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Abstract. Augmented Lagrangian methods with general lower-level constraints are considered in the present research.
These methods are useful when efficient algorithms exist for solving subproblems in which the constraints are only of the
lower-level type. Inexact resolution of the lower-level constrained subproblems is considered. Global convergence is proved
using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty param-
eters are discussed. The reliability of the approach is tested by means of a comparison against Ipopt and Lancelot B.
The resolution of location problems in which many constraints of the lower-level set are nonlinear is addressed, employing
the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 106 vari-
ables and 14 × 106 constraints are solved in this way, using moderate computer time. The codes are free for download in
www.ime.usp.br/∼egbirgin/tango/
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1. Introduction. Many practical optimization problems have the form

Minimize f(x) subject to x ∈ Ω1 ∩ Ω2,(1.1)

where the constraint set Ω2 is such that subproblems of type

Minimize F (x) subject to x ∈ Ω2(1.2)

are much easier than problems of type (1.1). By this we mean that there exist efficient algorithms for
solving (1.2) that cannot be applied to (1.1). In these cases it is natural to address the resolution of (1.1)
by means of procedures that allow one to take advantage of methods that solve (1.2).

Let us mention here a few examples of this situation.

• Minimizing a quadratic subject to a ball and linear constraints: This problem is useful in the
context of trust-region methods for minimization with linear constraints. In the low-dimensional
case the problem may be efficiently reduced to the classical trust-region subproblem [37, 55],
using a basis of the null-space of the linear constraints, but in the large-scale case this procedure
may be impractical. On the other hand, efficient methods for minimizing a quadratic within a
ball exist, even in the large-scale case [61, 64].
• Bilevel problems with “additional” constraints [24]: A basic bilevel problem consists in mini-

mizing f(x, y) with the condition that y solves an optimization problem whose data depend on
x. Efficient algorithms for this problem have already been developed (see [24] and references
therein). When additional constraints (h(x, y) = 0, g(x, y) ≤ 0) are present the problem is more
complicated. Thus, it is attractive to solve these problems using methods that deal with the dif-
ficult constraints in an special way and solve iteratively subproblems with the easy constraints.
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• Minimization with orthogonality constraints [31, 36, 57, 66]: Important problems on this class
appear in many applications, such as the “ab initio” calculation of electronic structures. Rea-
sonable algorithms for minimization with (only) orthogonality constraints exist, but they cannot
be used in the presence of additional constraints. When these additional constraints appear in
an application the most obvious way to proceed is to incorporate them to the objective function,
keeping the orthogonality constraints in the easy set Ω2.
• Control problems with algebraic constraints: Minimizing an objective function f(y, u) subject

to the discretization of y′ = f(y, u) is relatively simple using straightforward discrete control
methodology. See [47, 52, 53] and references therein. The problem is more difficult if, in addi-
tion, it involves algebraic constraints on the control or the state. These constraints are natural
candidates to define the set Ω1, whereas the evolution equation should define Ω2.
• Problems in which Ω2 is convex but Ω1 is not: Sometimes it is possible to take profit of the

convexity of Ω2 in very efficient ways and we do not want to have this structure destroyed by its
intersection with Ω1.

These problems motivated us to revisit Augmented Lagrangian methods with arbitrary lower-level
constraints. Penalty and Augmented Lagrangian algorithms seem to be the only methods that can
take advantage of the existence of efficient procedures for solving partially constrained subproblems in
a natural way. For this reason, many practitioners in Chemistry, Physics, Economy and Engineering
rely on empirical penalty approaches when they incorporate additional constraints to models that were
satisfactorily solved by pre-existing algorithms.

The general structure of Augmented Lagrangian methods is well known [6, 23, 56]. An Outer Iteration
consists of two main steps:

(a) Minimize the Augmented Lagrangian on the appropriate “simple” set (Ω2 in our case).
(b) Update multipliers and penalty parameters.
However, several decisions need to be taken in order to define a practical algorithm. For example, one
should choose a suitable Augmented Lagrangian function. In this paper we use the Powell-Hestenes-
Rockafellar PHR definition [45, 58, 62]. So, we pay the prize of having discontinuous second derivatives
in the objective function of the subproblems when Ω1 involves inequalities. We decided to keep inequality
constraints as they are, instead of replacing them by equality constraints plus bounds.

Moreover, we need a good criterion for deciding that a suitable approximate subproblem minimizer
has been found at Step (a). In particular, one must decide whether subproblem minimizers must be
feasible with respect to Ω2 and which is the admissible level of infeasibility and lack of complementarity
at these solutions. Bertsekas [5] analyzed an Augmented Lagrangian method for solving (1.1) in the case
in which the subproblems are solved exactly.

Finally, simple and efficient rules for updating multipliers and penalty parameters must be given.

Algorithmic decisions are taken looking at theoretical convergence properties and practical perfor-
mance. We are essentially interested in practical behavior but, since it is impossible to perform all the
possible tests, theoretical results play an important role in algorithmic design. However, only experience
tells one which theoretical results have practical importance and which do not. Although we recognize
that this point is controversial, we would like to make explicit here our own criteria:

1. External penalty methods have the property that, when one finds the global minimizers of the
subproblems, every limit point is a global minimizer of the original problem [32]. We think that
this property must be preserved by the Augmented Lagrangian counterparts. This is the main
reason why, in our algorithm, we will force boundedness of the Lagrange multipliers estimates.

2. We aim feasibility of the limit points but, since this may be impossible (even an empty feasible
region is not excluded) a “feasibility result” must say that limit points are stationary points for
some infeasibility measure. Some methods require that a constraint qualification holds at all
the (feasible or infeasible) iterates. In [15, 70] it was shown that, in such cases, convergence to
infeasible points that are not stationary for infeasibility may occur.

3. Feasible limit points must be stationary in some sense. This means that they must be KKT
points or that a constraint qualification must fail to hold. The constraint qualification must
be as weak as possible (which means that the optimality result must be as strong as possible).
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Therefore, under the assumption that all the feasible points satisfy the constraint qualification,
all the feasible limit points should be KKT.

4. Theoretically, it is impossible to prove that the whole sequence generated by a general Aug-
mented Lagrangian method converges, because multiple solutions of the subproblems may exist
and solutions of the subproblems may oscillate. However, since one uses the solution of one
subproblem as initial point for solving the following one, the convergence of the whole sequence
generally occurs. In this case, under stronger constraint qualifications, nonsingularity conditions
and the assumption that the true Lagrange multipliers satisfy the bounds given in the definition
of the algorithm, we must be able to prove that the penalty parameters remain bounded.

In other words, the method must have all the good global convergence properties of the External
Penalty method. In addition, when everything “goes well”, it must be free of the asymptotic instability
caused by large penalty parameters. It is important to emphasize that we deal with nonconvex problems,
therefore the possibility of obtaining full global convergence properties based on proximal-point arguments
is out of question.

The algorithm presented in this paper satisfies those theoretical requirements. In particular, we will
show that, if a feasible limit point satisfies the Constant Positive Linear Dependence (CPLD) condition,
then it is a KKT point. The CPLD condition was introduced by Qi and Wei [59]. In [3] it was proved
that CPLD is a constraint qualification, being weaker than the Linear Independence Constraint Qualifi-
cation (LICQ) and than the Mangasarian-Fromovitz condition (MFCQ). A feasible point x of a nonlinear
programming problem is said to satisfy CPLD if the existence of a nontrivial null linear combination
of gradients of active constraints with nonnegative coefficients corresponding to the inequalities implies
that the gradients involved in that combination are linearly dependent for all z in a neighborhood of x.
Since CPLD is weaker than (say) LICQ, theoretical results saying that if a limit point satisfies CPLD
then it satisfies KKT are stronger than theoretical results saying that if a limit point satisfies LICQ then
it satisfies KKT.

These theoretical results indicate what should be observed in practice. Namely:

1. Although the solutions of subproblems are not guaranteed to be close to global minimizers, the
algorithm should exhibit a stronger tendency to converge to global minimizers than algorithms
based on sequential quadratic programming.

2. The algorithm should find feasible points but, if it does not, it must find “putative minimizers”
of the infeasibility.

3. When the algorithm converges to feasible points, these points must be approximate KKT points
in the sense of [59]. The case of bounded Lagrange multipliers approximations corresponds to the
case in which the limit is KKT, whereas the case of very large Lagrange multiplier approximations
announces limit points that do not satisfy CPLD.

4. Cases in which practical convergence occurs in a small number of iterations should coincide with
the cases in which the penalty parameters are bounded.

Our plan is to prove the convergence results and to show that, in practice, the method behaves as
expected. We will analyze two versions of the main algorithm: with only one penalty parameter and with
one penalty parameter per constraint. For proving boundedness of the sequence of penalty parameters
we use the reduction to the equality-constraint case introduced in [5].

Most practical nonlinear programming methods published after 2001 rely on sequential quadratic
programming (SQP), Newton-like or barrier approaches [1, 4, 14, 16, 19, 18, 34, 35, 38, 39, 50, 54, 65,
68, 69, 71, 72, 73]. None of these methods can be easily adapted to the situation described by (1.1)-(1.2).
We selected Ipopt, an algorithm by Wächter and Biegler available in the web [71] for our numerical
comparisons. In addition to Ipopt we performed numerical comparisons against Lancelot B [22].

The numerical experiments aim three following objectives:

1. We will show that, in some very large scale location problems, to use a specific algorithm for
convex-constrained programming [10, 11, 12, 25] for solving the subproblems in the Augmented
Lagrangian context is much more efficient than using general purpose methods like Ipopt and
Lancelot B.

2. Algencan is the particular implementation of the algorithm introduced in this paper for the
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case in which the lower-level set is a box. For solving the subproblems it uses the code Gencan

[8]. We will show that Algencan tends to converge to global minimizers more often than Ipopt.
3. We will show that, for problems with many inequality constraints, Algencan is more efficient

than Ipopt and Lancelot B. Something similar happens with respect to Ipopt in problems in
which the Hessian of the Lagrangian has a “not nicely sparse” factorization.

Finally, we will compare Algencan with Lancelot B and Ipopt using all the problems of the Cuter
collection [13].

This paper is organized as follows. A high-level description of the main algorithm is given in Sec-
tion 2. The rigorous definition of the method is in Section 3. Section 4 is devoted to global convergence
results. In Section 5 we prove boundedness of the penalty parameters. In Section 6 we show the numerical
experiments. Applications, conclusions and lines for future research are discussed in Section 7.

Notation.
We denote:

IR+ = {t ∈ IR | t ≥ 0},

IR++ = {t ∈ IR | t > 0},

IN = {0, 1, 2, . . .},

‖ · ‖ an arbitrary vector norm .

[v]i is the i−th component of the vector v. If there is no possibility of confusion we may also use the
notation vi.

For all y ∈ IRn, y+ = (max{0, y1}, . . . , max{0, yn}).
If F : IRn → IRm, F = (f1, . . . , fm), we denote ∇F (x) = (∇f1(x), . . . ,∇fm(x)) ∈ IRn×m.
For all v ∈ IRn we denote Diag(v) ∈ IRn×n the diagonal matrix with entries [v]i.
If K = {k0, k1, k2, . . .} ⊂ IN (kj+1 > kj∀j), we denote

lim
k∈K

xk = lim
j→∞

xkj
.

