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Abstract

The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with up-
dating a symmetric second-order finite element model so that it remains symmetric and
the updated model reproduces a given set of desired eigenvalues and eigenvectors by re-
placing the corresponding ones from the original model. Taking advantage of the special
structure of the constraint set, it is first shown that the QFEMUP can be formulated as
a suitable constrained nonlinear programming problem. Using this formulation, a method
based on successive optimizations is then proposed and analyzed. To avoid that spurious
modes (eigenvectors) appear in the frequency range of interest (eigenvalues) after the model
has been updated, additional constraints based on a quadratic Rayleigh quotient are dynam-
ically included in the constraint set. A distinct practical feature of the proposed method
is that it can be implemented by computing only a few eigenvalues and eigenvectors of the
associated quadratic matrix pencil. The results of our numerical experiments on illustrative
problems show that the algorithm works well in practice.

Keywords: Quadratic matrix model updating, quadratic Rayleigh quotient, nonlinear pro-
gramming, algorithms.

1 Introduction

The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with updating a
finite-element generated model of a vibrating structure of the form:

Mẍ(t) +Dẋ(t) +Kx(t) = 0, (1)
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where M , D, and K are real n×n matrices known as mass, damping, and stiffness, respectively;
and ẋ(t) and ẍ(t) denote the first and second derivatives of the time-dependent vector x(t). The
eigenvalues of the associated quadratic pencil

Q(λ) = λ2M + λD +K (2)

are related to natural frequencies and the eigenvectors are the mode shapes of the vibrating sys-
tem (1) (see, e.g., [18, 19, 32]). The quadratic pencil (2) has 2n eigenvalues and 2n eigenvectors.
The dynamics of the system are modeled by these eigenvalues and eigenvectors. For example,
it is well-known that the stability of a vibrating system is determined by the nature of a few
dominating natural frequencies. It is also well-known that sometimes the vibrating structures
experience dangerous vibrations, called resonance, when a natural frequency becomes close or
equal to a frequency of an external force, such as earthquake, gusty wind, weights of the human
bodies, among others. Failures of many structures like buildings, bridges, airplane wings, and
turbines have been attributed to resonance.

Equation (1) is usually obtained by discretization of a distributed parameter system with
finite element techniques, and therefore, known as the finite element model. The matrices M ,
D, and K are often very large and sparse but have some structure, such as, M is symmetric and
positive definite (M = MT > 0) and often diagonal, and D and K are symmetric (D = DT and
K = KT ).

The QFEMUP consists in updating the quadratic pencil Q(λ) to another quadratic pencil

Q̃(λ) = λ2M + λD̃ + K̃ (3)

in such a way that a small number 1 ≤ p < 2n of given measured eigenvalues and eigenvectors
from a real-life structure or an experimental structure are reproduced by the updated pencil.
Besides the basic requirements of preserving the symmetry and sparsity pattern of the new
matrices D̃ and K̃ and reproducing the p measured eigenvalues and eigenvectors, there are
certain other engineering issues that must be taken into account while solving the problem in
practice. For instance, it is important that the new matrices D̃ and K̃ are as close as possible
to the original ones D and K, respectively, which imposes an optimization approach. It is
also very important that no spurious modes appear in the frequency range of interest after
the model has been updated; see [28]. The so called no spill-over constraint which, assuming
that the p eigenpairs to be replaced are known, forces the additional 2n − p eigenvalues and
corresponding eigenvectors to remain unchanged, clearly guarantees that no spurious modes
will appear in the frequency range of interest. Several numerical schemes have been recently
proposed to accomplish all the mentioned requirements, including the no spill-over constraint,
for several different scenarios; see, e.g., [6, 12, 13, 14, 15, 16, 17, 21, 22, 25, 26, 32, 33, 34, 39] and
references in there. In most cases, the no spill-over constraint is accomplished by using some
clever linear algebra theoretical results that involve the solution of several large-scale matrix
equations (Lyapunov, Sylvester, and block linear systems); see, e.g., [13, 14, 34, 39].

In several important applications, instead of forcing the no spill-over constraint, what is
important from a practical point of view is to guarantee that spurious modes are not introduced
into the frequency range of interests (see [28]). For this scenario, we present in this paper
a new optimization approach that not only maintains the symmetry, the sparsity structure,
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and the nearness of the matrices D̃ and K̃, while reproducing the p measured eigenvalues and
eigenvectors, but also pays special attention to the fundamental engineering requirement of
making sure that no spurious modes appear in the frequency range of interest. In this work,
we accomplish all these requirements without forcing the no spill-over constraint. For that,
our new scheme combines an optimization procedure with the dynamical inclusion of additional
constraints in an inner-outer iterative scheme. The additional constraints are based on a suitable
recent extension of the Rayleigh quotient for quadratic eigenvalue problems [30, 40]. A key
practical feature of the proposed scheme is that it can be implemented by computing only a few
additional eigenvalues and eigenvectors of the associated quadratic matrix pencil.

Variations of finite element model updating problems, with different levels of difficulty, have
been solved in the past using iterative numerical optimization techniques of several types and
for different objective functions; see, e.g., [1, 6, 7, 8, 12, 20, 37]. In particular, the ones that
guarantee the no spill-over constraint need to solve several large-scale matrix equations for each
function and gradient evaluation, which require a computational cost of O(pn3) floating point
operations (flops) per iteration; see, e.g., [6, 12].

