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Abstract

Augmented Lagrangian algorithms are very popular tools for solving nonlinear program-
ming problems. At each outer iteration of these methods a simpler optimization problem is
solved, for which efficient algorithms can be used, especially when the problems are large. The
most famous Augmented Lagrangian algorithm for minimization with inequality constraints
is known as Powell-Hestenes-Rockafellar (PHR) method. The main drawback of PHR is that
the objective function of the subproblems is not twice continuously differentiable. This is
the main motivation for the introduction of many alternative Augmented Lagrangian meth-
ods. Most of them have interesting interpretations as proximal point methods for solving the
dual problem, when the original nonlinear programming problem is convex. In this paper
a numerical comparison between many of these methods is performed using all the suitable
problems of the CUTE collection.

Key words: Nonlinear programming, Augmented Lagrangian methods, inequality con-
straints, benchmarking, algorithms.

1 Introduction

We are concerned with the nonlinear programming problem

Minimize f(x)

subject to g(x) ≤ 0, x ∈ Ω.
(1)
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The set Ω is compact and convex whereas f : IRn → IR and g : IRn → IRm are continuously
differentiable on an open set that contains Ω. In general,

Ω = {x ∈ IRn | ℓ ≤ x ≤ u}. (2)

The functions f and g are, in general, nonconvex. Problems with equality constraints can be
transformed in (1) replacing each equality by two inequalities.

An Augmented Lagrangian algorithm [5, 6, 16, 30] consists of a sequence of outer iterations.
At each outer iteration a minimization problem with simple constraints is approximately solved
whereas Lagrange multipliers and penalty parameters are updated in the master routine. The
advantage of the Augmented Lagrangian approach over other methods is that the subproblems
can be solved using algorithms that can deal with a very large number of variables without
making use of factorization of matrices of any kind. For example, when Ω has the form (2), the
recently introduced method GENCAN [7], that combines an active set procedure with spectral
projected gradients [8, 9], is a good choice for solving the subproblems.

Inequality constraints of nonlinear programs can be transformed into equality constraints
adding slack variables and bounds. This transformation is quite effective in many cases and
allows one to take advantage of the pleasant practical properties of box-constraint solvers in
problems that are well approximated by quadratics, when the Augmented Lagrangian approach
of [11] is used. However, it increases the number of variables and, so, it can be inefficient in
critical cases. Therefore, it is natural to consider Augmented Lagrangian procedures for dealing
with inequality constraints without the slack-variable augmentation.

In the case of equality constraints and bounds the well-known fact that quadratic program-
ming problems generate box-constrained quadratic subproblems strongly suggests the use of the
classical Augmented Lagrangian algorithm [5] (which uses the L2-loss function), but the ab-
sence of that property in the inequality constrained case opens a large scope of Augmented
Lagrangian functions, with probably different numerical properties. In particular, the classical
Powell-Hestenes-Rockafellar (PHR) scheme [20, 33, 34] defines an Augmented Lagrangian with-
out continuous second derivatives. Other Augmented Lagrangians are two-times differentiable
but do not enjoy the property of agreeing with the objective function of the problem within the
feasible region.

This paper is organized as follows. In Section 2 we present a general model algorithm and
prove its global convergence. This is the algorithm implemented in this study. In Section 3 we
describe the different Augmented Lagrangian formulae tested. As a whole, we test 65 methods.
In Section 4 we describe features of the practical implementation of the algorithm introduced
in Section 2. In Section 5 we describe the numerical experiments. Conclusions are drawn in
Section 6.

Notation. Throughout this work, [v]i is the i−th component of the vector v. We also denote:

IR+ = {t ∈ IR | t ≥ 0},

IR++ = {t ∈ IR | t > 0},
IN = {0, 1, 2, . . .}

and ‖ · ‖ = ‖ · ‖2.
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2 Main algorithm and convergence

In this section Penalty-Lagrangian functions P are defined. Let P : IR × IR++ × IR++ → IR
be such that P ′(y, ρ, µ̄) ≡ ∂

∂yP (y, ρ, µ̄) exists and is continuous for all y ∈ IR, ρ ∈ IR++, and
µ̄ ∈ IR++. Assume that P satisfies the following three axioms:

Axiom A1:

P ′(y, ρ, µ̄) ≥ 0 ∀ y ∈ IR, ρ ∈ IR++, µ̄ ∈ IR++.

Axiom A2: If, for all k ∈ IN , µ̄k ∈ [µ̄min, µ̄max], where 0 < µ̄min < µ̄max <∞, then:

lim
k→∞

ρk =∞, and lim
k→∞

yk = y > 0 imply that lim
k→∞

P ′(yk, ρk, µ̄k) =∞.

Axiom A3: If, for all k ∈ IN , µ̄k ∈ [µ̄min, µ̄max], where 0 < µ̄min < µ̄max <∞, then:

lim
k→∞

ρk =∞, and lim
k→∞

yk = y < 0 imply that lim
k→∞

P ′(yk, ρk, µ̄k) = 0.

Let us define the Augmented Lagrangian L by

L(x, ρ, µ) = f(x) +

m
∑

i=1

P (gi(x), [ρ]i, [µ]i) (3)

for all x ∈ Ω, ρ ∈ IRm
++, and µ ∈ IRm

++.
Denote

P, the Euclidian projection operator onto Ω;

∇L(x, ρ, µ), the gradient vector of L with respect to x.

The main model algorithm is the following:

Algorithm 1 Model algorithm

Assume that x0 ∈ Ω, τ ∈ (0, 1), µmax > µmin > 0, γ > 1, ρ1 ∈ IRm
++, and µ0 ∈ IRm

++.
Let {εk}k∈IN be a sequence of positive numbers that converges to zero.

Step 1. Initialization
Set k ← 1.

Step 2. Solving the subproblem
Compute

[µ̄k]i ∈ [µmin, µmax], i = 1, . . . ,m.