2. Overview of the method. We will consider the following nonlinear programming problem:

Minimize f(x) subject to h1(x) = 0, g1(x) ≤ 0, h2(x) = 0, g2(x) ≤ 0,(2.1)

where f : IRn → IR, h1 : IRn → IRm1 , h2 : IRn → IRm2 , g1 : IRn → IRp1 , g2 : IRn → IRp2 . We assume that
all these functions admit continuous first derivatives on a sufficiently large and open domain. We define
Ω1 = {x ∈ IRn | h1(x) = 0, g1(x) ≤ 0} and Ω2 = {x ∈ IRn | h2(x) = 0, g2(x) ≤ 0}.

For all x ∈ IRn, ρ > 0, λ ∈ IRm1 , µ ∈ IRp1

+ we define the Augmented Lagrangian with respect to Ω1

[45, 58, 62] as:

L(x, λ, µ, ρ) = f(x) +
ρ

2

m1∑

i=1

(
[h1(x)]i +

λi

ρ

)2

+
ρ

2

p1∑

i=1

(
[g1(x)]i +

µi

ρ

)2

+

.(2.2)

The main algorithm defined in this paper will consist of a sequence of (approximate) minimizations
of L(x, λ, µ, ρ) subject to x ∈ Ω2, followed by the updating of λ, µ and ρ. A version of the algorithm with
several penalty parameters may be found in [?]. Each approximate minimization of L will be called an
Outer Iteration.

After each Outer Iteration one wishes some progress in terms of feasibility and complementarity. The
infeasibility of x with respect to the equality constraint [h1(x)]i = 0 is naturally represented by |[h1(x)]i|.

4



The case of inequality constraints is more complicate because, besides feasibility, one expects to have a null
multiplier estimate if gi(x) < 0. A suitable combined measure of infeasibility and non-complementarity
with respect to the constraint [g1(x)]i ≤ 0 comes from defining [σ(x, µ, ρ)]i = max{[g1(x)]i,−µi/ρ}. Since
µi/ρ is always nonnegative, it turns out that [σ(x, µ, ρ)]i vanishes in two situations: (a) when [g1(x)]i = 0;
and (b) when [g1(x)]i < 0 and µi = 0. So, roughly speaking, |[σ(x, µ, ρ)]i| measures infeasibility and
complementarity with respect to the inequality constraint [g1(x)]i ≤ 0. If, between two consecutive outer
iterations, enough progress is observed in terms of (at least one of) feasibility and complementarity, the
penalty parameter will not be updated. Otherwise, the penalty parameter is increased by a fixed factor.

The rules for updating the multipliers need some discussion. In principle, we adopt the classical
first-order correction rule [45, 58, 63] but, in addition, we impose that the multiplier estimates must be
bounded. So, we will explicitly project the estimates on a compact box after each update. The reason for
this decision was already given in the introduction: we want to preserve the property of external penalty
methods that global minimizers of the original problem are obtained if each outer iteration computes a
global minimizer of the subproblem. This property is maintained if the quotient of the square of each
multiplier estimate over the penalty parameter tends to zero when the penalty parameter tends to infinity.
We were not able to prove that this condition holds automatically for usual estimates and, in fact, we
conjecture that it does not. Therefore, we decided to force the boundedness condition. The price paid by
this decision seems to be moderate: in the proof of the boundedness of penalty parameters we will need to
assume that the true Lagrange multipliers are within the bounds imposed by the algorithm. Since “large
Lagrange multipliers” is a symptom of “near-nonfulfillment” of the Mangasarian-Fromovitz constraint
qualification, this assumption seems to be compatible with the remaining ones that are necessary to
prove penalty boundedness.

3. Description of the Augmented Lagrangian algorithm. In this section we provide a de-
tailed description of the main algorithm. Approximate solutions of the subproblems are defined as points
that satisfy the conditions (3.1)–(3.4) below. These formulae are relaxed KKT conditions of the problem
of minimizing L subject to x ∈ Ω2. The first-order approximations of the multipliers are computed at
Step 3. Lagrange multipliers estimates are denoted λk and µk whereas their safeguarded counterparts are
λ̄k and µ̄k. At Step 4 we update the penalty parameters according to the progress in terms of feasibility
and complementarity.

Algorithm 3.1.
Let x0 ∈ IRn be an arbitrary initial point. The given parameters for the execution of the algorithm are:

τ ∈ [0, 1), γ > 1, ρ1 > 0, −∞ < [λ̄min]i ≤ [λ̄max]i < ∞ ∀ i = 1, . . . , m1, 0 ≤ [µ̄max]i < ∞ ∀ i = 1, . . . , p1,
[λ̄1]i ∈ [[λ̄min]i, [λ̄max]i] ∀ i = 1, . . . , m1, [µ̄1]i ∈ [0, [µ̄max]i] ∀ i = 1, . . . , p1. Finally, {εk} ⊂ IR+ is a
sequence of tolerance parameters such that limk→∞ εk = 0.
Step 1. Initialization

Set k ← 1. For i = 1, . . . , p1, compute [σ0]i = max{0, [g1(x0)]i}.
Step 2. Solving the subproblem

Compute (if possible) xk ∈ IRn such that there exist vk ∈ IRm2 , uk ∈ IRp2 satisfying

‖∇L(xk, λ̄k, µ̄k, ρk) +

m2∑

i=1

[vk]i∇[h2(xk)]i +

p2∑

i=1

[uk]i∇[g2(xk)]i‖ ≤ εk,1,(3.1)

[uk]i ≥ 0 and [g2(xk)]i ≤ εk,2 for all i = 1, . . . , p2,(3.2)

[g2(xk)]i < −εk,2 ⇒ [uk]i = 0 for all i = 1, . . . , p2,(3.3)

‖h2(xk)‖ ≤ εk,3,(3.4)

where εk,1, εk,2, εk,3 ≥ 0 are such that max{εk,1, εk,2, εk,3} ≤ εk. If it is not possible to find xk satisfying
(3.1)–(3.4), stop the execution of the algorithm.
Step 3. Estimate multipliers

For all i = 1, . . . , m1, compute

[λk+1]i = [λ̄k]i + ρk[h1(xk)]i,(3.5)
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[λ̄k+1]i ∈ [[λ̄min]i, [λ̄max]i].(3.6)

(Usually, [λ̄k+1]i will be the projection of [λk+1]i on the interval [[λ̄min]i, [λ̄max]i].) For all i = 1, . . . , p1,
compute

[µk+1]i = max{0, [µ̄k]i + ρk[g1(xk)]i}, [σk]i = max

{
[g1(xk)]i,−

[µ̄k]i
ρk

}
,(3.7)

[µ̄k+1]i ∈ [0, [µ̄max]i].

(Usually, [µ̄k+1]i = min{[µk+1]i, [µ̄max]i}.)
Step 4. Update the penalty parameter

If max{‖h1(xk)‖∞, ‖σk‖∞} ≤ τ max{‖h1(xk−1)‖∞, ‖σk−1‖∞}, then define ρk+1 = ρk. Else, define
ρk+1 = γρk.
Step 5. Begin a new outer iteration

Set k ← k + 1. Go to Step 2.

4. Global convergence. In this section we assume that the algorithm does not stop at Step 2. In
other words, it is always possible to find xk satisfying (3.1)-(3.4). Problem-dependent sufficient conditions
for this assumption can be given in many cases.

We will also assume that at least a limit point of the sequence generated by Algorithm 3.1 exists. A
sufficient condition for this is the existence of ε > 0 such that the set {x ∈ IRn | g2(x) ≤ ε, ‖h2(x)‖ ≤ ε}
is bounded. This condition may be enforced adding artificial simple constraints to the set Ω2.

Global convergence results that use the CPLD constraint qualification are stronger than previous
results for more specific problems: In particular, Conn, Gould and Toint [22] and Conn, Gould, Sartenaer
and Toint [20] proved global convergence of Augmented Lagrangian methods for equality constraints and
linear constraints assuming linear independence of all the gradients of active constraints at the limit
points. Their assumption is much stronger than our CPLD assumptions. On one hand, the CPLD
assumption is weaker than LICQ (for example, CPLD always holds when the constraints are linear). On
the other hand, our CPLD assumption involves only feasible points instead of all possible limit points of
the algorithm.

Convergence proofs for Augmented Lagrangian methods with equalities and box constraints using
CPLD were given in [2].

We are going to investigate the status of the limit points of sequences generated by Algorithm 3.1.
Firstly, we will prove a result on the feasibility properties of a limit point. Theorem 4.1 shows that, either
a limit point is feasible or, if the CPLD constraint qualification with respect to Ω2 holds, it is a KKT
point of the sum of squares of upper-level infeasibilities.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 3.1. Let x∗ be a limit point of {xk}.
Then, if the sequence of penalty parameters {ρk} is bounded, the limit point x∗ is feasible. Otherwise, at
least one of the following possibilities hold:

(i) x∗ is a KKT point of the problem

Minimize
1

2

[ m1∑

i=1

[h1(x)]2i +

p1∑

i=1

max{0, [g1(x)]i}2
]

subject to x ∈ Ω2.(4.1)

(ii) x∗ does not satisfy the CPLD constraint qualification associated with Ω2.
Proof. Let K be an infinite subsequence in IN such that limk∈K xk = x∗. Since εk → 0, by (3.2) and

(3.4), we have that g2(x∗) ≤ 0 and h2(x∗) = 0. So, x∗ ∈ Ω2.
Now, we consider two possibilities: (a) the sequence {ρk} is bounded; and (b) the sequence {ρk} is

unbounded. Let us analyze first Case (a). In this case, from some iteration on, the penalty parameters are
not updated. Therefore, limk→∞ ‖h1(xk)‖ = limk→∞ ‖σk‖ = 0. Thus, h1(x∗) = 0. Now, if [g1(x∗)]j > 0
then [g1(xk)]j > c > 0 for k ∈ K large enough. This would contradict the fact that [σk]j → 0. Therefore,
[g1(x∗)]i ≤ 0 ∀i = 1, . . . , p1.
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Since x∗ ∈ Ω2, h1(x∗) = 0 and g1(x∗) ≤ 0, x∗ is feasible. Therefore, we proved the desired result in
the case that {ρk} is bounded.

Consider now Case (b). So, {ρk}k∈K is not bounded. By (2.2) and (3.1), we have:

∇f(xk) +
∑m1

i=1([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +
∑p1

i=1 max{0, [µ̄k]i

+ρk[g1(xk)]i}∇[g1(xk)]i +
∑m2

i=1[vk]i∇[h2(xk)]i +
∑p2

j=1[uk]j∇[g2(xk)]j = δk,
(4.2)

where, since εk → 0, limk∈K ‖δk‖ = 0.
If [g2(x∗)]i < 0, there exists k1 ∈ IN such that [g2(xk)]i < −εk for all k ≥ k1, k ∈ K. Therefore, by

(3.3), [uk]i = 0 for all k ∈ K, k ≥ k1. Thus, by x∗ ∈ Ω2 and (4.2), for all k ∈ K, k ≥ k1 we have that

∇f(xk) +
∑m1

i=1([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +
∑p1

i=1 max{0, [µ̄k]i

+ρk[g1(xk)]i}∇[g1(xk)]i +
∑m2

i=1[vk]i∇[h2(xk)]i +
∑

[g2(x∗)]j=0[uk]j∇[g2(xk)]j = δk.