The rest of the paper is organized as follows. In Section 2, we formulate the QFEMUP
as a constrained optimization problem and describe the variables and the constrains, including
the way of forcing the matrices’ sparsity structure and symmetry. In Section 3, we describe
the suitable use of the Rayleigh quotient for quadratic eigenvalue problems for building the
constraints or cuts, to avoid when necessary the presence of spurious modes in the frequency
range of interest. We also describe in detail the inner-outer iterative scheme, and discuss its
theoretical properties. In Section 4, we show the performance of our scheme on some illustrative
examples. Concluding remarks are presented in Section 5.

2 Mathematical programming formulation

Consider the quadratic pencil Q(λ) given by (2), where M,D,K ∈ Rn×n are given matrices such
that M is symmetric positive definite and D and K are symmetric. Let 1 ≤ p < 2n, λi ∈ C,
and xi ∈ Cn be such that (λi, xi) for i = 1, . . . , p are the desired eigenpairs. The goal is to find
matrices D̃, K̃ ∈ Rn×n such that (λi, xi) are eigenpairs of the updated quadratic eigenpencil
Q̃(λ) given by (3), i.e.,

(λ2iM + λiD̃ + K̃)xi = 0, i = 1, . . . , p. (4)

Matrices D̃ = (d̃ij) and K̃ = (k̃ij) must be symmetric and must preserve the sparsity pattern of
D = (dij) and K = (kij), respectively. In addition, D̃ and K̃ must be as close as possible to D
and K, respectively.

Let ID and IK be the sets of indexes of non-zero elements in the upper triangle of the given
matrices D and K, respectively, i.e.,

ID = {(i, j) | 1 ≤ i ≤ j ≤ n such that dij 6= 0} (5)

and
IK = {(i, j) | 1 ≤ i ≤ j ≤ n such that kij 6= 0}. (6)

In our setting, elements d̃ij with (i, j) ∈ ID are the unknown elements or variables of the
desired matrix D̃. For the remaining elements of D̃ we have that: (a) if i > j and (j, i) ∈ ID
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then d̃ij = d̃ji in order to preserve symmetry, and (b) if neither (i, j) nor (j, i) are in ID then
d̃ij = d̃ji = 0 in order to preserve the desired sparsity pattern. Similarly, the unknowns related
to the matrix K̃ are k̃ij with (i, j) ∈ IK . It is assumed that a non-negative real number U such
that −U ≤ d̃ij ≤ U for all (i, j) ∈ ID and −U ≤ k̃ij ≤ U for all (i, j) ∈ IK is known.

Summing up, the mathematical programming formulation of the QFEMUP is given by

Minimize ‖D̃ −D‖2F + ‖K̃ −K‖2F
subject to MXΛ2 + D̃XΛ + K̃X = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,
−U ≤ k̃ij ≤ U for all (i, j) ∈ IK ,

(7)

where Λ = diag(λ1, . . . , λp) ∈ Cp×p and X ∈ Cn×p has columns x1, . . . , xp.
Note that in (7) the variables are d̃ij with (i, j) ∈ ID and k̃ij with (i, j) ∈ IK . Hence the

number of variables is nnz = |ID| + |IK |, and the sparsity pattern and symmetry of D and K
are preserved because

d̃ij =

{
0, if i ≤ j and (i, j) /∈ ID,

d̃ji, if i > j,
and k̃ij =

{
0, if i ≤ j and (i, j) /∈ IK ,

k̃ji, if i > j.

This means that the symmetry and the sparsity pattern of D̃ and K̃ are guaranteed by a clever
choice of the variables, and that those requirements do not need to be considered as explicit
constraints, thus reducing the number of constraints as well. Moreover, note that in the objective
function in (7) we have

‖D̃ −D‖2F =
∑

(i,i)∈ID

(d̃ii − dii)2 + 2
∑

(i, j) ∈ ID
i 6= j

(d̃ij − dij)2,

since the remaining terms are zero, and, similarly,

‖K̃ −K‖2F =
∑

(i,i)∈IK

(k̃ii − kii)2 + 2
∑

(i, j) ∈ IK
i 6= j

(k̃ij − kij)2.

Therefore, since the number of variables, the number of constraints, and the computational
complexity of evaluating the objective function and the constraints in (7) are of the order of the
number of non-zero entries in M , D, and K, the model (7) is suitable for solving potentially
large-sized instances of the QFEMUP.

The mathematical programming formulation (7) is equivalent (in the sense of providing the
same solution) to the approach based on alternating projection methods introduced in [37], the
novelty of the former being the possibility of dealing in an efficient way with the requirement of
avoiding spurious modes in the frequency range of interest after the model has been updated,
as will be described in Section 3.