Using xk−1 as initial approximation,

Minimize (approximately) L(x, ρk, µ̄k) subject to x ∈ Ω. (4)
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The approximate minimizer xk must be such that

‖P[xk −∇L(xk, ρk, µ̄k)]− xk‖ ≤ εk. (5)

Step 3. Estimate multipliers
Compute

[µk]i = P ′(gi(xk), [ρk]i, [µ̄k]i), i = 1, . . . ,m. (6)

Step 4. Update penalty parameters
For all i = 1, . . . ,m, if

max{0, gi(xk)} ≤ τ max{0, gi(xk−1)} (7)

and
|gi(xk)[µk]i| ≤ τ |gi(xk−1)[µk−1]i| (8)

set
[ρk+1]i = [ρk]i,

else, set
[ρk+1]i = γ[ρk]i.

Step 5. Begin new iteration
Set k ← k + 1 and go to Step 2.

Remark. In practice, the parameter [µ̄k]i will be chosen as the projection of the multiplier
estimate [µk−1]i onto the safeguarding interval [µmin, µmax] ⊂ IR++.

In the nonlinear programming terminology, formula (6) defines a first-order multiplier esti-
mate. It represents just one of the ways of predicting the correct multipliers at the solution,
but not the most accurate one. Higher order multiplier predictions can be defined (see [5, 16])
but they usually require additional costly calculations. We prefer the estimate (6) which, on the
other hand, can be interpreted (for convex problems) in terms of the proximal point algorithm
on the dual space (see [22] and references therein).

Definition. We say that x ∈ Ω is degenerate if there exists λ ∈ IRm
+ such that

∑

i∈I(x)

λi > 0 and P[x−
∑

i∈I(x)

λi∇gi(x)]− x = 0, (9)

where I(x) = {i | gi(x) ≥ 0}.

If the point x is degenerate and λ ∈ IRm
+ satisfies (9), then x is the solution of the convex

programming problem:

Minimize
∑

i∈I(x)

〈λi∇gi(x), z − x〉 subject to z ∈ Ω.
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Since
∑

i∈I(x) λi > 0 we obtain that

{z ∈ Ω | 〈∇gi(x), z − x〉 < 0 for all i ∈ I(x)} = ∅.

In other words, there are no feasible first-order descent directions for all the functions gi such
that gi(x) ≥ 0.

The point x is said to be nondegenerate if it is not degenerate. For feasible points, nondegen-
eracy corresponds to the fulfillment of the Mangasarian-Fromovitz constraint qualification [26].

Theorem 1. The algorithm is well defined.

Proof. The subproblems that define each xk are smooth minimization problems in the compact
set Ω. Therefore, their solutions satisfy the condition (5). 2

In practice, box-constraint minimization algorithms like GENCAN [7] are guaranteed to find
points that satisfy the condition (5).

Theorem 2. Assume that {xk}k∈IN is generated by Algorithm 1 and x∗ is a limit point of the
sequence. Then, one of the following possibilities hold:

(a) x∗ is degenerate;

(b) x∗ is a stationary (KKT) point of (1).

Proof. By (5) and (6),

lim
k→∞

‖P[xk −∇f(xk)−
m

∑

i=1

[µk]i∇gi(xk)]− xk‖ = 0. (10)

Assume that K is an infinite sequence of indices such that

lim
k∈K

xk = x∗.

We consider two possibilities:

(a) {µk}k∈K is unbounded;

(b) {µk}k∈K is bounded.

If (a) holds, there exists an infinite sequence of indices K1 ⊂ K and j ∈ {1, . . . ,m} such that

‖µk‖∞ = [µk]j ≥ 1 ∀ k ∈ K1

and
lim

k∈K1

[µk]j =∞.

Now, for all x ∈ Ω, v ∈ IRn, t ∈ [0, 1],

‖P(x + tv)− x‖ ≤ ‖P(x + v)− x‖,
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therefore, by (10), setting x = xk, v = −∇f(xk)−
∑m

i=1[µk]i∇gi(xk)], t = 1/[µk]j, we get:

lim
k∈K1

‖P[xk −
1

[µk]j
∇f(xk)−

m
∑

i=1

[µk]i
[µk]j

∇gi(xk)]− xk‖ = 0. (11)

Let K2 ⊂ K1 be an infinite sequence of indices such that

lim
k∈K2

[µk]i
[µk]j

= µ̃i ∀ i = 1, . . . ,m.

Clearly, µ̃ ≥ 0 and µ̃j = 1.
By Axiom A3, the continuity of P ′ and the updating formula (6), if gi(x∗) < 0 we have that

[µk]i is bounded. So,

lim
k∈K2

[µk]i
[µk]j

= 0

when gi(x∗) < 0. So, by (11),

‖P[x∗ −
∑

i∈I(x∗)

µ̃i∇gi(x∗)]− x∗‖ = 0,

where I(x∗) = {i | gi(x∗) ≥ 0} and
∑

i∈I(x∗) µ̃i > 0. So, x∗ is degenerate.
Now, assume that (b) holds. By the boundedness of {µk} and (10) there exists an infinite

sequence of indices K3 ⊂ K such that

lim
k∈K3

µk = µ∗ ≥ 0.

So, taking limits in (10),

‖P[x∗ −∇f(x∗)−
m

∑

i=1

[µ∗]i∇gi(x∗)]− x∗‖ = 0.

For all i = 1, . . . ,m, consider the following two possibilities:

(c) The sequence {[ρk]i} is bounded;

(d) The sequence {[ρk]i} is unbounded.

If (c) holds then, taking limits in (7) and (8), we obtain that gi(x∗) ≤ 0 and µ∗
i gi(x∗) = 0.

If (d) holds then
lim

k∈K3

[ρk]i =∞.

In this case, if gi(x∗) > 0, by Axiom A2 we have that

lim
k∈K3

P ′(gi(xk), [ρk]i, [µ̄k]i) =∞,

which implies that µk is unbounded.
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So, we have that gi(x∗) ≤ 0, for i = 1, . . . ,m. If gi(x∗) < 0 then, by Axiom A3,

lim
k∈K3

P ′(gi(xk), [ρk]i, [µ̄k]i) = 0.

So,
[µ∗]i = lim

k∈K3

[µk]i = 0.

