates of Algencan are x1 = 1.0932D+00, x2 =
1.0074D+00, x3 = 1.0005D+00, and x4 = 1.0000D+00, i.e., Algencan converges to the local
minimizer x∗ in four iterations. Consider now the application of Algencan-Global to Prob-
lem D. At the first iteration, we find an infeasible point in a deep valley (with negatives values
for x) from which the higher degrees of the polynomial objective function prevent the method
to escape. Finally, a description of the Algencan-OTR-Global performance follows. Let us
start noting that R0 = 7.5D-01 (corresponding to the scaled version of the problem with sf =
8.3D-02 and sh1

= 2.5D-01) and ρ1 = 1.0D+01. Gencan is run starting from 100 different
initial guesses. It improves previously obtained solutions 7 times and it ends up with f̂(x1) =
-2.877505D+21 and R1 = 5.D+08. The point x1 is not accepted as a reference point and a new
outer iterations is done with ρ2 = 1.0D+02 and ∆2 = 2.1D+04. This time x2 ≈ -1.00266 is
such that R2 = 1.D-03. The point is accepted as a reference point and ∆3 = ∞. In the next
iteration the global solution x∗∗ = −1 is found.

5.4 Massive comparison

We chose, as test problems, examples included in the Cuter collection [18] and we divided the
numerical experiments of the present subsection into two parts: local and global minimization.
In both cases we will evaluate the influence of the adaptive artificial box constraint by compar-
ing the performance of Algencan versus Algencan-OTR and Algencan-Global versus
Algencan-OTR-Global, respectively.

5.4.1 Local minimization

For the massive numerical experiments related to local minimization we used all the nonlinear
programming problems from the Cuter collection, excluding only unconstrained and bound-
constrained problems. This corresponds to 733 problems. Figure 1 shows a comparison between
Algencan and Algencan-OTR using performance profiles and the number of inner iterations
as a performance measurement. A CPU time limit of 10 minutes per problem/method was used.
The efficiencies of Algencan and Algencan-OTR are 77.90% and 71.49%, respectively, while
the robustness indices are 82.67% and 83.36%, respectively. Both methods found feasible points
with equivalent functional values in 584 problems. (We say that f1 and f2 are equivalent if

[|f1 − f2| ≤ max{10−10, 10−6 min{|f1|, |f2|}}] or [f1 ≤ −1020 and f2 ≤ −1020].)

Both methods failed to find a feasible point in 100 problems. They found feasible points with
different functional values in 35 problems. In those problems, the objective function value found

16

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160 180

ALGENCAN-OTR
ALGENCAN

Figure 1: Behavior of Algencan and Algencan-OTR on the 733 NLP problems from the
Cuter collection.

by Algencan was smaller in 15 cases and the one found by Algencan-OTR was smaller in 20
cases. Finally, Algencan found a feasible point in 7 problems in which Algencan-OTR did
not; while the opposite happened in other 7 problems. Within the set of 7 problems for which
only Algencan-OTR found a feasible point, only in problem DITTERT Algencan presented
greediness. So, we can conclude that greediness is not a big problem of Algencan 2.2.1 when
solving the problems from the Cuter collection, thanks to the recently introduced algorithmic
choices described in Section 5.2. The artificial bound constraints of Algencan-OTR probably
improved the quality of the solution found by Algencan-OTR in a few cases.

5.4.2 Global minimization

For the global minimization experiments we selected all the NLP problems from the Cuter
collection with no more than 10 variables. This corresponds to 260 problems. Figure 2 shows
a comparison between Algencan-Global and Algencan-OTR-Global using performance
profiles and the number of inner iterations as a performance measurement. A CPU time limit of
30 minutes per problem/method was used. It can be seen that the performances of both methods
are very similar. The efficiencies of Algencan-Global and Algencan-OTR-Global were
89.62% and 88.46%, respectively; while their robustnesses were both equal to 95.38%. A detailed
analysis follows.

Both methods found the same minimum in 244 problems and both methods stopped at in-
feasible points in other 8 problems. So, the two methods performed differently (regarding their
final point) only in 8 problems. Table 1 shows some details of those problems. In the table,
f(x∗) and R(x∗) are the objective function value and the feasibility-complementarity measure-

17

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

ALGENCAN-OTR-GLOBAL
ALGENCAN-GLOBAL

Figure 2: Behavior of Algencan-Global and Algencan-OTR-Global on the 260 NLP
problems from the Cuter collection with no more than 10 variables.