A remark on the way we tackled the requirement “having the new matrices D̃ and K̃ as close
as possible to the original ones D and K” is in order. The objective function in (7) minimizes
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the Frobenius norm of the difference between (D̃, K̃) and (D,K). The squaring of the Frobenius
norm has no effect in this case other than providing differentiability of the objective function.
However, having (D̃, K̃) as close as possible to (D,K) is not exactly the same as having D̃ as
close as possible to D and at the same time K̃ as close as possible to K. This bi-objective
problem (see, for example, [36]) would be much more difficult to be solved (since computing the
Pareto frontier [36] would be needed). An alternative would be to minimize the sum of those
distances, i.e., ‖D̃ −D‖ + ‖K̃ −K‖, where ‖ · ‖ is an arbitrary norm. Note that squaring the
norms would transform the problem into a different problem and not squaring the norms would
make, for example, the case in which the Frobenius norm is considered, a non-differentiable
problem. Another alternative would be to minimize the largest between ‖D̃−D‖ and ‖K̃ −K‖
for any arbitrary norm, i.e.,

Minimize z

subject to ‖D̃ −D‖ ≤ z,

‖K̃ −K‖ ≤ z,

MXΛ2 + D̃XΛ + K̃X = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,

−U ≤ k̃ij ≤ U for all (i, j) ∈ IK .

(8)

If the Frobenius norm is considered in (8), squaring both sides in the first two inequalities
does not alter the problem and it becomes continuous and differentiable. All these alternatives
correspond to different interpretations of the nearness requirement and they probably have
different solutions. In the present work we consider the objective function in (7), which is the
usual interpretation of the nearness requirement considered in the literature (see, for example,
[28] and the references therein).

Finally, a remark on the hyperplane constraint in (7) is also in order. Note that λi ∈ C and
xi ∈ Cn for i = 1, . . . , p. Therefore, to deal with regular nonlinear programming solvers, that
handle problems in the real (non-complex) space, it would be adequate to re-write the constraint
as:

<(MXΛ2 + D̃XΛ + K̃X) = 0,

=(MXΛ2 + D̃XΛ + K̃X) = 0,

where <(c) and =(c) represent the real part a and the imaginary part b of a complex number
c = a+ bi, arriving to the formulation

Minimize ‖D̃ −D‖2F + ‖K̃ −K‖2F
subject to <(MXΛ2 + D̃XΛ + K̃X) = 0,

=(MXΛ2 + D̃XΛ + K̃X) = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,

−U ≤ k̃ij ≤ U for all (i, j) ∈ IK .

(9)

Note that (9) is a continuous and differentiable nonlinear programming problem for which any
off-the-shelf nonlinear programming method may be applied.
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3 Nonlinear cuts and algorithmic framework

In this section, we consider the extra requirement of avoiding that spurious modes (eigenvectors)
appear in the updated quadratic eigenpencil (3). An eigenvalue of (3) is called unstable if its
corresponding eigenvector is a spurious mode. For simplicity of exposition, we will focus on the
frequent situation in which λ̂ ∈ R is given (the reader can think of a “small” and negative value
for λ̂ but any value is possible) and there is a constraint that says that all eigenvalues of the
updated eigenpencil (3) must have their real part less than or equal to λ̂.

Let us assume that (µ1, y1), . . . , (µ2n, y2n) are the (unknown) eigenpairs of the original
quadratic eigenpencil (2) and that 1 ≤ p < 2n and (λ1, x1), . . . , (λp, xp) are the desired eigen-
pairs. In addition, let us assume that the p eigenpairs that must be substituted are known
and that (without loss of generality) those eigenpairs are the first p eigenpairs of (2), i.e.,
(µ1, y1), . . . , (µp, yp). In what follows we will also assume that

(a) the p desired eigenpairs are such that <(λi) ≤ λ̂ for i = 1, . . . , p,

(b) the p eigenpairs that will be substituted are such that <(µi) > λ̂ for i = 1, . . . , p,

(c) the remaining 2n− p eigenpairs are such that <(µi) ≤ λ̂ for i = p+ 1, . . . , 2n.
The requirement of preserving the unknown 2n− p eigenpairs (µp+1, yp+1), . . . , (µ2n, y2n) of

the original quadratic eigenpencil (2) as eigenpairs of the updated quadratic eigenpencil (3) is
known as no spill-over constraint. The methodologies, already developed, that impose the no
spill-over constraint certainly avoids the advent of spurious modes in the updated quadratic
eigenpencil, at the price of solving several large-scale Lyapunov, Sylvester, and block linear
systems per iteration.

In the present work, we address the extra requirement of avoiding that spurious modes
appear in the updated quadratic eigenpencil (3) using a different approach. Solving the mathe-
matical programming problem (9), we find matrices D̃ and K̃ such that the updated quadratic
eigenpencil (3) has the desired eigenpairs (λ1, x1), . . . , (λp, xp) for i = 1, . . . , p, i.e., such that (4)
holds. To achieve this goal, none of the eigenpairs (µ1, y1), . . . , (µ2n, y2n) of the original quadratic
eigenpencil (2) are assumed to be known. It is the nearness requirement, expressed in the mini-
mization of the distance between (D̃, K̃) and (D,K), that helps to safeguard as much as possible
the eigenpairs of the original quadratic eigenpencil. Then, an eigenvalue with largest real part
of the updated quadratic eigenpencil (3) is computed. If its real part is larger than λ̂, then a
(normalized) associated eigenvector x̃ is computed; a constraint, that depends on x̃, is added to
the mathematical programming model (9) with the attempt of avoiding the detected unstable
eigenvalue; and a new nonlinear programming problem is solved. This iterative process is re-
peated until the updated quadratic eigenpencil has no unstable eigenvalues. The nature of the
constraint or cut that is added to the mathematical programming model is discussed below. The
idea of generating additional constraints or cuts from standard (non-quadratic) eigenvectors was
used to solve Lyapunov equations by Geromel [29] and to solve constrained least-squares matrix
problems by Hu [31].