This means that complementarity also holds in this case. Thus, the proof is complete. 2

Remark. Although Axioms 1, 2, and 3 are enough to prove the global convergence Theorem 2,
they are not sufficient to guarantee good properties of the Augmented Lagrangian algorithm.
For example, suppose that x∗ is a nondegenerate solution of the nonlinear programming problem
with gi(x∗) = 0 and [µ∗]i > 0. Suppose that x∗ is also the solution of the k-th subproblem using
ρk and µ̄k = µ∗. Clearly, µk (the new estimate of the multipliers) ought to be identical to µ∗.
This can be guaranteed by the additional axiom:

P ′(0, ρ, µ) = µ ∀ ρ ∈ IR++, µ ∈ IR++. (12)

Clearly, this does not interfere at all with convergence theory.

3 Generation of Augmented Lagrangians

The PHR method [20, 33, 34] is given by (3) associated with the penalty function

P (y, ρ, µ) =
1

2ρ
(max{0, µ + ρy}2 − µ2).

The main drawback of PHR is that second derivatives of P are discontinuous, even in the
case of linear constraints. So, methods for solving (4) based on quadratic approximations of
the objective function might be inefficient. The exponential-multiplier form [1, 5, 28] of the
Augmented Lagrangian mentioned above have been considered until now, perhaps, the best
known alternative for overcoming this deficiency.

The different penalty functions P that define the Augmented Lagrangian methods considered
in this paper depend on two functions Pi and θj. We list those functions below, specifying at
the same time the way in which they are combined.

3.1 Univariate functions

The functions θ that contribute to the definition of the penalty functions are of the form θ ≡
cijθj where cij is a coefficient that guarantees (12). The complete list of univariate functions
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considered in this paper is given below.

θ1(t) = 1
2t2 (quadratic)

θ2(t) = 3
4t4/3 (4/3-loss function)

θ3(t) = cosh(t)− 1 (hyperbolic cosine)

θ4(t) = et − 1 (exponential)

θ5(t) =

{

− log(1− t) if t ≤ 1
2

e2t−1 + log(2)− 1 if t ≥ 1
2

(logarithmic-exponential)

θ6(t) =

{

− log(1− t) if t ≤ 1
2

2t2 + log(2) − 1
2 if t ≥ 1

2

(logarithmic-quadratic 1)

θ7(t) =

{

t
1−t if t ≤ 1

2

e4t−2 if t ≥ 1
2

(hyperbolic-exponential)

θ8(t) =

{ t
1−t if t ≤ 1

2

8t2 − 4t + 1 if t ≥ 1
2

(hyperbolic-quadratic)

θ9(t) =

{

−1
4 log(−2t)− 3

8 if t ≤ −1
2

t + 1
2t2 if t ≥ −1

2

(logarithmic-quadratic 2)

θ10(t) = 1
16 (1 + t +

√

(1 + t)2 + 8)2+

log(1
4(1 + t +

√

(1 + t)2 + 8))− 1 (dual logarithmic-quadratic)

θ11(t) =

{

1
6 max{0, t + 1

2}3 − 1
24 if t ≤ 1

2
1
2t2 if t ≥ 1

2

(cubic-quadratic)

θ12(t) =

{

et if t ≤ 1
2

e1/2(1
2 t2 + 1

2t + 5
8 ) if t ≥ 1

2

(exponential-quadratic)

θ13(t) =

{

− log(−t)− 1 if t ≤ −1
2

2t2 + 4t + 1
2 + log(2) if t ≥ −1

2

(logarithmic barrier-quadratic)

θ14(t) =

{

−1
t if t ≤ −1

2
8t2 + 12t + 6 if t ≥ −1

2

(hyperbolic barrier-quadratic)

θ15(t) =







4
1−t − 2 if t ≤ −1

− log(−t) if −1 ≤ t ≤ −1
4

8t2 + 8t + 3
2 + 2 log(2) if t ≥ −1

4

(hyperbolic-logarithmic-quadratic)

θ16(t) = 1
2(t +

√
t2 + 4) (smooth-plus function)

θ17(t) = log(1 + et) (neural networks smooth-plus function)

θ18(t) =

{

1
2et if t ≤ 0
t + 1

2e−t if t ≥ 0
(exponential smooth-plus function)
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3.2 Penalty functions

In this subsection we give the list of Penalty-Lagrangian functions P that will be considered
in our comparison. The first three are not obviously associated to univariate functions θ so we
consider them in separate.

P1(y, ρ, µ) =







µy + 1
2ρy2 + ρ2y3 if y ≥ 0

µy + 1
2ρy2 if −µ

ρ ≤ y ≤ 0

− 1
2ρµ2 if y ≤ −µ

ρ

P2(y, ρ, µ) =

{

µy + µρy2 + 1
6ρ2y3 if y ≥ 0

µy
1−ρy if y ≤ 0

P3(y, ρ, µ) =

{

µy + µρy2 if y ≥ 0
µy

1−ρy if y ≤ 0.

The Penalty-Lagrangian functions P1 and P2 were introduced in [25]. P3 was introduced in [29].
P2 and P3 have continuous second derivatives with respect to y but the second derivative of P1

is discontinuous at y = −µ/ρ as in the case of the PHR Augmented Lagrangian.
Now, we list generic Penalty-Lagrangian functions Pi which are associated with the θ-

functions given in the previous subsection.

P4(y, ρ, µ) =

{

µy + 1
ρθ(ρy) if µ + θ′(ρy) ≥ 0

minτ∈IR{µτ + 1
ρθ(ρτ)} otherwise

P5(y, ρ, µ) = µ
ρ θ(ρy)

P6(y, ρ, µ) = 1
ρθ(ρµy)

P7(y, ρ, µ) = µ2

ρ θ
(

ρy
µ

)

P8(y, ρ, µ) = 1
ρ(θ(ρy + ỹ)− θ(ỹ)) (with ỹ such that θ′(ỹ) = µ)

P9(y, ρ, µ) = θ(ρy + ỹ)− θ(ỹ) (with ỹ such that θ′(ỹ) = µ/ρ).

The function P4 will be associated with θ1, θ2 and θ3. The association of P4 and θ1 gives
the PHR method [20, 33, 34]. In this case, the formula can also be written as

P4(y, ρ, µ) =

{

µy + 1
2ρy2 if µ + ρy ≥ 0

−µ2

2ρ otherwise.