Dividing by ρk we get:

∇f(xk)
ρk

+
∑m1

i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i +

∑p1

i=1 max

{
0, [µ̄k]i

ρk
+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑m2

i=1
[vk]i
ρk
∇[h2(xk)]i +

∑
[g2(x∗)]j=0

[uk]j
ρk
∇[g2(xk)]j = δk

ρk
.

By Caratheodory’s Theorem of Cones (see [6], page 689) there exist Îk ⊂ {1, . . . , m2}, Ĵk ⊂ {j | [g2(x∗)]j =

0}, [v̂k]i, i ∈ Îk and [ûk]j ≥ 0, j ∈ Ĵk such that the vectors {∇[h2(xk)]i}i∈Îk
∪ {∇[g2(xk)]j}j∈Ĵk

are

linearly independent and

∇f(xk)
ρk

+
∑m1

i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i +

∑p1

i=1 max

{
0, [µ̄k]i

ρk
+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑

i∈Îk
[v̂k]i∇[h2(xk)]i +

∑
j∈Ĵk

[ûk]j∇[g2(xk)]j = δk

ρk
.

(4.3)

Since there exist a finite number of possible sets Îk, Ĵk, there exists an infinite set of indices K1 such
that K1 ⊂ {k ∈ K | k ≥ k1}, Îk = Î , and

Ĵ = Ĵk ⊂ {j | [g2(x∗)]j = 0}(4.4)

for all k ∈ K1. Then, by (4.3), for all k ∈ K1 we have:

∇f(xk)
ρk

+
∑m1

i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i +

∑p1

i=1 max

{
0, [µ̄k]i

ρk
+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑

i∈Î
[v̂k]i∇[h2(xk)]i +

∑
j∈Ĵ

[ûk]j∇[g2(xk)]j = δk

ρk
,

(4.5)

and the gradients

{∇[h2(xk)]i}i∈Î
∪ {∇[g2(xk)]j}j∈Ĵ

are linearly independent.(4.6)

We consider, again, two cases: (1) the sequence {‖(v̂k, ûk)‖, k ∈ K1} is bounded; and (2) the sequence

{‖(v̂k, ûk)‖, k ∈ K1} is unbounded. If the sequence {‖(v̂k, ûk)‖}k∈K1
is bounded, and Î ∪ Ĵ 6= ∅, there

exist (v̂, û), û ≥ 0 and an infinite set of indices K2 ⊂ K1 such that limk∈K2
(v̂k, ûk) = (v̂, û). Since {ρk}

is unbounded, by the boundedness of λ̄k and µ̄k, lim[λ̄k]i/ρk = 0 = lim[µ̄k]j/ρk for all i, j. Therefore, by
δk → 0, taking limits for k ∈ K2 in (4.5), we obtain:

∑m1

i=1[h1(x∗)]i∇[h1(x∗)]i +
∑p1

i=1 max{0, [g1(x∗)]i}∇[g1(x∗)]i

+
∑

i∈Î
v̂i∇[h2(x∗)]i +

∑
j∈Ĵ

ûj∇[g2(x∗)]j = 0.
(4.7)

7



If Î ∪ Ĵ = ∅ we obtain
∑m1

i=1[h1(x∗)]i∇[h1(x∗)]i +
∑p1

i=1 max{0, [g1(x∗)]i}∇[g1(x∗)]i = 0.

Therefore, by x∗ ∈ Ω2 and (4.4), x∗ is a KKT point of (4.1).
Finally, assume that {‖(v̂k, ûk)‖}k∈K1

is unbounded. Let K3 ⊂ K1 be such that limk∈K3
‖(v̂k, ûk)‖ =

∞ and (v̂, û) 6= 0, û ≥ 0 such that limk∈K3

(̂vk,ûk)

‖(̂vk,ûk)‖
= (v̂, û). Dividing both sides of (4.5) by ‖(v̂k, ûk)‖ and

taking limits for k ∈ K3, we deduce that
∑

i∈Î
v̂i∇[h2(x∗)]i +

∑
j∈Ĵ

ûj∇[g2(x∗)]j = 0. But [g2(x∗)]j = 0

for all j ∈ Ĵ . Then, by (4.6), x∗ does not satisfy the CPLD constraint qualification associated with the
set Ω2. This completes the proof.

Roughly speaking, Theorem 4.1 says that, if x∗ is not feasible, then (very likely) it is a local minimizer
of the upper-level infeasibility, subject to lower-level feasibility. From the point of view of optimality, we
are interested in the status of feasible limit points. In Theorem 4.2 we will prove that, under the CPLD
constraint qualification, feasible limit points are stationary (KKT) points of the original problem. Since
CPLD is strictly weaker than the Mangasarian-Fromovitz (MF) constraint qualification, it turns out that
the following theorem is stronger than results where KKT conditions are proved under MF or regularity
assumptions.

Theorem 4.2. Let {xk}k∈IN be a sequence generated by Algorithm 3.1. Assume that x∗ ∈ Ω1∩Ω2 is
a limit point that satisfies the CPLD constraint qualification related to Ω1∩Ω2. Then, x∗ is a KKT point
of the original problem (2.1). Moreover, if x∗ satisfies the Mangasarian-Fromovitz constraint qualification
and {xk}k∈K is a subsequence that converges to x∗, the set

{‖λk+1‖, ‖µk+1‖, ‖vk‖, ‖uk‖}k∈K is bounded.(4.8)

Proof. For all k ∈ IN , by (3.1), (3.3), (3.5) and (3.7), there exist uk ∈ IRp2

+ , δk ∈ IRn such that
‖δk‖ ≤ εk and

∇f(xk) +
∑m1

i=1[λk+1]i∇[h1(xk)]i +
∑p1

i=1[µk+1]i∇[g1(xk)]i

+
∑m2

i=1[vk]i∇[h2(xk)]i +
∑p2

j=1[uk]j∇[g2(xk)]j = δk.
(4.9)

By (3.7), µk+1 ∈ IRp1

+ for all k ∈ IN . Let K ⊂ IN be such that limk∈K xk = x∗. Suppose that [g2(x∗)]i < 0.
Then, there exists k1 ∈ IN such that ∀k ∈ K, k ≥ k1, [g2(xk)]i < −εk. Then, by (3.3), [uk]i = 0 ∀k ∈
K, k ≥ k1.

Let us prove now that a similar property takes place when [g1(x∗)]i < 0. In this case, there exists
k2 ≥ k1 such that [g1(xk)]i < c < 0 ∀k ∈ K, k ≥ k2.

We consider two cases: (1) {ρk} is unbounded; and (2) {ρk} is bounded. In the first case we have
that limk∈K ρk = ∞. Since {[µ̄k]i} is bounded, there exists k3 ≥ k2 such that, for all k ∈ K, k ≥ k3,
[µ̄k]i + ρk[g1(xk)]i < 0. By the definition of µk+1 this implies that [µk+1]i = 0 ∀k ∈ K, k ≥ k3.

Consider now the case in which {ρk} is bounded. In this case, limk→∞[σk]i = 0. Therefore, since
[g1(xk)]i < c < 0 for k ∈ K large enough, limk∈K [µ̄k]i = 0. So, for k ∈ K large enough, [µ̄k]i +
ρk[g1(xk)]i < 0. By the definition of µk+1, there exists k4 ≥ k2 such that [µk+1]i = 0 for k ∈ K, k ≥ k4.

Therefore, there exists k5 ≥ max{k1, k3, k4} such that for all k ∈ K, k ≥ k5,

[[g1(x∗)]i < 0⇒ [µk+1]i = 0] and [[g2(x∗)]i < 0⇒ [uk]i = 0].(4.10)

(Observe that, up to now, we did not use the CPLD condition.) By (4.9) and (4.10), for all k ∈
K, k ≥ k5, we have:

∇f(xk) +
∑m1

i=1[λk+1]i∇[h1(xk)]i +
∑

[g1(x∗)]i=0[µk+1]i∇[g1(xk)]i

+
∑m2

i=1[vk]i∇[h2(xk)]i +
∑

[g2(x∗)]j=0[uk]j∇[g2(xk)]j = δk,
(4.11)

with µk+1 ∈ IRp1

+ , uk ∈ IRp2

+ .

8



By Caratheodory’s Theorem of Cones, for all k ∈ K, k ≥ k5, there exist

Îk ⊂ {1, . . . , m1}, Ĵk ⊂ {j | [g1(x∗)]j = 0}, Îk ⊂ {1, . . . , m2}, Ĵk ⊂ {j | [g2(x∗)]j = 0},

[λ̂k]i ∈ IR ∀i ∈ Îk, [µ̂k]j ≥ 0 ∀j ∈ Ĵk, [v̂k]i ∈ IR ∀i ∈ Îk, [ûk]j ≥ 0 ∀j ∈ Ĵk

such that the vectors

{∇[h1(xk)]i}i∈Îk
∪ {∇[g1(xk)]i}i∈Ĵk

∪ {∇[h2(xk)]i}i∈Îk
∪ {∇[g2(xk)]i}i∈Ĵk

are linearly independent and

∇f(xk) +
∑

i∈Îk
[λ̂k]i∇[h1(xk)]i +

∑
i∈Ĵk

[µ̂k]i∇[g1(xk)]i

+
∑

i∈Îk
[v̂k]i∇[h2(xk)]i +

∑
j∈Ĵk

[ûk]j∇[g2(xk)]j = δk.
(4.12)

Since the number of possible sets of indices Îk, Ĵk, Îk, Ĵk is finite, there exists an infinite set K1 ⊂
{k ∈ K | k ≥ k5} such that Îk = Î , Ĵk = Ĵ , Îk = Î , Ĵk = Ĵ , for all k ∈ K1.

Then, by (4.12),

∇f(xk) +
∑

i∈Î
[λ̂k]i∇[h1(xk)]i +

∑
i∈Ĵ

[µ̂k]i∇[g1(xk)]i

+
∑

i∈Î [v̂k]i∇[h2(xk)]i +
∑

j∈Ĵ [ûk]j∇[g2(xk)]j = δk

(4.13)

and the vectors

{∇[h1(xk)]i}i∈Î
∪ {∇[g1(xk)]i}i∈Ĵ

∪ {∇[h2(xk)]i}i∈Î ∪ {∇[g2(xk)]i}i∈Ĵ(4.14)

are linearly independent for all k ∈ K1.
If Î ∪ Ĵ ∪ Î ∪ Ĵ = ∅, by (4.13) and δk → 0 we obtain ∇f(x∗) = 0. Otherwise, let us define

Sk = max{max{|[λ̂k]i|, i ∈ Î}, max{[µ̂k]i, i ∈ Ĵ}, max{|[v̂k]i|, i ∈ Î}, max{[ûk]i, i ∈ Ĵ}}.