Assume that an eigenvalue τ ∈ C with largest real part of the updated eigenpencil (3)
has been computed and that <(τ) > λ̂. Then, a normalized associated eigenvector x̃ ∈ Cn is
computed. From the Galerkin condition (see [30, 40]), it follows that τ must be one of the two
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solutions of the quadratic equation

q(θ) = θ2(x̃∗Mx̃) + θ(x̃∗D̃x̃) + (x̃∗K̃x̃),

that are given by

θ1(D̃, K̃, x̃) =
−(x̃∗D̃x̃) +

√
(x̃∗D̃x̃)2 − 4(x̃∗Mx̃)(x̃∗K̃x̃)

2(x̃∗Mx̃)

and

θ2(D̃, K̃, x̃) =
−(x̃∗D̃x̃)−

√
(x̃∗D̃x̃)2 − 4(x̃∗Mx̃)(x̃∗K̃x̃)

2(x̃∗Mx̃)
.

If τ = θ1(D̃, K̃, x̃) then the new constraint is given by

<
(
θ1(D̃, K̃, x̃)

)
≤ λ̂− ε, (10)

where ε > 0 is a given small tolerance, which is subtracted from λ̂ to slightly overstate what we
want to achieve. Otherwise, we have that τ = θ2(D̃, K̃, x̃) and then the new constraint is given
by

<
(
θ2(D̃, K̃, x̃)

)
≤ λ̂− ε. (11)

Recall that when solving problem (9) with the additional constraint (10) or the additional con-
straint (11), we have that the vector x̃ is given, as well as the matrix M , and so the variables are
the elements d̃ij of D̃ with (i, j) ∈ ID and the elements k̃ij of K̃ with (i, j) ∈ IK . The complete
iterative procedure is described below.

Algorithm 3.1. Let M,D,K ∈ Rn×n be given matrices such that M is positive definite and
D = (dij) and K = (kij) are symmetric. Let 1 ≤ p < 2n and let (λi, xi) ∈ C×Cn for i = 1, . . . , p

be the desired quadratic eigenpairs. Let λ̂ ∈ R be a parameter that describes the forbidden re-
gion for the quadratic eigenvalues of the updated quadratic eigenpencil. Let U > 0 be a given
large real number and let ε > 0 be a given small tolerance. Set κ← 0.

Step 1. Set the sparsity patterns

Compute ID and IK given by (5) and (6), respectively.

Step 2. Optimization step

By solving the nonlinear programming problem, with nnz = |ID| + |IK | variables, given by (9)
plus  <

(
θ1(D̃, K̃, uj)

)
≤ λ̂− ε if sj = 1, for j = 0, . . . , κ− 1,

<
(
θ2(D̃, K̃, uj)

)
≤ λ̂− ε if sj = −1, for j = 0, . . . , κ− 1,

(12)
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where Λ = diag(λ1, . . . , λp) ∈ Cp×p and X ∈ Cn×p has columns x1, . . . , xp, find matrices D̃κ and
K̃κ such that

(λ2iM + λiD̃κ + K̃κ)xi = 0, i = 1, . . . , p.

Step 3. Check for spurious quadratic eigenvalues

Step 3.1. Compute a quadratic eigenvalue τ with largest real part of the updated quadratic
eigenpencil

Q̃(λ) = λ2M + λD̃κ + K̃κ.

Step 3.2. If <(τ) ≤ λ̂ then stop returning D̃κ and K̃κ.

Step 4. Add a new cut and iterate

Step 4.1. Compute a quadratic eigenvector uκ associated with τ (such that ‖uκ‖2 = 1).

Step 4.2. If τ = θ1(D̃κ, K̃κ, uκ), set sκ = 1. Otherwise, if τ = θ2(D̃κ, K̃κ, uκ), set sκ = −1.

Step 4.3. Set κ← κ+ 1 and go to Step 2.

Remark. Notice that, for any iteration κ, the feasible region of the nonlinear programming
problem solved at Step 2 is a closed subset of the closed and bounded set BD ×BK , where

BD = {D ∈ Rn×n| D = DT ,−U ≤ dij ≤ U if (i, j) ∈ ID, and dij = 0 if (i, j) /∈ ID}

and

BK = {K ∈ Rn×n| K = KT ,−U ≤ kij ≤ U if (i, j) ∈ IK , and kij = 0 if (i, j) /∈ IK}.

Notice also that at each iteration κ ≥ 1 all the cuts in (12) from previous iterations are kept as
constraints for the current nonlinear programming problem. If all these cuts were not kept in the
current optimization problem, the algorithm could explore subsets of the original feasible region
that were already explored, and as a consequence it could cycle indefinitely without converging
to the solution of the problem. In other words, keeping them around guarantees that the feasible
region of the nonlinear programming problem is monotonically reduced when κ increases. Our
next theorem establishes that Algorithm 3.1 terminates in a finite number of iterations.

Theorem 3.1 Let λ̂ ∈ R and ε > 0 be given. If Algorithm 3.1 is applied to solve the optimization
problem (9) with the additional constraint that all eigenvalues of the updated eigenpencil (3) must
have their real part less than or equal to λ̂, then it terminates in a finite number of iterations.