When P4 is associated to θ2 [5, 21], we have

P4(y, ρ, µ) =

{

µy + 3
4ρ1/3y4/3 if ρ1/3y1/3 + µ ≥ 0

−µ4

4ρ if ρ1/3y1/3 + µ ≤ 0.

When P4 is associated to θ3 [6], we have

P4(y, ρ, µ) =

{

µy + 1
ρ(cosh(ρy)− 1) if µ + sinh(ρy) ≥ 0

µ
ρ sinh−1(−µ) + 1

ρ(cosh(sinh−1(−µ))− 1) otherwise.
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(Recall that sinh−1(x) = log(x +
√

x2 + 1).)
The penalty function P5 will be associated to θj, j = 4, . . . , 10 [2, 3, 4, 5, 24, 32] and to

8 θ11, θ12,
1
4 θ13,

1
12 θ14,

1
8 θ15, 2 θ16, 2 θ17 [31] and 2 θ18. The functions P6 and P7 will be

associated to the same θ-functions as P5 (see [27] and [36] for the association of P6 with θ6 and
2 θ16, respectively, and [35] for the association of P7 with θ4). The penalty function P8 will be
associated to θj, j = 4, . . . , 15 (see [23] for the association to θj, j = 11, . . . , 15). Finally, P9 will
be associated to the noncoercive functions θ16, θ17 and θ18 [10].

Table 1 summarizes, for each penalty function Pi, the related univariate functions θj and the
coefficient cij that is necessary to obtain (12). The symbol “–” means that the penalty function
Pi was not associated with the univariate function θj.

P4 P5 P6 P7 P8 P9

θ1 1 – – – – –

θ2 1 – – – – –

θ3 1 – – – – –

θ4 – 1 1 1 – –

θ5 – 1 1 1 1 –

θ6 – 1 1 1 1 –

θ7 – 1 1 1 1 –

θ8 – 1 1 1 1 –

θ9 – 1 1 1 1 –

θ10 – 1 1 1 1 –

θ11 – 8 8 8 1 –

θ12 – 1 1 1 1 –

θ13 – 1/4 1/4 1/4 1 –

θ14 – 1/12 1/12 1/12 1 –

θ15 – 1/8 1/8 1/8 1 –

θ16 – 2 2 2 – 1

θ17 – 2 2 2 – 1

θ18 – 2 2 2 – 1

Table 1: Associations (Pi, θj) with their cij coefficients.

All the combinations (Pi, θj) tested in this paper satisfy the axioms A1, A2, A3 except the
combinations of P5, P6 and P7 with θ16, θ17 and θ18. In these cases Axiom A2 does not hold. We
decided to include these combinations in the numerical study in order to verify the adequacy
of convergence theory to practical behavior. All the tested combinations satisfy the additional
axiom (12).

Some authors [17] consider a four-parameter form of P9, namely:

P̃9(y, ρ, µ, β) =
β

ρ
[θ(ρy + ỹ)− θ(ỹ)]
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where θ′(ỹ) = µ/β. The parameter ρ is a nonsmoothing parameter in the sense that, the larger is
this parameter, the closer is the univariate penalty function to the nonsmooth canonical function
max{0, y}; whereas β plays the usual penalization role. Methods can be defined that update β
and ρ separately. See [17]. In our implementation β ≡ ρ and the inequality [ρ]i > [µ̄]i must hold
(if not, the Penalty-Lagrangian functions which use P9 are not well defined). So, at Step 2 of
Algorithm 1, after the computation of µ̄k, we redefine [ρk]i = max([ρk]i, 2[µ̄]i), for i = 1, . . . ,m.
Clearly, this does not interfere at all with convergence theory.

In the penalty functions P8 and P9, the calculation of ỹj yields:

ỹ4 = log(µ) ỹ5 =

{ µ−1
µ if µ ≤ 2

1
2(log(µ

2 ) + 1) if µ ≥ 2

ỹ6 =

{ µ−1
µ if µ ≤ 2

1
4µ if µ ≥ 2

ỹ7 =

{

1− 1√
µ if µ ≤ 4

1
4 log(µ

4 ) + 1
2 if µ ≥ 4

ỹ8 =

{

1− 1√
µ if µ ≤ 4

µ+4
16 if µ ≥ 4

ỹ9 =

{ − 1
4µ if µ ≤ 1

2

µ− 1 if µ ≥ 1
2

ỹ10 = 2µ− 1
µ − 1 ỹ11 =

{ √
2µ− 1

2 if µ ≤ 1
2

µ if µ ≥ 1
2

ỹ12 =

{

log(µ) if µ ≤ e
1

2

µe−1/2 − 1
2 if µ ≥ e

1

2

ỹ13 =

{ − 1
µ if µ ≤ 2

1
4(µ− 4) if µ ≥ 2

ỹ14 =

{

− 1√
µ if µ ≤ 4

1
16(µ− 12) if µ ≥ 4

ỹ15 =











1− 2√
µ if µ ≤ 1

− 1
µ if 1 ≤ µ ≤ 4

1
16 (µ− 8) if µ ≥ 4

ỹ16 = 2µ−ρ√
µρ−µ2

ỹ17 = log( µ
ρ−µ)

ỹ18 =

{

log(2µ
ρ ) if µ/ρ ≤ 1

2

log( ρ
2(ρ−µ) ) if µ/ρ ≥ 1

2

4 Implementation

The numerical results that will be presented in Section 5 correspond to an implementation of
Algorithm 1. Let us discuss now the main features of this implementation.

4.1 Solving the subproblem

The subproblem (4) with the definition (2) for Ω, is a box-constrained minimization problem.
Many suitable algorithms for this purpose exist. In our implementation we use GENCAN, the
algorithm described in [7]. GENCAN is an active-set algorithm for large-scale bound constrained
optimization which, within faces, uses a truncated Newton approach with line searches whereas,
for leaving the faces, uses spectral projected gradient iterations as defined in [8, 9]. Many active
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constraints can be added or deleted at each iteration so that the method is useful for large-scale
problems.