We consider two possibilities: (a) {Sk}k∈K1
has a bounded subsequence; and (b) limk∈K1

Sk = ∞. If

{Sk}k∈K1
has a bounded subsequence, there exists K2 ⊂ K1 such that limk∈K2

[λ̂k]i = λ̂i, limk∈K2
[µ̂k]i =

µ̂i ≥ 0, limk∈K2
[v̂k]i = v̂i, and limk∈K2

[ûk]i = ûi ≥ 0. By εk → 0 and ‖δk‖ ≤ εk, taking limits in (4.13)
for k ∈ K2, we obtain:

∇f(x∗) +
∑

i∈Î

λ̂i∇[h1(x∗)]i +
∑

i∈Ĵ

µ̂i∇[g1(x∗)]i +
∑

i∈Î

v̂i∇[h2(x∗)]i +
∑

j∈Ĵ

ûj∇[g2(x∗)]j = 0,

with µ̂i ≥ 0, ûi ≥ 0. Since x∗ ∈ Ω1 ∩ Ω2, we have that x∗ is a KKT point of (2.1).
Suppose now that limk∈K2

Sk =∞. Dividing both sides of (4.13) by Sk we obtain:

∇f(xk)
Sk

+
∑

i∈Î

[λ̂k]i
Sk
∇[h1(xk)]i +

∑
i∈Ĵ

[µ̂k]i
Sk
∇[g1(xk)]i

+
∑

i∈Î
[̂vk]i
Sk
∇[h2(xk)]i +

∑
j∈Ĵ

[ûk]j
Sk
∇[g2(xk)]j = δk

Sk
,

(4.15)

where

∣∣∣∣
[λ̂k]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[µ̂k]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[̂vk]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[ûk]j
Sk

∣∣∣∣ ≤ 1. Therefore, there exists K3 ⊂ K1 such that

limk∈K3

[λ̂k]i
Sk

= λ̂i, limk∈K3

[µ̂k]i
Sk

= µ̂i ≥ 0, limk∈K3

[̂vk]i
Sk

= v̂i, limk∈K3

[ûk]j
Sk

= ûj ≥ 0. Taking limits

on both sides of (4.15) for k ∈ K3, we obtain:

∑

i∈Î

λ̂i∇[h1(x∗)]i +
∑

i∈Ĵ

µ̂i∇[g1(x∗)]i +
∑

i∈Î

v̂i∇[h2(x∗)]i +
∑

j∈Ĵ

ûj∇[g2(x∗)]j = 0.
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But the modulus of at least one of the coefficients λ̂i, µ̂i, v̂i, ûi is equal to 1. Then, by the CPLD condition,
the gradients

{∇[h1(x)]i}i∈Î
∪ {∇[g1(x)]i}i∈Ĵ

∪ {∇[h2(x)]i}i∈Î
∪ {∇[g2(x)]i}i∈Ĵ

must be linearly dependent in a neighborhood of x∗. This contradicts (4.14). Therefore, the main part
of the theorem is proved.

Finally, let us prove that the property (4.8) holds if x∗ satisfies the Mangasarian-Fromovitz constraint
qualification. Let us define

Bk = max{‖λk+1‖∞, ‖µk+1‖∞, ‖vk‖∞, ‖uk‖∞}k∈K .

If (4.8) is not true, we have that limk∈K Bk = ∞. In this case, dividing both sides of (4.11) by Bk

and taking limits for an appropriate subsequence, we obtain that x∗ does not satisfy the Mangasarian-
Fromovitz constraint qualification.

5. Boundedness of the penalty parameters. When the penalty parameters associated with
Penalty or Augmented Lagrangian methods are too large, the subproblems tend to be ill-conditioned and
its resolution becomes harder. One of the main motivations for the development of the basic Augmented
Lagrangian algorithm is the necessity of overcoming this difficulty. Therefore, the study of conditions un-
der which penalty parameters are bounded plays an important role in Augmented Lagrangian approaches.

5.1. Equality constraints. We will consider first the case p1 = p2 = 0.
Let f : IRn → IR, h1 : IRn → IRm1 , h2 : IRn → IRm2 . We address the problem

Minimize f(x) subject to h1(x) = 0, h2(x) = 0.(5.1)

The Lagrangian function associated with problem (5.1) is given by L0(x, λ, v) = f(x) + 〈h1(x), λ〉 +
〈h2(x), v〉, for all x ∈ IRn, λ ∈ IRm1 , v ∈ IRm2 .

Algorithm 3.1 will be considered with the following standard definition for the safeguarded Lagrange
multipliers.
Definition. For all k ∈ IN , i = 1, . . . , m1, [λ̄k+1]i will be the projection of [λk+1]i on the interval
[[λ̄min]i, [λ̄max]i].

We will use the following assumptions:
Assumption 1. The sequence {xk} is generated by the application of Algorithm 3.1 to problem (5.1)
and limk→∞ xk = x∗.
Assumption 2. The point x∗ is feasible (h1(x∗) = 0 and h2(x∗) = 0).
Assumption 3. The gradients ∇[h1(x∗)]1, . . . ,∇[h1(x∗)]m1

,∇[h2(x∗)]1, . . . ,∇[h2(x∗)]m2
are linearly

independent.
Assumption 4. The functions f, h1 and h2 admit continuous second derivatives in a neighborhood of
x∗.
Assumption 5. The second order sufficient condition for local minimizers ([33], page 211) holds with
Lagrange multipliers λ∗ ∈ IRm1 and v∗ ∈ IRm2 .
Assumption 6. For all i = 1, . . . , m1, [λ∗]i ∈ ([λ̄min]i, [λ̄max]i).

Proposition 5.1. Suppose that Assumptions 1, 2, 3 and 6 hold. Then, limk→∞ λk = λ∗, limk→∞ vk =
v∗ and λ̄k = λk for k large enough.

Proof. The proof of the first part follows from the definition of λk+1, the stopping criterion of the
subproblems and the linear independence of the gradients of the constraints at x∗. The second part of
the thesis is a consequence of λk → λ∗, using Assumption 6 and the definition of λ̄k+1.

Lemma 5.2. Suppose that Assumptions 3 and 5 hold. Then, there exists ρ̄ > 0 such that, for all
π ∈ [0, 1/ρ̄], the matrix




∇2

xxL0(x∗, λ∗, v∗) ∇h1(x∗) ∇h2(x∗)
∇h1(x∗)

T −πI 0
∇h2(x∗)

T 0 0
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is nonsingular.
Proof. The matrix is trivially nonsingular for π = 0. So, the thesis follows by the continuity of the

matricial inverse.
Lemma 5.3. Suppose that Assumptions 1–5 hold. Let ρ̄ be as in Lemma 5.2. Suppose that there

exists k0 ∈ IN such that ρk ≥ ρ̄ for all k ≥ k0. Define

αk = ∇L(xk, λ̄k, ρk) +∇h2(xk)vk,(5.2)

βk = h2(xk).(5.3)

Then, there exists M > 0 such that, for all k ∈ IN ,

‖xk − x∗‖ ≤M max

{‖λ̄k − λ∗‖∞
ρk

, ‖αk‖, ‖βk‖
}

,(5.4)

‖λk+1 − λ∗‖ ≤M max

{‖λ̄k − λ∗‖∞
ρk

, ‖αk‖, ‖βk‖
}

.(5.5)

Proof. Define, for all k ∈ IN ,

tk = (λ̄k − λ∗)/ρk,(5.6)

πk = 1/ρk.(5.7)

By (3.5), (5.2) and (5.3), ∇L(xk, λ̄k, ρk)+∇h2(xk)vk−αk = 0, λk+1 = λ̄k +ρkh1(xk) and h2(xk)−βk = 0
for all k ∈ IN .

Therefore, by (5.6) and (5.7), we have that ∇f(xk) +∇h1(xk)λk+1 +∇h2(xk)vk − αk = 0, h1(xk)−
πkλk+1 + tk + πkλ∗ = 0 and h2(xk)− βk = 0 for all k ∈ IN . Define, for all π ∈ [0, 1/ρ̄], Fπ : IRn× IRm1 ×
IRm2 × IRm1 × IRn × IRm2 → IRn × IRm1 × IRm2 by

Fπ(x, λ, v, t, α, β) =





∇f(x) +∇h1(x)λ +∇h2(x)v − α
[h1(x)]1 − π[λ]1 + [t]1 + π[λ∗]1

·
·
·

[h1(x)]m1
− π[λ]m1

+ [t]m1
+ π[λ∗]m1

h2(x) − β





.

Clearly,

Fπk
(xk, λk+1, vk, tk, αk, βk) = 0(5.8)

and, by Assumptions 1 and 2,

Fπ(x∗, λ∗, v∗, 0, 0, 0) = 0 ∀π ∈ [0, 1/ρ̄].(5.9)

Moreover, the Jacobian matrix of Fπ with respect to (x, λ, v) computed at (x∗, λ∗, v∗, 0, 0, 0) is:




∇2

xxL0(x∗, λ∗, v∗) ∇h1(x∗) ∇h2(x∗)
∇h1(x∗)

T −πI 0
∇h2(x∗)

T 0 0



 .

By Lemma 5.2, this matrix is nonsingular for all π ∈ [0, 1/ρ̄]. By continuity, the norm of its inverse is
bounded in a neighborhood of (x∗, λ∗, v∗, 0, 0, 0) uniformly with respect to π ∈ [0, 1/ρ̄]. Moreover, the
first and second derivatives of Fπ are also bounded in a neighborhood of (x∗, λ∗, v∗, 0, 0, 0) uniformly with
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respect to π ∈ [0, 1/ρ̄]. Therefore, the bounds (5.4) and (5.5) follow from (5.8) and (5.9) by the Implicit
Function Theorem and the Mean Value Theorem of Integral Calculus.

Theorem 5.4. Suppose that Assumptions 1–6 are satisfied by the sequence generated by Algorithm 3.1
applied to the problem (5.1). In addition, assume that there exists a sequence ηk → 0 such that εk ≤
ηk‖h1(xk)‖∞ for all k ∈ IN . Then, the sequence of penalty parameters {ρk} is bounded.

Proof. Assume, by contradiction, that limk→∞ ρk = ∞. Since h1(x∗) = 0, by the continuity of the
first derivatives of h1 there exists L > 0 such that, for all k ∈ IN , ‖h1(xk)‖∞ ≤ L‖xk−x∗‖. Therefore, by

the hypothesis, (5.4) and Proposition 5.1, we have that ‖h1(xk)‖∞ ≤ LM max

{
‖λk−λ∗‖∞

ρk
, ηk‖h1(xk)‖∞

}

for k large enough. Since ηk tends to zero, this implies that

‖h1(xk)‖∞ ≤ LM
‖λk − λ∗‖∞

ρk

(5.10)

for k large enough.
By (3.6) and Proposition 5.1, we have that λk = λk−1 + ρk−1h1(xk−1) for k large enough. Therefore,

‖h1(xk−1)‖∞ =
‖λk − λk−1‖∞

ρk−1
≥ ‖λk−1 − λ∗‖∞

ρk−1
− ‖λk − λ∗‖∞

ρk−1
.(5.11)

Now, by (5.5), the hypothesis of this theorem and Proposition 5.1, for k large enough we have: ‖λk −
λ∗‖∞ ≤M

(
‖λk−1−λ∗‖∞

ρk−1
+ηk−1‖h1(xk−1)‖∞

)
. This implies that ‖λk−1−λ∗‖∞

ρk−1
≥ ‖λk−λ∗‖∞

M
−ηk−1‖h1(xk−1)‖∞.