Proof. Let us consider the functions θ̂1 : BD × BK × Su → R and θ̂2 : BD × BK × Su → R,
where Su = {u ∈ Cn| ‖u‖2 = 1} is the unit sphere in Cn, that define the possible cuts in (12)

θ̂1(D̃, K̃, u) = <
(
θ1(D̃, K̃, u)

)
and θ̂2(D̃, K̃, u) = <

(
θ2(D̃, K̃, u)

)
.
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Since M is symmetric and positive definite, and ‖u‖2 = 1, then u∗Mu ≥ λmin(M) > 0, where
λmin(M) > 0 is the smallest eigenvalue of M . Hence, in θ1(D̃, K̃, u) and θ2(D̃, K̃, u) the de-
nominator is uniformly bounded away from zero, and as a consequence the functions θ̂1 and θ̂2
are continuous on BD × BK × Su. Moreover, since BD × BK × Su is a compact set, then the
functions θ̂1 and θ̂2 are uniformly continuous on BD ×BK × Su. Therefore, for the given ε > 0,
there exists δ1 > 0 such that

‖[D̃′ : K̃ ′ : u′]− [D̃ : K̃ : u]‖F < δ1 (13)

implies that
|θ̂1(D̃′, K̃ ′, u′)− θ̂1(D̃, K̃, u)| < ε, (14)

for all (D̃′, K̃ ′, u′) and (D̃, K̃, u) in BD × BK × Su. Similarly, for the given ε > 0 there exists
δ2 > 0 such that the same implication involving (13) and (14) is obtained, but now using δ2 > 0
and θ̂2 instead of δ1 > 0 and θ̂1. In here, [D̃ : K̃ : u] denotes a block matrix which is built
stacking the matrices D̃, K̃, and the vector u, i.e., it is a matrix with 2n + 1 columns and n
rows.

For each iteration κ, if the algorithm does not stop at Step 3.2, it sets sκ = 1 or sκ = −1.
It means that exactly one of the two functions θ̂1 or θ̂2 is chosen to build a new cut at Step 4.
Hence, Algorithm 3.1 generates two subsequences of iterations identified with J

θ̂1
⊂ N and

J
θ̂2
⊂ N, which are the sets of indices κ associated with the iterations for which θ̂1 is chosen, and

the indices for which θ̂2 is chosen, respectively. Hence, once κ iterations have been performed
(numbered from 0 to κ− 1), it follows that J

θ̂1
∩ J

θ̂2
= ∅ and J

θ̂1
∪ J

θ̂2
= {0, 1, . . . , κ− 1}.

Let us suppose, by way of contradiction, that J
θ̂1

is an infinite set of indices. In that case,
Algorithm 3.1 generates a sequence {uκ} in Su for κ ∈ J

θ̂1
. Since Su is compact then there

exists an accumulation point of that sequence in Su. Hence, for δ1 > 0 there exist ui1 and ui2
with i1 < i2 and i1, i2 ∈ Jθ̂1 , satisfying

‖[D̃i2 : K̃i2 : ui1 ]− [D̃i2 : K̃i2 : ui2 ]‖F = ‖ui1 − ui2‖2 < δ1. (15)

Now, since i1 < i2, matrices D̃i2 and K̃i2 computed at iteration i2 satisfy the constraint in (12)
with j = i1 given by

θ̂1(D̃i2 , K̃i2 , ui1) ≤ λ̂− ε. (16)

However, since Algorithm 3.1 does not stop at iteration i2 (Step 3.2) and i2 ∈ Jθ̂1 , this means
that ui2 is such that

θ̂1(D̃i2 , K̃i2 , ui2) > λ̂. (17)

Clearly, (15), (16), and (17) contradict (13) and (14), the uniform continuity of θ̂1 on BD ×
BK × Su. Therefore the number of indices in the set J

θ̂1
is finite, say N1.

Let us now suppose, by way of contradiction, that J
θ̂2

is an infinite set of indices. Repeating

the same sequence of arguments as before but now using δ2 > 0 and θ̂2 instead of δ1 > 0 and θ̂1,
we conclude that the number of indices in the set J

θ̂2
is also finite, say N2. Thus, Algorithm 3.1

terminates in a finite number of iterations N̂ = N1 +N2, and the result is established. 2
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Notice that when Algorithm 3.1 terminates, at Step 3.2, matrices D̃
N̂

and K̃
N̂

satisfy all the
constraints in (9) plus (12). Moreover, the real part of all the eigenvalues λ of the quadratic
eigenpencil λ2M+λD̃

N̂
+K̃

N̂
are less than or equal to λ̂. Therefore, Algorithm 3.1 terminates at

a feasible solution of (9) that also satisfies the extra requirement of not having spurious modes,
which is optimal for problem (9,12).

4 Numerical experiments

To give further insight into the new approach of dynamically adding quadratic Rayleigh quotient
cuts to the nonlinear programming setting, for solving the QFEMUP, we present the results of
some numerical experiments. We implemented Algorithm 3.1 in Fortran 90. All tests were
conducted on a computer with 4 Intel Core i7-3417U 1.9GHz processors and 4GB of RAM
memory, running GNU/Linux operating system (Ubuntu 4.8.2-19ubuntu1, kernel 3.13.0-32).
Codes were compiled by the GFortran Fortran compiler of GCC (version 4.8.2) with the -O3
optimization directive enabled.