The execution of the inner algorithm is interrupted when (5) holds. In the implementation we
used εk = ε > 0 for all k. This is not necessarily the most efficient version of Algorithm 1 but it
seems useful for a uniform comparison between different Augmented Lagrangians. Some authors
[13, 14, 15, 18, 19], in slightly different contexts, used convergence tolerances that depend on
the degree of infeasibility of the current inner iterate.

In practice, the inner algorithm might be interrupted for several different reasons. Due to
scaling features, the criterion (5) could be too exigent and impossible to achieve in floating point
calculations. Therefore, other criteria for terminating a GENCAN execution must be used. Here
we adopted the default parameters described in [7] with respect to maximum number of inner
iterations, lack of progress and difference between consecutive iterates.

4.2 Ordinary convergence criterion

In the way described in Section 2, Algorithm 1 never stops. Even if xk is a solution of the
nonlinear programming problem the algorithm computes xk+1. In this case xk+1 = xk is an
admissible choice that satisfies (5) and the generated sequence is infinite.

In computer calculations we need practical stopping criteria. A point xk, associated to
estimates µk of the Lagrange multipliers, will be said to satisfy the ordinary convergence criterion
(OCC) if feasibility, optimality and complementarity hold up to some small tolerance. Given
ε > 0 we will say that xk (with multipliers µk) satisfies OCC if:

‖P[xk −∇f(xk)−
m

∑

i=1

[µk]i∇gi(xk)]− xk‖ ≤ ε, (13)

gi(xk) ≤ ε, i = 1, . . . ,m, (14)

and
max

i=1,...,m
{−[g(xk)]i[µk]i | [g(xk)]i < −ε and [µk]i > ε} ≤ ε. (15)

Recall that µk ∈ IRm
+ by Axiom 1 and (6).

Inequality (13) corresponds to the inner stopping criterion (5). By (6), (13) holds if, and
only if,

‖P[xk −∇L(xk, ρk, µ̄k)]− xk‖ ≤ ε.

The requirement (14) says that the point xk is (perhaps almost) feasible, up to the tolerance ε.
Finally, (15) is a tolerant version of the complementarity condition. The product −[g(xk)]i[µk]i
must be smaller than ε whenever both −[g(xk)]i and [µk]i are greater than ε.

Conditions (13)–(15) represent approximate optimality conditions for (1) in the sense that
their fulfillment for ε = 0 imply the KKT conditions at xk. Approximate convergence criteria
like (13)–(15) are not completely safe, in the sense that they are sensitive to scaling of the
variables, the objective function and the constraints. In specific problems users might feel the
necessity of using different tolerances on the right-hand sides of (13)–(15).
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4.3 Updating the penalty parameters

The penalty parameters ρ are updated at Step 4 of Algorithm 1. The idea is that the penalty
parameter [ρ]i will not be changed if the last inner iteration produced a significative improve-
ment both of feasibility and complementarity. However, in floating point calculations it is not
reasonable to ask for a decrease of (say) max(0,−gi(x)) if this quantity is already very small (for
example, below the convergence tolerance). For this reason, we adopted the following procedure
for practical updating of the penalty parameters. The procedure below is compatible with the
practical convergence criterion OCC.

Given ε > 0, we define

[Fk]i = max(0, [g(xk)]i),

[Uk]i =

{

[µk]i, if [g(xk)]i < −ε
0, otherwise,

[Wk]i =

{

−[g(xk)]i, if [µk]i > ε
0, otherwise.

Observe that (14)–(15) in OCC corresponds to

‖Fk‖∞ ≤ ε

and
max

i=1,...,m
{|[Uk]i[Wk]i|} ≤ ε.

The implementation of Step 4 of Algorithm 1 using Fk, Uk, and Wk, becomes:

Implemented Step 4.

For all i = 1, . . . ,m, if
[Fk]i ≤ τ [Fk−1]i

and
|[Uk]i[Wk]i| ≤ τ |[Uk−1]i[Wk−1]i|

set
[ρk+1]i = [ρk]i;

else, set
[ρk+1]i = γ[ρk]i.

4.4 Parameters used in experiments

In our experiments we used ε = 10−4 for all the comparisons mentioned in the previous subsec-
tions. In all the executions of Augmented Lagrangian algorithms we established a maximum of
12 outer iterations.

The performance of Augmented Lagrangian algorithms is sensitive to the choice of the pa-
rameters µ0, ρ1, γ, τ , µ̄min, and µ̄max. For choosing those parameters we proceeded as follows:
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(a) For each method we considered µ0 ∈ {10−6, 1}, ρ1 ∈ {10−3, 1, 10}, γ ∈ {2, 10, 100}, τ ∈
{10−2, 0.1, 0.5}, and (µmin, µmax) ∈ {(10−6, 1020), (10−6, 106), (10−3, 103)}. In this way, we
have 2× 34 = 162 combinations of parameters.

(b) All the combinations were tested for each method in a reduced set of problems. Table 2
shows the best set of parameters found for each method. The numerical experiments
reported in the following section correspond to these “optimal” sets of parameters.

5 Numerical experiments

We considered all 1 the nonlinear programming problems with inequality constraints and bounds
of the CUTE collection [11]. As a whole, we tried to solve 194 problems. Table 3 shows the
quartiles for two problem parameters: number of variables and number of inequality constraints.
The average number of variables is 225 and the average number of constraints is 793. In all the
experiments we used the initial points provided in the CUTE collection.

With the reported combinations of penalty functions P and univariate functions θ we have
65 methods to be tested. The first three methods are identified by P1, P2, P3, which are the
penalty functions that define them. The remaining 62 methods are identified by a pair (Pi, θj),
where Pi is the penalty function used and θj is the associated univariate function (see Table
1). (The method (P8, θ4) is identical to (P5, θ4) therefore we only mention the first one in the
experiments.)

All the computations were done on an Intel Pentium III Computer with 256 Mb of RAM
and 700MHz. Codes are in Fortran and the compiler used was GNU Fortran 2.95.2, with the
optimization option “–O4”.

As suggested in [12], the script for generating the timing data sends a problem to each solver
successively so as to minimize the effect of fluctuation in the machine load. In order to obtain
accurate reports of computer times, we proceeded as follows: small problems were solved “many
times” and we defined a “single measurement” as the average of the corresponding computer
times indicated by the computer clock. In large problems, where the measurement error of the
clock is negligible with respect to the execution time, a “single measurement” came from solving
the problem just once. In both cases we took a “large” number of single measurements which,
of course, involved to solve both types of problems many times. The computer time was defined
as the average of these measurements.