Therefore, by (5.11), (1 + ηk−1)‖h1(xk−1)‖∞ ≥ ‖λk − λ∗‖∞
(

1
M
− 1

ρk−1

)
≥ 1

2M
‖λk −λ∗‖∞. Thus, ‖λk −

λ∗‖∞ ≤ 3M‖h1(xk−1)‖∞ for k large enough. By (5.10), we have that ‖h1(xk)‖∞ ≤ 3LM2

ρk
‖h1(xk−1)‖∞.

Therefore, since ρk → ∞, there exists k1 ∈ IN such that ‖h1(xk)‖∞ ≤ τ‖h1(xk−1)‖∞ for all k ≥ k1. So,
ρk+1 = ρk for all k ≥ k1. Thus, {ρk} is bounded.

5.2. General constraints. In this subsection we address the general problem (2.1). As in the
case of equality constraints, we adopt the following definition for the safeguarded Lagrange multipliers in
Algorithm 3.1.
Definition. For all k ∈ IN , i = 1, . . . , m1, j = 1, . . . , p1, [λ̄k+1]i will be the projection of [λk+1]i on the
interval [[λ̄min]i, [λ̄max]i] and [µ̄k+1]j will be the projection of [µk+1]j on [0, [µ̄max]j ].

The technique for proving boundedness of the penalty parameter consists of reducing (2.1) to a
problem with (only) equality constraints. The equality constraints of the new problem will be the ac-
tive constraints at the limit point x∗. After this reduction, the boundedness result is deduced from
Theorem 5.4. The sufficient conditions are listed below.
Assumption 7. The sequence {xk} is generated by the application of Algorithm 3.1 to problem (2.1)
and limk→∞ xk = x∗.
Assumption 8. The point x∗ is feasible (h1(x∗) = 0, h2(x∗) = 0, g1(x∗) ≤ 0 and g2(x∗) ≤ 0.)
Assumption 9. The gradients {∇[h1(x∗)]i}m1

i=1, {∇[g1(x∗)]i}[g1(x∗)]i=0, {∇[h2(x∗)]i}m2

i=1, {∇[g2(x∗)]i}[g2(x∗)]i=0

are linearly independent. (LICQ holds at x∗.)
Assumption 10. The functions f, h1, g1, h2 and g2 admit continuous second derivatives in a neighbor-
hood of x∗.
Assumption 11. Define the tangent subspace T as the set of all z ∈ IRn such that ∇h1(x∗)

T z =
∇h2(x∗)

T z = 0, 〈∇[g1(x∗)]i, z〉 = 0 for all i such that [g1(x∗)]i = 0 and 〈∇[g2(x∗)]i, z〉 = 0 for all i such
that [g2(x∗)]i = 0. Then, for all z ∈ T, z 6= 0,

〈z, [∇2f(x∗) +
∑m1

i=1[λ∗]i∇2[h1(x∗)]i +
∑p1

i=1[µ∗]i∇2[g1(x∗)]i

+
∑m2

i=1[v∗]i∇2[h2(x∗)]i +
∑p2

i=1[u∗]i∇2[g2(x∗)]i]z〉 > 0.

Assumption 12. For all i = 1, . . . , m1, j = 1, . . . , p1, [λ∗]i ∈ ([λ̄min]i, [λ̄max]i), [µ∗]j ∈ [0, [µ̄max]j).
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Assumption 13. For all i such that [g1(x∗)]i = 0, we have [µ∗]i > 0.
Observe that Assumption 13 imposes strict complementarity related only to the constraints in the

upper-level set. In the lower-level set it is admissible that [g2(x∗)]i = [u∗]i = 0. Observe, too, that
Assumption 11 is weaker than the usual second-order sufficiency assumption, since the subspace T is
orthogonal to the gradients of all active constraints, and no exception is made with respect to active
constraints with null multiplier [u∗]i. In fact, Assumption 11 is not a second-order sufficiency assumption
for local minimizers. It holds for the problem of minimizing x1x2 subject to x2−x1 ≤ 0 at (0, 0) although
(0, 0) is not a local minimizer of this problem.

Theorem 5.5. Suppose that Assumptions 7–13 are satisfied. In addition, assume that there exists a
sequence ηk → 0 such that εk ≤ ηk max{‖h1(xk)‖∞, ‖σk‖∞} for all k ∈ IN . Then, the sequence of penalty
parameters {ρk} is bounded.

Proof. Without loss of generality, assume that: [g1(x∗)]i = 0 if i ≤ q1, [g1(x∗)]i < 0 if i > q1,
[g2(x∗)]i = 0 if i ≤ q2, [g2(x∗)]i < 0 if i > q2. Consider the auxiliary problem:

Minimize f(x) subject to H1(x) = 0, H2(x) = 0,(5.12)

where H1(x) =





h1(x)
[g1(x)]1

...
[g1(x)]q1



, H2(x) =





h2(x)
[g2(x)]1

...
[g2(x)]q2



.

By Assumptions 7–11, x∗ satisfies the Assumptions 2–5 (with H1, H2 replacing h1, h2). Moreover,
by Assumption 8, the multipliers associated to (2.1) are the Lagrange multipliers associated to (5.12).

As in the proof of (4.10) (first part of the proof of Theorem 4.2), we have that, for k large enough:
[[g1(x∗)]i < 0⇒ [µk+1]i = 0] and [[g2(x∗)]i < 0⇒ [uk]i = 0].

Then, by (3.1), (3.5) and (3.7),

‖∇f(xk) +
∑m1

i=1[λk+1]i∇[h1(xk)]i +
∑q1

i=1[µk+1]i∇[g1(xk)]i

+
∑m2

i=1 [vk]i∇[h2(xk)]i +
∑q2

i=1[uk]i∇[g2(xk)]i‖ ≤ εk

for k large enough.
By Assumption 9, taking appropriate limits in the inequality above, we obtain that limk→∞ λk =

λ∗ and limk→∞ µk = µ∗.
In particular, since [µ∗]i > 0 for all i ≤ q1,

[µk]i > 0(5.13)

for k large enough.
Since λ∗ ∈ (λ̄min, λ̄max)

m1 and [µ∗]i < [µ̄max]i, we have that [µ̄k]i = [µk]i, i = 1, . . . , q1 and [λ̄k]i =
[λk]i, i = 1, . . . , m1 for k large enough.

Let us show now that the updating formula (3.7) for [µk+1]i, provided by Algorithm 3.1, coincides
with the updating formula (3.5) for the corresponding multiplier in the application of the algorithm to
the auxiliary problem (5.12).

In fact, by (3.7) and [µ̄k]i = [µk]i, we have that, for k large enough, [µk+1]i = max{0, [µk]i +
ρk[g1(xk)]i}. But, by (5.13), [µk+1]i = [µk]i + ρk[g1(xk)]i, i = 1, . . . , q1, for k large enough.

In terms of the auxiliary problem (5.12) this means that [µk+1]i = [µk]i + ρk[H1(xk)]i, i = 1, . . . , q1,
as we wanted to prove.

Now, let us analyze the meaning of [σk]i. By (3.7), we have: [σk]i = max{[g1(xk)]i,−[µ̄k]i/ρk} for
all i = 1, . . . , p1. If i > q1, since [g1(x∗)]i < 0, [g1]i is continuous and [µ̄k]i = 0, we have that [σk]i = 0

for k large enough. Now, suppose that i ≤ q1. If [g1(xk)]i < − [µ̄k]i
ρk

, then, by (3.7), we would have

[µk+1]i = 0. This would contradict (5.13). Therefore, [g1(xk)]i ≥ − [µ̄k]i
ρk

for k large enough and we have

that [σk]i = [g1(xk)]i. Thus, for k large enough,

H1(xk) =

(
h1(xk)

σk

)
.(5.14)
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Therefore, the test for updating the penalty parameter in the application of Algorithm 3.1 to (5.12)
coincides with the updating test in the application of the algorithm to (2.1). Moreover, formula (5.14)
also implies that the condition εk ≤ ηk max{‖σk‖∞, ‖h1(xk)‖∞} is equivalent to the hypothesis εk ≤
ηk‖H1(xk)‖∞ assumed in Theorem 5.4.

This completes the proof that the sequence {xk}may be thought as being generated by the application
of Algorithm 3.1 to (5.12). We proved that the associated approximate multipliers and the penalty
parameters updating rule also coincide. Therefore, by Theorem 5.4, the sequence of penalty parameters
is bounded, as we wanted to prove.
Remark. The results of this section provide a theoretical answer to the following practical question:
What happens if the box chosen for the safeguarded multipliers estimates is too small? The answer
is: the box should be large enough to contain the “true” Lagrange multipliers. If it is not, the global
convergence properties remain but, very likely, the sequence of penalty parameters will be unbounded,
leading to hard subproblems and possible numerical instability. In other words, if the box is excessively
small, the algorithm tends to behave as an external penalty method. This is exactly what is observed in
practice.

6. Numerical experiments. For solving unconstrained and bound-constrained subproblems we
use Gencan [8] with second derivatives and a CG-preconditioner [9]. Algorithm 3.1 with Gencan will
be called Algencan. For solving the convex-constrained subproblems that appear in the large location
problems, we use the Spectral Projected Gradient method SPG [10, 11, 12]. The resulting Augmented
Lagrangian algorithm is called Alspg. In general, it would be interesting to apply Alspg to any problem
such that the selected lower-level constraints define a convex set for which it is easy (cheap) to compute the
projection of an arbitrary point. The codes are free for download in www.ime.usp.br/∼egbirgin/tango/.
They are written in Fortran 77 (double precision). Interfaces of Algencan with AMPL, Cuter, C/C++,
Python and R (language and environment for statistical computing) are available and interfaces with
Matlab and Octave are being developed.

For the practical implementation of Algorithm 3.1, we set τ = 0.5, γ = 10, λ̄min = −1020, µ̄max =

λ̄max = 1020, εk = 10−4 for all k, λ̄1 = 0, µ̄1 = 0 and ρ1 = max

{
10−6, min

{
10, 2|f(x0)|

‖h1(x0)‖2+‖g1(x0)+‖2

}}
.

As stopping criterion we used max(‖h1(xk)‖∞, ‖σk‖∞) ≤ 10−4. The condition ‖σk‖∞ ≤ 10−4 guarantees
that, for all i = 1, . . . , p1, gi(xk) ≤ 10−4 and that [µk+1]i = 0 whenever gi(xk) < −10−4. This means that,
approximately, feasibility and complementarity hold at the final point. Dual feasibility with tolerance
10−4 is guaranteed by (3.1) and the choice of εk. All the experiments were run on a 3.2 GHz Intel(R)
Pentium(R) with 4 processors, 1Gb of RAM and Linux Operating System. Compiler option “-O” was
adopted.

All the experiments were run on an 1.8GHz AMD Opteron 244 processor, 2Gb of RAM memory and
Linux operating system. Codes are in Fortran 77 and the compiler option “-O” was adopted.