At Step 2 of Algorithm 3.1, the optimization subproblems given by (9,12) were solved us-
ing the nonlinear programming solver Algencan [2, 3, 11]. Algencan version 3.0.0, available for
download at the TANGO Project web page (http://www.ime.usp.br/~egbirgin/tango/) was
considered. All parameters were used with their default values, while feasibility and optimality
tolerances were both set to 10−4. Algencan is an augmented Lagrangian method for nonlin-
ear programming that solves the bound-constrained augmented Lagrangian subproblems using
Gencan [9, 10, 4], an active-set method for bound-constrained minimization. The initial guess
for the (iterative process of solving the) nonlinear programming subproblems is always given by
the original matrices D and K.

At Step 3, a quadratic eigenvalue τ with largest real part and, when required, an associated
eigenvector, are computed using subroutines dnaupd and dneupd from ARPACK [35]. ARPACK
subroutines, based on implicitly restarted Arnoldi methods, are applied to compute an eigenvalue
with largest real part of the linearization given by applying the substitution v = λx in (λ2M +
λD̃ + K̃)x = 0, that yields the generalized eigenvalue problem(

0 I

−K̃ −D̃

)(
x
v

)
− λ

(
I 0
0 M

)(
x
v

)
= 0. (18)

Other linearizations are possible and the most adequate choice depends on the nonsingularity
of M and K̃ and, in the large-scale case, on the sparsity structure of the matrices. See [40, pp.
252–253] for details.

Concerning the computational cost per iteration of Algorithm 3.1, notice that evaluating at
Step 2 the constraints, and also the objective function and its gradient, requires O(nnz) flops.
Since the considered internal numerical optimization scheme in Algencan is gradient related, the
iterative process that is applied at Step 2 uses O(nnz) flops per iteration. In addition, at Step 3,
a few matrix-vector products involving the matrices in (18) are required. The cost of these
matrix-vector products is O(nnz). Note that, in the large-scale case, M , D, and K are expected
to be sparse and, therefore, nnz to be a small multiple of n (the dimension of the space), i.e.,
nnz = O(n). If, instead of using a gradient related scheme at Step 2, a quasi-Newton scheme
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(e.g., inverse BFGS) or a Newton scheme is used, then the cost per iteration increases from
O(nnz) to O(n2nz) or to O(n3nz) flops but the expected number of iteration required to solve the
optimization problem at Step 2 could be drastically reduced; see [11].

The performance of Algorithm 3.1 will be illustrated by analyzing its behavior on three
small and one medium-sized randomly generated numerical test examples. In all examples, we
set U = 1020 and ε = 2× 10−4. The three small examples were solved in a fraction of a second,
and so elapsed CPU times required to solve them are not reported.

4.1 Example 1.

In the first example, we considered the quadratic eigenpencil (2) with matrices

M =

 0.7110 0.0212 −0.5813
0.0212 0.8509 0.4498
−0.5813 0.4498 1.7045

 , D =

 0.1167 0.3240 0.0237
0.3240 0.2774 0.6079
0.0237 0.6079 2.0967

 ,

and

K =

 0.3521 0.0222 0.2350
0.0222 −0.0007 0.0544
0.2350 0.0544 1.0708

 .

The objective is to find symmetric matrices D̃ and K̃ ∈ R3×3 such that the modified eigen-
pencil (3) has λ1 = −0.1 as quadratic eigenvalue associated with the quadratic eigenvector
x1 = (0.09,−1.00, 0.07)T . In addition, we would like that all quadratic eigenvalues of the mod-
ified eigenpencil have its real part not larger that λ̂ = −0.1. Matrices D and K are dense and
so there is no sparsity pattern to be preserved and the nonlinear subproblemas at Step 2 have
nnz = 12 variables.

We now describe the application of Algorithm 3.1 to this example. By solving the nonlinear
programming subproblem (9) at Step 2 (note that there are no constraints of type (12) in this
first iteration), we obtain matrices D̃0 and K̃0 such that ‖D− D̃0‖2F = 0.0002 and ‖K− K̃0‖2F =

0.0205. At Step 3, we obtain that τ = −0.0712 6≤ −0.1 = λ̂. Therefore, at Step 4, we compute
a normalized eigenvector u0 associated with τ given by u0 = (0.1106,−0.9909, 0.0762)T . In
addition, by the test given at Step 4.2, we set s0 = 1. The values u0 and s0 define a cut of
type (12). In the next iteration (κ = 1), by solving subproblem (9,12), we obtain matrices

D̃1 =

 0.1181 0.3151 0.0251
0.3151 0.3053 0.5974
0.0251 0.5974 2.0980

 and K̃1 =

 0.3420 0.0767 0.2237
0.0767 0.0317 0.1353
0.2237 0.1353 1.0593

 ,

such that ‖D − D̃1‖2F = 0.0012 and ‖K − K̃1‖2F = 0.0206. This time, when computing a

quadratic eigenvalue τ with largest real part, we verify that τ = −0.1 = λ̂. This means that we
have obtained the desired modified eigenpencil with no unstable quadratic eigenvalues.
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4.2 Example 2.