Consider a fixed problem and let x
(M)

final
,M = 1, . . . , 65, be the final point of method M

applied to that problem. We define

fbest = min
M
{f(x

(M)

final
) | x(M)

final
is feasible}.

We say that method M found a solution of the problem if x
(M)

final
is feasible and

f(x
(M)

final
) ≤ fbest + 10−3|fbest|+ 10−6.

1Except problems eqc, qcnew, s365 and s365mod. In the first two the box ℓ ≤ x ≤ u was empty. In s365

and s365mod the Jacobian of the constraints is not defined at the initial point.
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Let also t(M),M = 1, . . . , 65, be the computer CPU time that method M used to arrive to x
(M)

final
.

We define
tbest = min

M
{t(M) | method M found a solution},

and we say that method M is the fastest method for the problem when

t(M) ≤ tbest + 0.01 tbest.

Table 4 shows the performance of the 65 Augmented Lagrangian methods in a subset of 173
problems of the whole set of 194 problems (the 21 hardest problems were not solved with the
65 methods as it could take several weeks of computer time considering the platform described
above). In Table 5, the columns mean:

• Robustness is the percentage of problems in which the method found a solution;

• Feasibility is the percentage of problems in which the method found a feasible point;

• Efficiency is the percentage of problems in which the method was the fastest one.

In terms of performance profiles [12] Efficiency and Robustness are, essentially, the values of
the profile function at 1 and ∞, respectively. In Table 5 it can be saw that methods P1, P2,
(P4, θ1), and (P5, θ14) are among the top ten in Robustness and Efficiency. Table 5 shows the
performance of these methods in the whole set of problems. Figure 1 shows its comparison using
performance profiles.

Figure 1: Comparison of methods P1, P2, (P4, θ1), and (P5, θ14) using performance profiles.

The analysis of the numerical results allows one to detect two factors that have an influence
on the behavior of Augmented Lagrangian algorithms under the framework of Algorithm 1.
These factors are:
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(i) The fulfillment of axioms A1, A2 and A3;

(iii) The presence of exponential or logarithmic functions in the definition of the Penalty-
Lagrangian function which may be evaluated at points where its computation in floating
point arithmetic returns -INF, INF or NaN. We will call this situation as presence of “unsafe
trascendental functions”.

The first factor has a positive influence on the behavior of the Augmented Lagrangian methods
and the second seems to have a negative influence.

The correlation between practical behavior and fulfillment of the theoretical assumptions
and presence of unsafe trascendental functions is impressive. Considering the nine methods that
do not satisfy the axioms plus the sixteen methods which have unsafe trascendental functions
(namely, Penalty-Lagrangian functions which use the univariate functions θ3, θ4, θ5, θ7, and θ10)
it can be seen that eighteen over these twenty five methods are the less robust ones of the whole
set of methods.

The superiority of PHR is more impressive with regards to efficiency than to robustness. This
seems to be due to the simplicity of the functions that define the penalty functions. In general,
Penalty-Lagrangian functions that do not make use of “difficult-to-evaluate” one-dimensional
functions solve the problems faster than the ones that use exponentials, logarithms or square
roots.

6 Conclusions

We have implemented 65 methods of Augmented Lagrangian for nonlinear optimization with
inequality constraints using the same framework with respect to stopping criteria, precision
of subproblems, subproblem solver and other algorithmic parameters. We considered all the
nonlinear programming problems with inequality constraints and bounds of the CUTE collection.

The common features to the implementation of all the Augmented Lagrangian algorithms
were condensed in a Model Algorithm for which we proved a global convergence theorem.
Roughly speaking, convergence to KKT points is guaranteed under a generalized Mangasarian-
Fromovitz constraint qualification of the constraints.

In the numerical experiments we used the first-order Lagrange-multiplier estimate [µk]i =
P ′(gi(xk), [ρk]i, [µ̄k]i), i = 1, . . . ,m. Rigorously speaking, we do not know if the conclusions of
this study also hold under different Lagrange multipliers estimators. Although our feeling is
that this is the case, further research is necessary regarding this question.

We obtained a clear evidence that, with our implementation, the classical PHR algorithm
was the best one among the tested methods for solving this set of problems. However, some
warnings are necessary:

1. The superiority of PHR suggests that the discontinuity of the second derivatives of the
subproblem is not a serious inconvenient in practical computations. It must be warned that
this observation is not independent of the algorithm used for solving the box-constrained
subproblem (4). GENCAN uses a truncated-Newton algorithm for minimization within
the faces of the box. So, as in every Newton-like approach, the quadratic model at each
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iteration depends only on the current inner iterate. On the other hand, in quasi-Newton
approximations, the model depends also on the previous iterates. In other words, in quasi-
Newton methods the Hessian of the quadratic approximation is computed using previous
points where, perhaps, the true analytic Hessian corresponds to a different “branch” of
the objective function L. This means that, in cases where the structure of the problem
(1) suggests the use of quasi-Newton for solving (4), the choice of Augmented Lagrangians
with continuous Hessians could be recommendable. Further research is necessary on this
subject. The use of specific Augmented Lagrangian preconditioners [13, 14, 18, 19] for the
truncated-Newton approach and its influence in the overall performance of algorithms for
solving (1) also needs to be investigated.

2. Many of the formulae presented in this paper have been introduced for particular types of
(most times, convex) problems. Therefore, one must be cautious in drawing conclusions
about their general behavior.

3. The performance of many methods might be strongly affected by the choice of parameters
and by the way in which we defined the basic Augmented Lagrangian framework. Our
conclusions are restricted to the reported choice of parameters and definition of general
algorithm. Possibly, many algorithms can be greatly improved making variations of these
features. This is especially true as far as we consider the noncoercive functions θ16, θ17, θ18.