6.1. Testing the theory. In Discrete Mathematics, experiments should reproduce exactly what
theory predicts. In the continuous world, however, the situation changes because the mathematical
model that we use for proving theorems is not exactly isomorphic to the one where computations take
place. Therefore, it is always interesting to interpret, in finite precision calculations, the continuous
theoretical results and to verify to what extent they are fulfilled.

Some practical results presented below may be explained in terms of a simple theoretical result that
was tangentially mentioned in the introduction: If, at Step 2 of Algorithm 3.1, one computes a global
minimizer of the subproblem and the problem (2.1) is feasible, then every limit point is a global minimizer
of (2.1). This property may be easily proved using boundedness of the safeguarded Lagrange multipliers by
means of external penalty arguments. Now, algorithms designed to solve reasonably simple subproblems
usually include practical procedures that actively seek function decrease, beyond the necessity of finding
stationary points. For example, efficient line-search procedures in unconstrained minimization and box-
constrained minimization usually employ aggressive extrapolation steps [8], although simple backtracking
is enough to prove convergence to stationary points. In other words, from good subproblem solvers one
expects much more than convergence to stationary points. For this reason, we conjecture that Augmented
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Lagrangian algorithms like Algencan tend to converge to global minimizers more often than SQP-like
methods. In any case, these arguments support the necessity of developing global-oriented subproblem
solvers.

Experiments in this subsection were made using the AMPL interfaces of Algencan (considering all
the constraints as upper-level constraints) and Ipopt. Presolve AMPL option was disabled to solve the
problems exactly as they are. The Algencan parameters and stopping criteria were the ones stated at
the beginning of this section. For Ipopt we used all its default parameters (including the ones related
to stopping criteria). The random generation of initial points was made using the function Uniform01()

provided by AMPL. When generating several random initial points, the seed used to generate the i-th
random initial point was set to i.

Example 1: Convergence to KKT points that do not satisfy MFCQ.

Minimize x1

subject to x2
1 + x2

2 ≤ 1,
x2

1 + x2
2 ≥ 1.

The global solution is (−1, 0) and no feasible point satisfies the Mangasarian-Fromovitz Constraint Qual-
ification, although all feasible points satisfy CPLD. Starting with 100 random points in [−10, 10]2, Al-

gencan converged to the global solution in all the cases. Starting from (5, 5) convergence occurred using
14 outer iterations. The final penalty parameter was 4.1649E-01 (the initial one was 4.1649E-03) and the
final multipliers were 4.9998E-01 and 0.0000E+00. Ipopt also found the global solution in all the cases
and used 25 iterations when starting from (5, 5).

Example 2: Convergence to a non-KKT point.

Minimize x
subject to x2 = 0,

x3 = 0,
x4 = 0.

Here the gradients of the constraints are linearly dependent for all x ∈ IR. In spite of this, the only point
that satisfies Theorem 4.1 is x = 0. Starting with 100 random points in [−10, 10], Algencan converged
to the global solution in all the cases. Starting with x = 5 convergence occurred using 20 outer iterations.
The final penalty parameter was 2.4578E+05 (the initial one was 2.4578E-05) and the final multipliers
were 5.2855E+01 -2.0317E+00 and 4.6041E-01. Ipopt was not able to solve the problem in its original
formulation because “Number of degrees of freedom is NIND = -2”. We modified the problem in the
following way

Minimize x1 + x2 + x3

subject to x2
1 = 0,

x3
1 = 0,

x4
1 = 0,

xi ≥ 0, i = 1, 2, 3,

and, after 16 iterations, Ipopt stopped near x = (0, +∞, +∞) saying “Iterates become very large (di-
verging?)”.

Example 3: Infeasible stationary points [18, 46].

Minimize 100(x2 − x2
1)

2 + (x1 − 1)2

subject to x1 − x2
2 ≤ 0,

x2 − x2
1 ≤ 0,

−0.5 ≤ x1 ≤ 0.5,
x2 ≤ 1.
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This problem has a global KKT solution at x = (0, 0) and a stationary infeasible point at x = (0.5,
√

0.5).
Starting with 100 random points in [−10, 10]2, Algencan converged to the global solution in all the
cases. Starting with x = (5, 5) convergence occurred using 6 outer iterations. The final penalty param-
eter was 1.0000E+01 (the initial one was 1.0000E+00) and the final multipliers were 1.9998E+00 and
3.3390E-03. Ipopt found the global solution starting from 84 out of the 100 random initial points. In the
other 16 cases Ipopt stopped at x = (0.5,

√
0.5) saying “Convergence to stationary point for infeasibility”

(this was also the case when starting from x = (5, 5)).

Example 4: Difficult-for-barrier [15, 18, 70].

Minimize x1

subject to x2
1 − x2 + a = 0,

x1 − x3 − b = 0,
x2 ≥ 0, x3 ≥ 0.

In [18] we read: “This test example is from [70] and [15]. Although it is well-posed, many barrier-SQP
methods (’Type-I Algorithms’ in [70]) fail to obtain feasibility for a range of infeasible starting points.”

We ran two instances of this problem varying the values of parameters a and b and the initial point
x0 as suggested in [18]. When (a, b) = (1, 1) and x0 = (−3, 1, 1) Algencan converged to the solution
x̄ = (1, 2, 0) using 2 outer iterations. The final penalty parameter was 5.6604E-01 (the initial one also
was 5.6604E-01) and the final multipliers were 6.6523E-10 and -1.0000E+00. Ipopt also found the same
solution using 20 iterations. When (a, b) = (−1, 0.5) and x0 = (−2, 1, 1) Algencan converged to the
solution x̃ = (1, 0, 0.5) using 5 outer iterations. The final penalty parameter was 2.4615E+00 (the initial
one also was 2.4615E+00) and the final multipliers were -5.0001E-01 and -1.3664E-16. On the other
hand, Ipopt stopped declaring convergence to a stationary point for the infeasibility.

Example 5: Preference for global minimizers 1

Minimize
∑n

i=1 xi

subject to x2
i = 1, i = 1, . . . , n.

Solution: x∗ = (−1, . . . ,−1), f(x∗) = −n. We set n = 100 and ran Algencan and Ipopt starting from
100 random initial points in [−100, 100]n. Algencan converged to the global solution in all the cases
while Ipopt never found the global solution. When starting from the first random point, Algencan

converged using 4 outer iterations. The final penalty parameter was 5.0882E+00 (the initial one was
5.0882E-01) and the final multipliers were all equal to 4.9999E-01.

Problem 6: Preference for global minimizers 2

Minimize x2

subject to x1 cos(x1)− x2 ≤ 0,
−10 ≤ xi ≤ 10, i = 1, 2.

It can be seen in Figure 1 that the problem has five local minimizers at approx. (−10, 8.390), (−0.850,−0.561),
(3.433,−3.288), (−6.436,−6.361) and (9.519,−9.477). Clearly, the last one is the global minimizer. The
number of times Algencan found these solutions are 1, 0, 8, 26 and 65, respectively; while the figures
for Ipopt are 1, 18, 21, 38 and 22.

6.2. Problems with many inequality constraints. Consider the hard-spheres problem [49]:

Minimize z
subject to 〈vi, vj〉 ≤ z, i = 1, . . . , np, j = i + 1, . . . , np,

‖vi‖22 = 1, i = 1, . . . , np,
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Fig. 6.1. Problem B.

where vi ∈ IRnd for all i = 1, . . . , np. This problem has nd×np+1 variables, np equality constraints and
np× (np− 1)/2 inequality constraints.

For this particular problem, we ran Algencan with the Fortran formulation of the problem, Lancelot B
with the SIF formulation and Ipopt with the AMPL formulation. In all cases we used analytic second
derivatives and the same random initial point, as we coded a Fortran 77 program that generates SIF
and AMPL formulations that include the initial point. The motivation for this choice was that, although
the reasons are not clear for us, the combination of Algencan with the AMPL formulation was very
slow (this was not the case in the other problems) and the combination of Lancelot with AMPL gave
the error message “[...] failure: ran out of memory” for np ≥ 180. The combination of Ipopt with
AMPL worked well and gave an average behavior almost identical to the combination of Ipopt with the
Fortran 77 formulation of the problem. We are aware that these different computer environments may
have some influence in the interpretation of the results. However, we think that the numerical results
indicate the essential correctness of the many-inequalities claim.

For Lancelot B (and Lancelot, which will appear in further experiments) we used all its default
parameters and the same stopping criterion as Algencan, i.e., 10−4 for the feasibility and optimality
tolerances measured in the sup-norm. This may be considered as a rather large feasibility-optimality
tolerance. In fact, Augmented Lagrangian methods do not have fast local convergence. If we ask for more
strict tolerances, the performance of the Augmented Lagrangian methods deteriorate in comparison to the
one of Ipopt.

We generated 20 different problems fixing nd = 3 and choosing np ∈ {10, 20, . . . , 200}. For each
problem, we ran Algencan, Ipopt and Lancelot B starting from 10 different random initial points
with vi ∈ [−1, 1]nd for i = 1, . . . , np and z ∈ [0, 1]. The three methods satisfied the stopping criterion in
all the cases. Table 1 shows, for each problem and method, the average objective function value found
(f), the average CPU time used in seconds (Time), and how many times, over the 10 trials for the
same problem, a method found the best functional value (Glcnt). In the table, n and m represent the
number of variables and constraints of the original formulation of the problem, respectively, i.e., without
considering the slack variables added by Ipopt and Lancelot B. The number of inequality constraints
and the sparsity structure of the Hessian of the Lagrangian favors the application of Algencan for
solving this problem.
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Algencan Ipopt Lancelot B

n m Glcnt Time f Glcnt Time f Glcnt Time f

31 55 7 0.01 0.404687 9 0.04 0.408676 6 0.04 0.409244

61 210 10 0.03 0.676472 9 0.28 0.676851 10 0.42 0.676477

91 465 10 0.17 0.781551 6 1.08 0.783792 9 1.97 0.782241

121 820 10 0.47 0.837600 6 3.12 0.838449 4 6.79 0.839005

151 1275 10 0.97 0.868312 4 9.26 0.869486 2 14.63 0.870644

181 1830 10 1.65 0.889745 3 13.96 0.891025 2 38.08 0.891436

211 2485 10 3.12 0.905335 5 30.87 0.905975 3 64.36 0.906334

241 3240 9 4.14 0.917323 10 33.91 0.918198 3 109.88 0.918182

271 4095 10 5.66 0.926429 8 44.03 0.927062 10 158.12 0.926889

301 5050 10 7.75 0.933671 9 61.47 0.933892 7 289.92 0.934201

331 6105 10 11.29 0.939487 9 84.18 0.939791 10 287.40 0.940192

361 7260 10 16.48 0.944514 10 115.73 0.944651 10 386.92 0.945134

391 8515 9 20.18 0.953824 9 171.56 0.948912 10 486.04 0.949213

421 9870 10 24.99 0.952265 10 254.16 0.952398 9 842.10 0.952667

451 11325 10 31.00 0.955438 10 259.74 0.955609 10 811.37 0.955943

481 12880 10 35.04 0.958227 10 289.55 0.958325 10 1381.74 0.958654

511 14535 10 42.10 0.960621 10 457.32 0.960682 10 1407.71 0.961051

541 16290 10 48.94 0.962813 10 476.82 0.962837 10 1565.95 0.963113

571 18145 10 57.83 0.964722 10 773.90 0.964795 10 1559.51 0.965159

601 20100 9 68.52 0.969767 10 1155.17 0.966444 10 2480.00 0.966822

Table 6.1

Performance of Algencan, Ipopt and Lancelot B in the hard-spheres problem.