ment (11), respectively. SC is the stopping criterion and the meanings are: C – convergence,
T – CPU time limit achieved, and I – too large penalty parameter. Basically, we have that:
(i) both methods found different local minimizers in 5 problems, (ii) Algencan-OTR-Global

found a feasible point in a problem (HS107) in which Algencan-Global did not (only by a
negligible amount), and (iii) Algencan-OTR-Global found a solution in 2 problems in which
Algencan-Global presented greediness and failed to find a feasible point. Concluding the
robustness analysis, we can say that Algencan-OTR-Global successfully found a solution
in the two problems HS24 and HS56 (see [20] for the formulation of those problems) in which
Algencan-Global presented greediness, whereas this advantage was compensated by the fact
of Algencan-Global having found 4 better minimizers out of the 6 cases in which both meth-
ods converged to different solutions (considering as feasible the nearly-feasible solution found by
Algencan-Global for problem HS107).

We do not have enough information to decide whether this (4 × 2) score (associated with
having found different solutions) is a consequence of pure chance or if it can be related to the
reduced box within which Algencan-OTR-Global randomly picks the initial guesses up for
the stochastic global minimization of the subproblems. In problems DIXCHLNG and SNAKE

both methods satisfied the stopping criterion related to success and converged to different local
solutions (in one case the solution found by Algencan-Global was better and in the other
case the solution found by Algencan-OTR-Global was better). In the other four cases both
methods stopped by attaining the CPU time limit or due to a too large penalty parameter.

The 8 problems in which both methods stopped at infeasible points were: ARGAUSS,
CRESC132, CSFI1, ELATTAR, GROWTH, HS111LNP, TRIGGER and YFITNE. In
none of these problems the lack of feasibility was related to greediness. Algencan-OTR-

18

Problem
Algencan-Global Algencan-OTR-Global

f(x∗) R(x∗) SC f(x∗) R(x∗) SC

CRESC50 5.9339763626815067E−01 0.0E+00 T 5.9357981462855491E−01 1.4E−09 T
DIXCHLNG 1.6288053006804543E−21 8.9E−13 C 4.2749285786956551E+02 7.8E−13 C
EQC -1.0380294895991835E+03 1.0E−10 T -1.0403835102461048E+03 1.0E−10 T
HS107 5.0549933321413228E+03 1.0E−08 I 5.0550117605040141E+03 1.2E−09 T
HS24 -1.9245010614395141E+59 1.7E+20 I -1.0000000826918698E+00 9.6E−12 C
HS56 -9.9999999999999995E+59 1.0E+20 I -3.4559999999999844E+00 6.9E−14 C
QC -1.0778351725254695E+03 0.0E+00 T -1.0776903884481490E+03 1.0E−10 T
SNAKE 2.9758658959064692E−09 0.0E+00 C -7.0445051551086390E−06 3.7E−10 C

Table 1: Additional information for the eight problems at which Algencan-Global and
Algencan-OTR-Global showed a different performance.

Global successfully solved the problems HS24 and HS56, in which Algencan-Global pre-
sented greediness. Moreover, Algencan (without the globalization strategy of Algencan-

Global) successfully solved these two problems, evidencing that the greediness phenomenon is,
in these two cases, directly related to the globalization strategy (as illustrated in Problem D).

6 Conclusions

Several reasons can be given to justify the introduction of outer trust-region constraints in
numerical algorithms. Care is needed, however, to guarantee reliability of OTR modifications.
On one hand, theoretical convergence properties of the original algorithms should be preserved.
On the other hand the practical performance of the OTR algorithm should not be inferior
than the one of its non-OTR counterpart. In this paper we showed that both requirements are
satisfied in the case of the constrained optimization problem, with respect to a well established
Augmented Lagrangian algorithm.

It is possible to find algorithms that resemble the OTR idea in the literature concerning
applications of optimization. In [31, 32] trust regions are used with physical motivations in
the context of electronic structure calculations without a compromise with rigorous convergence
theory. Global convergence trust-region theory concerning the same problem was given in [14,
15].

References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On Augmented Lagrangian
Methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2007.

[2] R. Andreani, J. M. Mart́ınez and M. L. Schuverdt, On the relation between the Constant
Positive Linear Dependence condition and quasinormality constraint qualification, Journal
of Optimization Theory and Applications 125, pp. 473–485, 2005.

[3] E. G. Birgin, C. A. Floudas and J. M. Mart́ınez, Global minimization using an Augmented
Lagrangian method with variable lower-level constraints, Mathematical Programming, to
appear (DOI: 10.1007/s10107-009-0264-y).

19

[4] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101–125, 2002.

[5] E. G. Birgin and J. M. Mart́ınez, Local convergence of an Inexact-Restoration method and
numerical experiments, Journal of Optimization Theory and Applications 127, pp. 229–247,
2005.