The complete machinery (source codes) for the comparative study presented in this paper is
available in www.ime.usp.br/∼egbirgin.
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Method µ0 ρ1 γ τ µmin µmax

P1 10−6 1 10 0.5 10−6 106

P2 10−6 10 10 0.1 10−6 106

P3 10−6 10 10 0.1 10−6 106

(P4, θ1) 10−6 10 10 0.1 10−3 103

(P4, θ2) 10−6 1 100 0.01 10−3 103

(P4, θ3) 10−6 10−3 10 0.01 10−6 106

(P5, θ4) 10−6 10 2 0.01 10−6 106

(P5, θ5) 10−6 1 2 0.01 10−6 106

(P5, θ6) 1 10 100 0.01 10−6 106

(P5, θ7) 10−6 1 2 0.01 10−6 106

(P5, θ8) 10−6 10 100 0.1 10−6 106

(P5, θ9) 10−6 10 10 0.1 10−6 106

(P5, θ10) 1 10 100 0.1 10−6 106

(P5, θ11) 1 1 100 0.1 10−3 103

(P5, θ12) 1 10 10 0.01 10−6 1020

(P5, θ13) 10−6 1 10 0.5 10−3 103

(P5, θ14) 10−6 10−3 100 0.01 10−3 103

(P5, θ15) 10−6 10 10 0.1 10−6 1020

(P5, θ16) 1 10 100 0.01 10−6 106

(P5, θ17) 1 10 100 0.01 10−6 106

(P5, θ18) 1 10 10 0.01 10−6 106

(P6, θ4) 1 1 2 0.01 10−3 103

(P6, θ5) 1 1 10 0.1 10−3 103

(P6, θ6) 1 10 10 0.1 10−6 106

(P6, θ7) 1 1 10 0.1 10−6 106

(P6, θ8) 1 10 100 0.01 10−6 106

(P6, θ9) 1 10 100 0.1 10−3 103

(P6, θ10) 1 10 10 0.1 10−6 106

(P6, θ11) 1 1 10 0.01 10−3 103

(P6, θ12) 1 10 100 0.5 10−3 103

(P6, θ13) 1 10 100 0.1 10−3 103

(P6, θ14) 1 10 100 0.01 10−6 106

(P6, θ15) 1 10 100 0.5 10−3 103

(P6, θ16) 1 10 10 0.01 10−6 106

(P6, θ17) 1 10 100 0.01 10−6 106

(P6, θ18) 1 10 100 0.5 10−3 103

(P7, θ4) 10−6 10−3 100 0.01 10−3 103

(P7, θ5) 1 1 10 0.01 10−3 103

(P7, θ6) 10−6 10 100 0.5 10−6 106

(P7, θ7) 10−6 10−3 100 0.1 10−3 103

(P7, θ8) 10−6 10 10 0.1 10−6 106

(P7, θ9) 10−6 10 10 0.1 10−6 106

(P7, θ10) 10−6 10 100 0.5 10−3 103

(P7, θ11) 10−6 1 100 0.1 10−3 103

(P7, θ12) 10−6 10 100 0.01 10−6 106

(P7, θ13) 10−6 10 10 0.1 10−6 106

(P7, θ14) 10−6 10 100 0.1 10−3 103

(P7, θ15) 10−6 10 10 0.1 10−6 106

(P7, θ16) 1 10 100 0.5 10−6 106

(P7, θ17) 1 10 10 0.01 10−6 106

(P7, θ18) 1 10 10 0.01 10−6 106

(P8, θ5) 1 1 10 0.01 10−6 106

(P8, θ6) 10−6 1 100 0.5 10−3 103

(P8, θ7) 1 1 10 0.5 10−3 103

(P8, θ8) 10−6 10 10 0.1 10−3 103

(P8, θ9) 1 10 100 0.01 10−3 103

(P8, θ10) 10−6 10 100 0.1 10−3 103

(P8, θ11) 10−6 10 10 0.01 10−6 106

(P8, θ12) 10−6 10 10 0.1 10−6 106

(P8, θ13) 10−6 1 100 0.5 10−3 103

(P8, θ14) 10−6 10 10 0.1 10−3 103

(P8, θ15) 10−6 10 10 0.1 10−6 106

(P9, θ16) 10−6 10 10 0.1 10−6 106

(P9, θ17) 10−6 10 10 0.5 10−6 106

(P9, θ18) 1 1 100 0.1 10−3 103

Table 2: “Optimal” sets of parameters.

21



min q1 q2 q3 max

Number of variables 2 3 5 15 5000
Number of constraints 1 2 6 180 10001

Table 3: Problem data for the CUTE test set.
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Ordered by Robustness Ordered by Efficiency
Method Robustness Feasibility Efficiency Method Robustness Feasibility Efficiency

(P4, θ1)∗ 80.92 95.95 16.76 (P4, θ1)∗ 80.92 95.95 16.76
P ∗

2
80.35 95.95 4.62 (P7, θ14) 77.46 95.38 8.09

(P8, θ12) 80.35 94.22 1.16 P3 76.88 89.60 8.09
(P8, θ11) 79.77 95.38 1.16 (P5, θ14)∗ 78.61 93.06 6.36
(P7, θ13) 78.61 95.95 2.31 (P5, θ13) 73.41 92.49 6.36
(P7, θ11) 78.61 95.95 1.16 P ∗

1
78.61 93.64 5.78

P ∗
1

78.61 93.64 5.78 (P6, θ15) 75.72 94.80 5.20
(P5, θ14)∗ 78.61 93.06 6.36 (P4, θ3) 76.88 90.17 5.20
(P7, θ9) 78.03 95.38 2.89 P ∗

2
80.35 95.95 4.62

(P5, θ12) 78.03 94.80 0.00 (P6, θ9) 75.14 94.80 3.47
(P7, θ8) 77.46 96.53 1.16 (P7, θ10) 74.57 93.06 3.47
(P7, θ6) 77.46 95.95 1.73 (P6, θ14) 73.41 91.91 3.47
(P7, θ14) 77.46 95.38 8.09 (P5, θ8) 76.30 90.75 3.47
(P5, θ11) 77.46 94.22 1.73 (P5, θ9) 75.72 89.02 3.47
(P6, θ12) 76.88 92.49 0.00 (P6, θ16) 60.69 77.46 3.47
(P4, θ3) 76.88 90.17 5.20 (P7, θ9) 78.03 95.38 2.89