6.3. Problems with poor Lagrangian Hessian structure. The discretized three-dimensional
Bratu-based [26, 48] optimization problem that we consider in this subsection is:

Minimize
∑

(i,j,k)∈S(u(i, j, k)− u∗(i, j, k))2

subject to φθ(u, i, j, k) = φθ(u∗, i, j, k), i, j, k = 2, . . . , np− 1.

where u∗ was choosed as

u∗(i, j, k) = 10 q(i) q(j) q(k) (1 − q(i)) (1 − q(j)) (1 − q(k)) eq(k)4.5

with q(ℓ) = np−ℓ
np−1 for i, j, k = 1, . . . , np and

φθ(v, i, j, k) = −∆v(i, j, k) + θev(i,j,k),

∆v(i, j, k) =
v(i± 1, j, k) + v(i, j ± 1, k) + v(i, j, k ± 1)− 6v(i, j, k)

h2
,

for i, j, k = 2, . . . , np− 1. The number of variables is n = np3 and the number of (equality) constraints
is m = (np − 2)3. We setted θ = −100, h = 1/(np − 1), |S| = 7 and the 3-uples of indices in S were
randomly selected in [1, np]3.

Sixteen problems were generated setting np = 5, 6, . . . , 20. They were solved using Algencan, Ipopt

and Lancelot (this problem was formulated in AMPL and Lancelot B has no AMPL interface). The
initial point was randomly generated in [0, 1]n. The three methods found solutions with null objective
function value. Table 2 shows some figures that reflect the computational effort of the methods. In
the table, “Outit” means number of outer iterations of an augmented Lagrangian method, “It” means
number of iterations (or inner iterations), “Fcnt” means number of functional evaluations, “Gcnt” means
number of gradient evaluations and “Time” means CPU time in seconds. In the table, n and m represent
the number of variables1 and (equality) constraints of the problem. The poor sparsity structure of the
Hessian of the Lagrangian favors the application of Algencan for solving this problem.

1The AMPL presolver procedure eliminates some problem variables.
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Algencan Ipopt Lancelot

n m OutIt It Fcnt Gcnt Time It Time It Fcnt Gcnt Time

83 27 6 23 60 39 0.00 12 0.01 145 146 117 0.04

162 64 4 22 49 33 0.02 14 0.02 93 94 77 0.06

277 125 5 24 64 36 0.05 11 0.04 86 87 69 0.13

433 216 5 18 42 30 0.07 13 0.10 86 87 71 0.26

638 343 3 23 37 31 0.19 9 0.17 73 74 59 0.37

897 512 4 33 87 45 0.56 10 0.44 52 53 41 0.45

1216 729 4 19 40 29 0.47 10 0.93 82 83 70 1.44

1601 1000 4 41 113 54 2.37 10 1.86 100 101 82 3.07

2058 1331 1 15 35 19 1.05 10 3.03 166 167 141 7.94

2593 1728 2 38 83 45 4.43 10 6.73 107 108 88 7.81

3212 2197 3 35 80 46 7.24 11 14.71 150 151 130 10.37

3921 2744 2 39 85 46 10.23 11 30.93 295 296 254 34.38

4726 3375 3 55 177 65 19.01 11 59.92 334 335 294 60.98

5633 4096 2 40 86 48 19.78 11 84.57 417 418 369 100.46

6647 4913 3 48 110 57 23.42 11 130.03 426 427 384 172.30

7776 5832 3 62 140 72 36.62 11 305.26 332 333 273 136.76

Table 6.2

Performance of Algencan, Ipopt and Lancelot in the three-dimensional Bratu-based optimization problem.

The warnings in italics made with respect to the Hard-Spheres problem are also pertinent for this
problem. In particular, remember that we use a non-exigent convergence criterion.

6.4. Location problems. Here we will consider a variant of the family of location problems intro-
duced in [11]. In the original problem, given a set of np disjoint polygons P1, P2, . . . , Pnp in IR2 one wishes
to find the point z1 ∈ P1 that minimizes the sum of the distances to the other polygons. Therefore, the
original problem formulation is:

min
zi, i=1,...,np

1

np− 1

np∑

i=2

‖zi − z1‖2

subject to zi ∈ Pi, i = 1, . . . , np.

In the variant considered in the present work, we have, in addition to the np polygons, nc circles.
Moreover, there is an ellipse which has a non empty intersection with P1 and such that z1 must be inside
the ellipse and zi, i = 2, . . . , np + nc must be outside. Therefore, the problem considered in this work is

min
zi, i=1,...,np+nc

1

nc + np− 1

[
np∑

i=2

‖zi − z1‖2 +

nc∑

i=1

‖znp+i − z1‖2
]

subject to g(z1) ≤ 0,
g(zi) ≥ 0, i = 2, . . . , np + nc,
zi ∈ Pi, i = 1, . . . , np,
znp+i ∈ Ci, i = 1, . . . , nc,

where g(x) = (x1/a)2 + (x2/b)2 − c, and a, b, c ∈ IR are positive constants. Observe that the objective
function is differentiable in a large open neighborhood of the feasible region.

We generated 36 problems of this class, varying nc and np and choosing randomly the location of the
circles and polygons and the number of vertices of each polygon. The details of the generation, includ-
ing the way in which we guarantee empty intersections (in order to have differentiability everywhere),
are rather tedious but, of course, are available for interested readers. In Table 1 we display the main
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characteristics of each problem (number of circles, number of polygons, total number of vertices of the
polygons, dimension of the problem and number of lower-level and upper-level constraints). Figure 2
shows the solution of a very small twelve-sets problem that has 24 variables, 81 lower-level constraints
and 12 upper-level constraints.

To solve this family of problems, we will consider g(z1) ≤ 0 and g(zi) ≥ 0, i = 2, . . . , np + nc as
upper-level constraints, and zi ∈ Pi, i = 1, . . . , np and znp+i ∈ Ci, i = 1, . . . , nc as lower-level constraints.
In this way the subproblems can be efficiently solved by the Spectral Projected Gradient method (SPG)
[10, 11] as suggested by the experiments in [11]. So, we implemented an Augmented Lagrangian method
that uses SPG to solve the subproblems. This implementation will be called Alspg. In general, it would
be interesting to apply Alspg to any problem such that the selected lower-level constraints define a
convex set for which it is easy (cheap) to compute the projection of an arbitrary point.

The 36 problems are divided in two sets of 18 problems: small and large problems. We first solved
the small problems with Algencan (considering all the constraints as upper-level constraints), Alspg,
Ipopt and Lancelot. All the methods used the AMPL formulation of the problem, except Alspg

which, due to the necessity of a subroutine to compute the projection of an arbitrary point onto the
convex set given by the lower-level constraints, used the Fortran 77 formulation of the problem. We are
aware that this is a limitation in terms of a fair comparison, however we do not think that the differences
observed in the results are due to the gap between Fortran and AMPL.

In Table 4 we compare the performance of the four methods for solving this problem. Observe that
the four methods obtain feasible points and arrive to the same solutions. Due to the performance of
Alspg and Ipopt, we solved the set of large problems using them. Table 5 shows their performances.
For the larger problems Ipopt gave the error message “error running ipopt: termination code 15”. Prob-
ably this an inconvenient related to memory requirements. However, note that the running times of
Alspg are orders of magnitude smaller than the Ipopt running times. Again take into account the gap
Fortran-AMPL and the lack of plausibility of the fact that the gap explains the large time differences.

6.5. Problems in the Cuter collection. We have two versions of Algencan: with only one
penalty parameter and with one penalty parameter per constraint (the penalty parameters are updated
using Rules 1 and 2 of Step 4, respectively). Preliminary experiments showed that the version with a
single penalty parameter performed slightly better. So, we compare this version against Lancelot B and
Ipopt. To perform the numerical experiments, we considered all the problems of the Cuter collection
[13]. As a whole, we tried to solve 1023 problems.

We use Algencan, Ipopt and Lancelot B with all their default parameters. The stopping criterion
for Algencan and Lancelot B is feasibility and optimality (measured in the sup-norm) less than or
equal to 10−4, while for Ipopt we use the default stopping criteria. In general, this implies that the
convergence criterion is more exigent for Ipopt than for Algencan and Lancelot. This fact should
be taken into account in the analysis of numerical results.

We also stop a method if its execution exceeds 5 minutes of CPU time.
Given a fixed problem, for each method M , we define xM

final the final point obtained by M when
solving the given problem. In this numerical study we say that xM

final is feasible if

max{‖h(xM
final)‖∞, ‖g(xM

final)+‖∞} ≤ 10−4.

We define

fbest = min
M
{f(xM

final) | xM
final is feasible}.

We say that the method M found a solution of the problem if xM
final is feasible and

f(xM
final) ≤ fbest + 10−3|fbest|+ 10−6 or max{fbest, f(xM

final)} ≤ −1020.

Finally, let tM be the computer CPU time that method M used to arrive to xM
final. We define

rM =

{
tM , if method M found a solution,
∞, otherwise.
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Fig. 6.2. Twelve-sets very small location problem.

We use r as a performance measurement. The results of comparing Algencan, Ipopt and Lancelot B
are reported in the form of performance profiles and two small numerical tables. See Figure 3 and Table 6.