[6] E. G. Birgin and J. M. Mart́ınez, Improving ultimate convergence of an Augmented La-
grangian method, Optimization Methods and Software 23, pp. 177–195, 2008.

[7] E. V. Castelani, A. L. Martinez, J. M. Mart́ınez and B. F. Svaiter, Addressing the greediness
phenomenon in Nonlinear Programming by means of Proximal Augmented Lagrangians,
Computational Optimization and Applications, to appear.

[8] A. R. Conn, N. I. M. Gould and Ph. L. Toint, Trust Region Methods, MPS/SIAM Series
on Optimization, SIAM, Philadelphia, 2000.

[9] F. Facchinei and J-S. Pang, Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems volumes I and II, Springer, New York, 2003.

[10] R. Fletcher, Practical Methods of Optimization, Academic Press, London, 1987.

[11] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint and A. Wächter, Global convergence
of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM Journal
on Optimization 13, pp. 635–659, 2002.

[12] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Mathemat-
ical Programming 91, pp. 239–269, 2002.

[13] R. Fletcher, S. Leyffer and P.L. Toint, On the global convergence of a filter-SQP algorithm,
SIAM Journal on Optimization 13, pp. 44–59, 2002.

[14] J. B. Francisco, J. M. Mart́ınez and L. Mart́ınez, Globally convergent Trust-Region methods
for Self-Consistent Field electronic structure calculations, Journal of Chemical Physics 121,
pp. 10863–10878, 2004.

[15] J. B. Francisco, J. M. Mart́ınez and L. Mart́ınez, Density-based globally convergent trust-
region methods for self-consistent field electronic structure calculations, Journal of Mathe-
matical Chemistry 40, pp. 349–377, 2006.

[16] F. A. M. Gomes, A sequential quadratic programming algorithm that combines merit func-
tion and filter ideas, Computational and Applied Mathematics 26, pp. 337–379. 2007.

[17] C. C. Gonzaga, E. Karas and M. Vanti, A globally convergent filter method for Nonlinear
Programming, SIAM Journal on Optimization 14, pp. 646–669, 2003.

[18] N. I. M. Gould, D. Orban and Ph. L. Toint, CUTEr and SifDec: A Constrained and Un-
constrained Testing Environment, revisited, ACM Transactions on Mathematical Software
29, pp. 373–394, 2003.

20

[19] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and
Applications 4, pp. 303–320, 1969.

[20] W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Lecture
Notes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin, Heidelberg,
New York, 1981.

[21] J. M. Mart́ınez, Solving nonlinear simultaneous equations with a generalization of Brent’s
method, BIT 20, pp. 501–510, 1980.

[22] J. M. Mart́ınez and L. T. Santos, Some new theoretical results on recursive quadratic
programming algorithms, Journal of Optimization Theory and Applications 97, pp. 435–
454, 1998.

[23] J. J. Moré and M. Y. Cosnard, Numerical Solution of Nonlinear Equations, ACM Transac-
tions on Mathematical Software 5, pp. 64–85, 1979.

[24] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.

[25] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, New York, Academic Press, 1970.

[26] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Opti-
mization, R. Fletcher (ed.), Academic Press, New York, NY, pp. 283–298, 1969.

[27] L. Qi and Z. Wei, On the constant positive linear dependence condition and its application
to SQP methods, SIAM Journal on Optimization 10, pp. 963–981, 2000.

[28] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming, SIAM Journal on Control and Optimization 12, pp. 268–285, 1974.

[29] R. J. Santos and A. R. De Pierro, The effect of the nonlinearity on GCV applied to conjugate
gradients in computerized tomography, Computational and Applied Mathematics 25, pp.
111–128, 2006.

[30] H. Schwetlick, Numerische Lösung nichtlinearer Gleichungen, Mathematik für Naturwis-
senschaft und Technik 17, Deutscher Verlag der Wissenschaften, Berlin, 1979.

[31] L. Thogersen, J. Olsen, D. Yeager, P. Jorgensen, P. Salek and T. Helgaker, The trust-
region self-consistent field method: Towards a black-box optimization in Hartree-Fock and
Kohn-Sham theories, Journal of Chemical Physics 121, pp. 16–27, 2004.

[32] L. Thogersen, J. Olsen, A. Kohn, P. Jorgensen, P. Salek and T. Helgaker, The trust-region
self-consistent field method in Kohn-Sham density-functional theory, Journal of Chemical
Physics 123, Article Number 074103, 2005.

[33] C. R. Vogel, A constrained least-squares regularization method for nonlinear ill-posed prob-
lems, SIAM Journal on Control and Optimization 28, pp. 34–49, 1990.

[34] http://www.ime.usp.br/∼egbirgin/tango/.

21