In the second example, we considered the quadratic eigenpencil (2) with matrices

M =


1.6312 −0.2473 −1.0380 0.4628
−0.2473 0.9275 −0.0052 0.2589
−1.0380 −0.0052 2.1554 0.1102

0.4628 0.2589 0.1102 0.8301

 , D =


1.4794 −1.1102 0 −0.2222
−1.1102 0.3455 0.1237 0

0 0.1237 2.4643 −0.1004
−0.2222 0 −0.1004 1.0838

 ,

and

K =


0.5875 −0.1668 0 0
−0.1668 0.1831 0.0456 0

0 0.0456 1.0749 0.3803
0 0 0.3803 0.5624

 .

Notice that D and K are sparse and hence the nonlinear programming subproblems have nnz =
15 variables. The objective is to find matrices D̃ and K̃ as near as possible to D and K,
respectively, and such that the updated eigenpencil (3) has the two desired eigenpairs (λ1, x1)
and (λ2, x2), where λ1 = −0.1 + 0.3398i, x1 = (0.5 + 0.04i, 0.8,−0.04 + 0.1i, 0.04 − 0.1i)T , and
(λ2, x2) corresponds to the conjugate eigenpair. In addition, we would also like the updated
eigenpencil to have all its quadratic eigenvalues with their real part not larger than λ̂ = −0.1.

By solving the first nonlinear programming subproblem at Step 2 (with κ = 0, i.e., with no
cut constraints), we obtain matrices D̃0 and K̃0 such that ‖D−D̃0‖2F = 0.4284 and ‖K−K̃0‖2F =
0.0557 (the sum being equal to 0.4841). When computing an eigenvalue τ with largest real part
we find that τ = −0.0798 6≤ −0.1 = λ̂. Therefore, we compute an associated normalized
eigenvector given by u0 = (0.0008, 0.1063,−0.5433, 0.8328)T , and, by the test at Step 4.2, set
s0 = 1. Then, we solve a new nonlinear programming subproblem at Step 2 (this time with a
single cut of type (12) given by u0 and s0) and find matrices

D̃1 =


1.5936 −0.9073 0 −0.0807
−0.9073 0.7109 −0.0392 0

0 −0.0392 2.4946 −0.2534
−0.0807 0 −0.2534 1.3588


and

K̃1 =


0.5318 −0.1968 0 0
−0.1968 0.2081 0.0312 0

0 0.0312 0.9915 0.4758
0 0 0.4758 0.4612

 .

This time, the quadratic eigenvalue τ with largest real part corresponds to τ = −0.1± 0.3398i
and, therefore, since <(τ) = −0.1 = λ̂, we are done. Matrices D̃1 and K̃1 are such that
‖D−D̃1‖2F = 0.4454 and ‖K−K̃1‖2F = 0.0414. Since the sum of both squared distances is equal
to 0.4868, it means that we have obtained the desired updated eigenpencil, with no unstable
eigenvalues, at the price of a “very small” increase (≈ 0.5%) in the objective function value.
Observe that, as required, D̃1 and K̃1 are symmetric and preserve the desired sparsity pattern.
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4.3 Example 3.

In the third example, we considered the quadratic eigenpencil (2) given by matrices

M =


1.9979 0.3890 −0.3500 0.5459
0.3890 1.5993 0.2906 −0.8680
−0.3500 0.2906 1.1656 −0.5510

0.5459 −0.8680 −0.5510 1.8281

 , D =


0.9727 0.7667 −0.1444 0.3118
0.7667 0.0000 0.1213 −0.0389
−0.1444 0.1213 0.7190 0.3321

0.3118 −0.0389 0.3321 1.3145

 ,

and

K =


0.4018 0.4055 0.1019 0.3685
0.4055 0.5521 0.2048 0.0112
0.1019 0.2048 0.2443 0.0941
0.3685 0.0112 0.0941 0.8133

 .

The desired quadratic eigenpair is given by λ1 = −0.1 and x1 = (0.6,−0.6, 0.4,−0.5)T . In
addition, we would like the modified eigenpencil (3) to have all its eigenvalues with their real
part not larger than λ̂ = −0.1.

Since matrices D and K are dense, the nonlinear programming subproblems at Step 2 have
nnz = 20 variables. When solving the first nonlinear programming subproblem with no cuts, we
obtained matrices D0 and K0 such that ‖D − D̃0‖2F = 0.0006 and ‖K − K̃0‖2F = 0.0646. When
computing a quadratic eigenvalue τ with largest real part of the associated modified eigenpencil,
we observed that τ = 0.626 6≤ −0.1 = λ̂. Therefore, we computed an associated normalized
eigenvector u0 = (−0.5199, 0.715,−0.3242, 0.3368)T , and, by the test at Step 4.2, set s0 = 1.
When solving the second nonlinear programming subproblem, this time with the addition of
the cut given by u0 and s0, we obtained matrices D1 and K1 such that ‖D − D̃1‖2F = 0.2703
and ‖K − K̃1‖2F = 0.0655. When computing a quadratic eigenvalue τ = −0.047± 0.4178i with

largest real part, we observed that <(τ) = −0.047 6≤ −0.1 = λ̂. A normalized eigenvector
associated with the eigenvalue −0.047 + 0.4178i is given by u1 = (−0.1964− 0.5258i,−0.153 +
0.7568i,−0.1265 − 0.0316i, 0.2661 − 0.0305i)T . By the test at Step 4.2, we set s1 = −1. This
means that the next nonlinear programming subproblem to be solved had two cut constraints.
By solving it, we obtained matrices