There are a few comparison issues that should be noted:

• When Lancelot B solves a feasibility problem (problem with constant objective function), it
minimizes the squared infeasibility instead of addressing the original problem. As a result, it
sometimes finishes without satisfying the user required stopping criteria (feasibility and optimal-
ity tolerances on the the original problem). In 35 feasibility problems, Lancelot B stopped
declaring convergence but the user-required feasibility tolerance is not satisfied at the final iter-
ate. 16 of the 35 problems seem to be problems in which Lancelot B converged to a stationary
point of the infeasibility (large objective function value of the reformulated problem). In the re-
maining 19 problems, Lancelot B seems to have been stopped prematurely. This easy-to-solve
inconvenient may slightly deteriorate the robustness of Lancelot B.
• It is simple to use the same stopping criterion for Algencan and Lancelot B but this is not

the case for Ipopt. So, in Ipopt runs we used its default stopping criterion.
• Algencan and Lancelot B satisfy the bound constraints exactly, whereas Ipopt satisfies

them within a prescribed tolerance ǫ > 0. Consider, for example, the following problem:
Min

∑
i xi subject to xi ≥ 0. The solution given by Algencan and Lancelot B is the ori-

gin, while the solution given by Ipopt is xi = −ǫ. So, the minimum found by Algencan and
Lancelot B is 0 while the minimum found by Ipopt is −ǫn. This phenomenon occurs for
a big family of reformulated complementarity problems (provided by M. Ferris) in the Cuter
collection. For these problems we considered that f(xIpopt

final ) = 0. We do not know if this occurs
in other problems of the collection. It must be awared that the opposite situation may occur in
other problems of the collection. Namely, since we use a weak stopping feasibility criterion for the
Augmented Lagrangian methods, it is possible that the objective function value of an Augmented
Lagrangian method is artificially smaller than the objective function value obtained by Ipoptin
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Problem nc np totnvs n p1 p2

1 28 98 295 252 126 323

2 33 108 432 282 141 465

3 33 108 539 282 141 572

4 33 109 652 284 142 685

5 35 118 823 306 153 858

6 35 118 940 306 153 975

7 35 118 1,057 306 153 1,092

8 35 118 1,174 306 153 1,209

9 35 118 1,291 306 153 1,326

10 35 118 1,408 306 153 1,443

11 35 118 1,525 306 153 1,560

12 35 118 1,642 306 153 1,677

13 35 118 1,759 306 153 1,794

14 35 118 1,876 306 153 1,911

15 35 118 1,993 306 153 2,028

16 35 118 2,110 306 153 2,145

17 35 118 2,227 306 153 2,262

18 35 118 2,344 306 153 2,379

19 3,029 4,995 62,301 16,048 8,024 65,330

20 4,342 7,271 91,041 23,226 11,613 95,383

21 6,346 10,715 133,986 34,122 17,061 140,332

22 13,327 22,230 278,195 71,114 35,557 291,522

23 19,808 33,433 417,846 106,482 53,241 437,654

24 29,812 50,236 627,548 160,096 80,048 657,360

25 26,318 43,970 549,900 140,576 70,288 576,218

26 39,296 66,054 825,907 210,700 105,350 865,203

27 58,738 99,383 1,241,823 316,242 158,121 1,300,561

28 65,659 109,099 1,363,857 349,516 174,758 1,429,516

29 98,004 164,209 2,052,283 524,426 262,213 2,150,287

30 147,492 245,948 3,072,630 786,880 393,440 3,220,122

31 131,067 218,459 2,730,798 699,052 349,526 2,861,865

32 195,801 327,499 4,094,827 1,046,600 523,300 4,290,628

33 294,327 490,515 6,129,119 1,569,684 784,842 6,423,446

34 261,319 435,414 5,442,424 1,393,466 696,733 5,703,743

35 390,670 654,163 8,177,200 2,089,666 1,044,833 8,567,870

36 588,251 979,553 12,244,855 3,135,608 1,567,804 12,833,106

Table 6.3

Location problems and their main features. The problem generation is based on a grid. The number of city-circles (nc)
and city-polygons (np) depend on the number of points in the grid, the probability of having a city in a grid point (procit)
and the probability of a city to be a polygon (propol) or a circle (1 − propol). The number of vertices of a city-polygon
is a random number and the total number of vertices of all the city-polygons together is totnvs. Finally, the number of
variables of the problem is n = 2(nc+np), the number of upper-level inequality constraints is p1 = nc+np and the number
of lower-level inequality constraints is p2 = nc + totnvs. The total number of constraints is m = p1 + p2. The central
rectangle is considered here a “special” city-polygon. The lower-level constraints correspond to the fact that each point
must be inside a city and the upper-level constraints come from the fact that the central point must be inside the ellipse
and all the others must be outside.

some (perhaps many) problems. The numerical results presented here should be analyzed with
this objection in mind.
• We have good reasons for defining the initial penalty parameter ρ1 as stated at the beginning of

this section. However, in many problems of the Cuter collection, ρ1 = 10 behaves better. For
this reason we include the statistics also for the non-default choice ρ1 = 10.

We detected 73 problems in which both Algencan and Ipopt finished declaring that the optimal
solution was found but found different functional values. In 58 of these problems the functional value
obtained by Algencan was smaller than the one found by Ipopt. This may confirm the conjecture that
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Problem CPU Time (secs.) f
Algencan Alspg Ipopt Lancelot

1 1.53 0.06 0.11 854.82 1.7564E+01
2 2.17 0.11 0.13 319.24 1.7488E+01
3 2.25 0.14 0.14 401.08 1.7466E+01
4 1.71 0.12 0.17 139.60 1.7451E+01
5 1.75 0.11 0.19 129.79 1.7984E+01
6 1.83 0.09 0.21 90.37 1.7979E+01
7 2.18 0.08 0.23 72.14 1.7975E+01
8 1.88 0.08 0.28 92.74 1.7971E+01
9 1.84 0.18 0.29 111.13 1.7972E+01
10 2.06 0.14 0.37 100.23 1.7969E+01
11 2.18 0.13 0.49 86.54 1.7969E+01
12 2.55 0.16 0.50 134.23 1.7968E+01
13 2.39 0.18 0.37 110.28 1.7968E+01
14 2.52 0.20 0.42 223.05 1.7965E+01
15 2.63 0.17 0.61 657.99 1.7965E+01
16 3.36 0.18 0.44 672.01 1.7965E+01
17 2.99 0.17 0.46 505.00 1.7963E+01
18 3.43 0.23 0.48 422.93 1.7963E+01

Table 6.4

Performance of Algencan, Alspg, Ipopt and Lancelot in the set of small location problems.

the Augmented Lagrangian method has a stronger tendency towards global optimality than interior-SQP
methods but it must also be taken into account the possibility of an unfair functional value comparison
due to the different tolerances used.

7. Final Remarks. In the last few years many sophisticated algorithms for nonlinear programming
have been published. They usually involve combinations of interior-point techniques, sequential quadratic
programming, trust regions [23], restoration, nonmonotone strategies and advanced sparse linear algebra
procedures. See, for example [17, 38, 40, 41, 42, 52] and the extensive reference lists of these papers.
Moreover, methods for solving efficiently specific problems or for dealing with special constraints are
often introduced. Many times, a particular algorithm is extremely efficient for dealing with problems
of a given type, but fails (or cannot be applied) when constraints of a different class are incorporated.
Unfortunately, this situation is quite common in engineering applications. In the Augmented Lagrangian
framework additional constraints are naturally incorporated to the objective function of the subproblems,
which therefore preserve their constraint structure. For this reason, we conjecture that the Augmented
Lagrangian approach (with general lower-level constraints) will continue to be used for many years.

This fact motivated us to improve and analyze Augmented Lagrangian methods with arbitrary lower-
level constraints. From the theoretical point of view our goal was to eliminate, as much as possible,
restrictive constraint qualifications. With this in mind we used, both in the feasibility proof and in the
optimality proof, the Constant Positive Linear Dependence (CPLD) condition. This condition [59] has
been proved to be a constraint qualification in [3] where its relations with other constraint qualifications
have been given.

We provided a family of examples (Location Problems) where the potentiality of the arbitrary lower-
level approach is clearly evidenced. This example represents a typical situation in applications. A specific
algorithm (SPG) is known to be very efficient for a class of problems but turns out to be impossible to
apply when additional constraints are incorporated. Fortunately, the Augmented Lagrangian approach
is able to deal with the additional constraints taking advantage of the efficiency of SPG for solving
the subproblems. In this way, we were able to solve nonlinear programming problems with more than
3,000,000 variables and 14,000,000 constraints in less than five minutes of CPU time.
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Problem Alspg Ipopt f
OuIt InIt Fcnt Gcnt Time It Time

19 8 212 308 220 2.82 60 44.76 4.5752E+02
20 8 107 186 115 2.23 62 61.79 5.6012E+02
21 9 75 149 84 2.37 65 93.42 6.8724E+02
22 7 80 132 87 5.16 66 202.62 4.6160E+02
23 7 71 125 78 6.99 231 1104.18 5.6340E+02
24 8 53 106 61 8.72 6.9250E+02
25 8 55 124 63 8.00 4.6211E+02
26 7 63 127 70 12.58 5.6438E+02
27 9 80 155 89 20.33 6.9347E+02
28 8 67 138 75 22.33 4.6261E+02
29 7 54 107 61 27.57 5.6455E+02
30 9 95 179 104 54.79 6.9382E+02
31 7 59 111 66 38.74 4.6280E+02
32 7 66 120 73 64.27 5.6449E+02
33 9 51 113 60 85.58 6.9413E+02
34 7 58 110 65 78.30 4.6270E+02
35 7 50 104 57 107.28 5.6432E+02
36 10 56 133 66 184.73 6.9404E+02

Table 6.5

Performance of Alspg and Ipopt on set of large location problems. The memory limitation is the only inconvenient
for Alspg solving problems with higher dimension than problem 36 (approximately 3× 106 variables, 1.5× 106 upper-level
inequality constraints, and 1.2 × 107 lower-level inequality constraints), since computer time is quite reasonable.

ρ1 = 10
Algencan Ipopt Lancelot B

Efficiency 567 583 439
Robustness 783 778 734

Dynamic ρ1 as stated at the beginning of this section.
Algencan Ipopt Lancelot B

Efficiency 567 572 440
Robustness 775 777 732

Table 6.6

The total number of considered problems is 1023. Efficiency means number of times that method M obtained the best
rM . Robustness means the number of times in which rM < ∞.

Many interesting open problems remain:

1. The constraint qualification used for obtaining boundedness of the penalty parameter (regularity
at the limit point) is still too strong. We conjecture that it is possible to obtain the same result
using the Mangasarian-Fromovitz constraint qualification.

2. An alternative definition of σk at the main algorithm seems to be well-motivated: instead of
using the approximate multiplier already employed it seems to be natural to use the current
approximation to the inequality Lagrange multipliers (µk+1). It is possible to obtain the global
convergence results with this modification but it is not clear how to obtain boundedness of the
penalty parameter. Moreover, from the practical point of view it is not clear if such modification
produces numerical improvements.

3. The inexact-Newton approach employed by Gencan for solving box-constrained subproblems
does not seem to be affected by the nonexistence of second derivatives of the Augmented La-
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grangian for inequality constrained problems. There are good reasons to conjecture that this
is not the case when the box-constrained subproblem is solved using a quasi-Newton approach.
This fact stimulates the development of efficient methods for minimizing functions with first (but
not second) derivatives.

4. The implementation of Augmented Lagrangian methods (as well as other nonlinear programming
algorithms) is subject to many decisions on the parameters to be employed. Some of these
decisions are not easy to take and one is compelled to use parameters largely based on experience.
Theoretical criteria for deciding the best values of many parameters need to be developed.

5. In [2] an Augmented Lagrangian algorithm with many penalty parameters for single (box) lower-
level constraints was analyzed and boundedness of the penalty parameters was proved without
strict complementarity assumptions. The generalization of that proof to the general lower-level
constraints case considered here is not obvious and the existence of such generalization remains
an open problem.

6. Acceleration and warm-start procedures must be developed in order to speed the ultimate rate
of convergence and to take advantage of the solution obtained for slightly different optimization
problems.
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Fig. 6.3. Performance profiles of Algencan, Lancelot B and Ipopt in the problems of the Cuter collection. Note
that there is a CPU time limit of 5 minutes for each pair method/problem. The second graphic is a zoom of the left-hand
side of the first one. Although in the Cuter test set of problems Algencan with ρ1 = 10 performs better (see Table 6)
than using the choice of ρ1 stated at the begining of this section, we used the last option (which is the Algencan default
option) to build the performance profiles curves in this graphics.
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