P3 76.88 89.60 8.09 P715 76.30 94.80 2.89
(P7, θ12) 76.30 95.38 0.00 (P7, θ13) 78.61 95.95 2.31
(P7, θ15) 76.30 94.80 2.89 (P8, θ6) 69.36 91.91 2.31
(P9, θ17) 76.30 91.91 0.00 (P5, θ7) 73.99 82.08 2.31
(P5, θ8) 76.30 90.75 3.47 (P7, θ6) 77.46 95.95 1.73
(P6, θ15) 75.72 94.80 5.20 (P6, θ13) 75.72 94.80 1.73
(P6, θ13) 75.72 94.80 1.73 (P5, θ11) 77.46 94.22 1.73
(P7, θ4) 75.72 92.49 1.16 (P8, θ9) 73.99 94.22 1.73
(P5, θ15) 75.72 90.75 1.73 (P8, θ10) 71.10 93.64 1.73
(P5, θ9) 75.72 89.02 3.47 (P4, θ2) 71.68 93.64 1.73
(P5, θ6) 75.14 95.95 0.00 (P5, θ15) 75.72 90.75 1.73
(P6, θ9) 75.14 94.80 3.47 (P7, θ8) 77.46 96.53 1.16
(P8, θ15) 75.14 90.75 0.58 (P7, θ11) 78.61 95.95 1.16
(P7, θ10) 74.57 93.06 3.47 (P8, θ11) 79.77 95.38 1.16
(P5, θ4) 74.57 85.55 0.00 (P8, θ12) 80.35 94.22 1.16
(P8, θ9) 73.99 94.22 1.73 (P6, θ6) 70.52 94.22 1.16
(P6, θ11) 73.99 93.06 0.58 (P6, θ8) 72.83 93.64 1.16
(P5, θ7) 73.99 82.08 2.31 (P7, θ4) 75.72 92.49 1.16
(P8, θ14) 73.41 95.95 0.58 (P7, θ7) 67.63 91.33 1.16
(P8, θ8) 73.41 94.80 0.58 (P8, θ13) 69.36 90.17 1.16
(P5, θ13) 73.41 92.49 6.36 (P6, θ5) 59.54 84.97 1.16
(P6, θ14) 73.41 91.91 3.47 (P8, θ14) 73.41 95.95 0.58
(P6, θ8) 72.83 93.64 1.16 (P8, θ8) 73.41 94.80 0.58
(P4, θ2) 71.68 93.64 1.73 (P6, θ11) 73.99 93.06 0.58
(P8, θ10) 71.10 93.64 1.73 (P5, θ10) 71.10 93.06 0.58
(P5, θ10) 71.10 93.06 0.58 (P8, θ15) 75.14 90.75 0.58
(P6, θ6) 70.52 94.22 1.16 (P8, θ7) 64.16 83.82 0.58
(P9, θ18) 69.94 91.91 0.00 (P9, θ16) 65.32 79.77 0.58
(P6, θ10) 69.94 89.60 0.00 (P7, θ17) 66.47 79.19 0.58
(P8, θ6) 69.36 91.91 2.31 (P6, θ4) 56.65 76.88 0.58
(P8, θ13) 69.36 90.17 1.16 (P6, θ18) 64.16 76.88 0.58
(P5, θ18) 69.36 83.24 0.00 (P5, θ16) 61.85 75.72 0.58
(P7, θ18) 69.36 80.92 0.00 (P5, θ5) 63.01 69.36 0.58
(P7, θ7) 67.63 91.33 1.16 (P5, θ6) 75.14 95.95 0.00
(P7, θ5) 67.05 91.91 0.00 (P7, θ12) 76.30 95.38 0.00
(P7, θ17) 66.47 79.19 0.58 (P5, θ12) 78.03 94.80 0.00
(P5, θ17) 65.90 78.61 0.00 (P6, θ12) 76.88 92.49 0.00
(P9, θ16) 65.32 79.77 0.58 (P9, θ17) 76.30 91.91 0.00
(P6, θ7) 64.74 81.50 0.00 (P9, θ18) 69.94 91.91 0.00
(P8, θ7) 64.16 83.82 0.58 (P7, θ5) 67.05 91.91 0.00
(P6, θ18) 64.16 76.88 0.58 (P6, θ10) 69.94 89.60 0.00
(P5, θ5) 63.01 69.36 0.58 (P5, θ4) 74.57 85.55 0.00
(P7, θ16) 61.85 78.61 0.00 (P5, θ18) 69.36 83.24 0.00
(P6, θ17) 61.85 77.46 0.00 (P6, θ7) 64.74 81.50 0.00
(P5, θ16) 61.85 75.72 0.58 (P8, θ5) 56.65 81.50 0.00
(P6, θ16) 60.69 77.46 3.47 (P7, θ18) 69.36 80.92 0.00
(P6, θ5) 59.54 84.97 1.16 (P5, θ17) 65.90 78.61 0.00
(P8, θ5) 56.65 81.50 0.00 (P7, θ16) 61.85 78.61 0.00
(P6, θ4) 56.65 76.88 0.58 (P6, θ17) 61.85 77.46 0.00

Table 4: Performance of the Augmented Lagrangian methods – Robustness versus Efficiency.
Methods with a ∗ are among the top ten in the two categories: Robustness and Efficiency. Note
that PHR is the first one in both.
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Ordered by Robustness Ordered by Efficiency
Method Robustness Feasibility Efficiency Method Robustness Feasibility Efficiency

(P4, θ1) 81.96 90.21 51.55 (P4, θ1) 81.96 90.21 51.55
P2 77.84 90.21 11.86 P1 77.84 87.63 17.01
P1 77.84 87.63 17.01 (P5, θ14) 71.65 86.08 15.98

(P5, θ14) 71.65 86.08 15.98 P2 77.84 90.21 11.86

Table 5: Performance of the Augmented Lagrangian methods P1, P2, (P4, θ1), and (P5, θ14)
in the whole set of 194 problems. As the number of methods being compared is smaller, the
numbers at “Robustness” and “Efficiency” columns tend to grow up. Note that the supremacy
of PHR in terms of efficiency becomes more clear.
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