D̃2 =


1.1721 0.5134 −0.1034 0.2673
0.5134 0.4118 0.0858 −0.0337
−0.1034 0.0858 0.7428 0.2943

0.2673 −0.0337 0.2943 1.3818


and

K̃2 =


0.5662 0.3403 0.1600 0.3661
0.3403 0.5181 0.2128 −0.0690
0.1600 0.2128 0.2487 0.1354
0.3661 −0.0690 0.1354 0.7032


such that ‖D− D̃2‖2F = 0.3555 and ‖K − K̃2‖2F = 0.072. When computing an eigenvalue τ with

largest real part associated with the modified eigenpencil, we obtained that τ = −0.1 ≤ λ̂ and,
therefore, the algorithm stopped.
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It is worth noticing that the final sum of the squared distances is 0.4275, which is relatively
larger than the sum of the squared distances obtained after the first iteration of the algorithm,
whose value is 0.0652. This is because the matrices D̃0 and K̃0 have, as well as the original
matrices, a quadratic eigenvalue λ ≈ 0.6 that is relatively far from the desired upper limit
λ̂ = −0.1. This justifies the “relatively large modification” of the matrices, reflected in the
relatively large final squared distances, when compared to the distances obtained after the first
iteration of the algorithm that did not include any cut.

4.4 Example 4.

In the fourth example, we considered the quadratic eigenpencil (2) given by sparse matrices
M,D,K ∈ R100×100, such that M is diagonal and positive definite and D and K are both
tridiagonal and symmetric. Matrices M , D, and K can be found in [5]. The two desired
quadratic eigenvalues are given by λ1 = −0.3 + 0.4713i and its conjugate λ2 = −0.3− 0.4713i.
The desired eigenvectors x1 and x2 are such that x1 has its non-zero elements given by

[x1]1 = 0.0010 + 0.0001i
[x1]2 = −0.0010 + 0.0001i
[x1]16 = −0.0020 + 0.0000i
[x1]17 = −0.0020 + 0.0020i
[x1]18 = −0.0100 + 0.0050i
[x1]19 = 0.8000 + 0.0000i
[x1]20 = −0.0050− 0.0020i
[x1]100 = 0.0010 + 0.0010i

and x2 is the conjugate of x1. In addition, we would like the modified eigenpencil (3) to have all
its eigenvalues with their real part not larger than λ̂ = −0.3. Matrices D and K are tridiagonal,
so we have ID = IK = {(i, i) | 1 ≤ i ≤ 100} ∪ {(i, i + 1) | 1 ≤ i ≤ 99} and, thus, the nonlinear
programming subproblems at Step 2 have nnz = 398 ≈ 4n variables.

Algorithm 3.1 required four iterations to solve this problem. The computed eigenvalue with
largest real part at each iteration, as well as the squared distances of the obtained matrices, are
reported in Table 1. Intermediate matrices (D̃0, D̃1, D̃2, K̃0, K̃1, and K̃2) and final matrices
D̃3 and K̃3 are reported in [5]. In the considered computational environment, the elapsed CPU
time required to solve this problem was 6.96 seconds.

κ ‖D − D̃κ‖2F ‖K − K̃κ‖2F τ

0 0.5305 0.1308 −0.2275± 0.4486i
1 0.5876 0.1367 −0.2910± 0.4472i
2 0.5886 0.1369 −0.2989± 0.4406i
3 0.5891 0.1370 −0.3000± 0.4713i

Table 1: Details of the progress of Algorithm 3.1 when applied to Example 4.
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5 Final remarks

We introduced a new optimization approach for solving the QFEMUP problem, that combines
the use of standard nonlinear programming solvers with the dynamical inclusion of additional
constraints to avoid that spurious modes appear in the frequency range of interest. These ad-
ditional constraints or cuts are based on an extension of the Rayleigh quotient for quadratic
eigenvalue problems. For this combination of ideas, we have presented an iterative algorithm
for which we have established finite termination. A key feature, observed on some preliminary
numerical experiments, is that our new machinery finds an optimal and feasible solution com-
puting only a few eigenvalues and eigenvectors of the associated quadratic matrix pencil. For our
experiments we have combined the packages Algencan for solving the constrained optimization
problems, and the package ARPACK for the eigenvalue-eigenvector calculations. Both packages
are easy to obtain and easy to use, however, it is worth mentioning that any other packages can
be used as inner-solvers in our iterative scheme.

In our approach, the structure of the feasible region played a key role concerning practi-
cal and also theoretical issues. However, the objective function of the sequence of nonlinear
programming problems was not referred in the analysis of the algorithm. Hence, our iterative
combined scheme can be extended to solve some other related model updating and eigenvalue
assignment problems; see e.g., [6, 12, 20, 26, 34]. Moreover, the symmetry of the involved matri-
ces M , D, and K, does not play any special role in our optimization machinery, besides halving
the required storage, and so our approach can also be adapted to solve some other problems for
which these structural constraints are not required.
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