
Deterministic and stochastic global optimization techniques for

planar covering with ellipses problems∗

M. Andretta † E. G. Birgin ‡

November 28, 2011

Abstract

Problems of planar covering with ellipses are tackled in this work. Ellipses can have a
fixed angle or each of them can be freely rotated. Deterministic global optimization methods
are developed for both cases, while a stochastic version of the method is also proposed for
large instances of the latter case. Numerical results show the effectiveness and efficiency of
the proposed methods.
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1 Introduction

In this work, a covering problem on the plane is considered. A finite set of demand points is given
and the problem consists on covering the most valuable subset of demand points using at most k
or exactly k ellipses from a set of m given ellipses. This problem was tackled in [11], where
a detailed bibliographical review is given and the application to the optimization of wireless
transmitters coverage is highlighted. The problem has many applications in the location of
facilities and geographical systems. The case in which the distance between demand points is
a fuzzy variable was approached in [12]. In [11] the authors present a MINLP formulation of
the problem and show with numerical experiments that available solvers are not able to deliver
a solution to small or medium-size instances within a reasonable amount of CPU time. More
specifically, the problem is modeled in GAMS and several instances submitted to be solved by
SBB [13] and BARON [14] trough the NEOS server [15]. Motivated by this fact, an heuristic
approach based on Simulated Annealing is introduced in [11]. In the problem considered in [11],
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ellipses are restricted to have their axes parallel to the Cartesian axes, while it is pointed out
that allowing the ellipses to rotate would be the subject for future research.

A deterministic global optimization technique capable of finding a global solution to the in-
stances whose data is available in [11] is introduced. Numerical results confirm that the heuristic
approach presented in [11] also finds a global solution to those instances. The proposed method
associates a clever semi-enumerative approach with nonlinear programing (NLP) subproblems to
compute all maximal coverings using the ellipses individually. This information is later analysed
and combined to compute an optimal solution for the original problem. When ellipses’ axes are
restricted to be parallel to the Cartesian axes, NLP subproblems are continuous, smooth, and
convex, and, hence, their global solutions are easy to compute using any local NLP solver. The
problem’s extension to consider individual angles of rotation for each ellipse is also presented.
In this case, the NLP subproblems are non-convex. The αBB [1, 2, 3, 7] method is considered
to solve the subproblems and, due to the subproblems’ complexity, only small instances can
be solved to optimality within a tolerable limit of CPU time. Therefore, a stochastic global
optimization approach is used to solve the non-convex NLP suproblems and solutions (not nec-
essarily optimal) to a large set of considered instances are reported.

The paper is organized as follows. Section 2 presents the MINLP models for the considered
problems. The introduced methods are fully described in Section 3. Numerical experiments are
described in Section 4. Conclusions and lines for future research are stated in Section 5.

2 Problem description

The problem consists of n fixed points pi = (pxi , p
y
i )

T ∈ R
2 with profits ŵi, i = 1, . . . , n, that

should be covered by a set of ellipses. The ellipses chosen to cover the points must belong to a
given set of m ellipses with semi major and semi minor axes aj and bj , respectively, and costs w̃j ,
j = 1, . . . ,m. Let S ⊆ {1, . . . ,m} be the set of indices of the chosen ellipses. Different versions
of the problem exist depending on whether, for a given constant k ≤ m, constraint |S| = k or
|S| ≤ k is considered. Moreover, another source of alternative problems lies on whether ellipses
are restricted to be positioned with their axes parallel to the Cartesian axes, or they can be
freely rotated. In any case, the objective is to maximize the income (profit of covered points
minus cost of allocated ellipses).

A mixed integer nonlinear programming (MINLP) formulation of the problem follows. In
the model below, the number of allocated ellipses is restricted to be equal to the given non-
negative integer constant k, while the ellipses are restricted to be with their axes parallel to
the Cartesian axes. This version of the problem will be called P1 from now on. Variables of
the formulation are: xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m, yj ∈ {0, 1}, j = 1, . . . ,m, and
cj = (cxj , c

y
j )

T ∈ R
2, j = 1, . . . ,m. In the model, xij = 1 if point pi is assigned to be covered by

ellipse j, xij = 0 otherwise; yj = 1 if ellipse j was selected to be used, yj = 0 otherwise; and,
when yj = 1, cj stands for the position on the plane of ellipse j.
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Maximize
m∑

j=1

p∑

i=1

ŵixij −
m∑

j=1

w̃jyj (1)

subject to
m∑

j=1

yj = k, (2)

m∑

j=1

xij ≤ 1, i = 1, . . . , n, (3)

xij ≤ yj , i = 1, . . . , n, j = 1, . . . ,m, (4)

(cxj − pxi )
2/a2j + (cyj − pyi )

2/b2j ≤ 1 + (1− xij)M, i = 1, . . . , n, j = 1, . . . ,m. (5)

In the formulation above, the objective function (1) represents the covering income, i.e. the
profit of the covered points minus the cost of the allocated ellipses. Constraint (2) determines
the number of ellipses to be used. Constraint (3) says that a point can be covered by no more
than one ellipse. More precisely, this constraint allows the profit of covering a point by an ellipse
to be considered at most once. Constraint (4) says that points can only be attributed to be
covered by the selected ellipses. Constraint (5) determines that a point covered by an ellipse
must be physically located inside or in the border of the ellipse. In this constraint, M is a
sufficiently large positive number.

If constraint (2) is substituted by
m∑

j=1

yj ≤ k, (6)

we obtain another version of the problem that will be called P2 from now on. Note that imposing
an upper bound on the number of selected ellipses, instead of fixing the number of ellipses that
must be used, may be profitable in the particular situation of having ellipses more costly than
the profit of every possible set of points covered by them.

If, in P1 or P2, we substitute constraint (5) by

∥∥∥∥
(

1/aj 0
0 1/bj

)(
cos θj − sin θj
sin θj cos θj

)(
cxj − pxi
cyj − pyi

)∥∥∥∥
2

2

≤ 1+(1−xij)M, i = 1, . . . , n, j = 1, . . . ,m,

(7)
we obtain the counter-parts of P1 and P2 in which ellipses can be freely rotated. We call those
problems P3 and P4, respectively, from now on. In P3 and P4, the additional variable θj repre-
sents the counter-clockwise angle of rotation of ellipse j, for j = 1, . . . ,m.

Notation. From now on,

c = (c1, c2, . . . , cm) =

(
cx1 cx2 . . . cxm
cy1 cy2 . . . cym

)
∈ R

2×m,
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x = (x1, x2, . . . , xm) =




x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
...

xp1 xp2 . . . xpm


 ∈ {0, 1}

p×m,

y ∈ {0, 1}m, and θ ∈ R
m may be used to denote the multi-dimensional variables of problems P1,

P2, P3, and P4.

3 Deterministic global optimization method

We will start by describing a solution method for problem P1. Assume for a moment that values
x and y such that (2–4) hold are given. Let

J(y) = {j | yj = 1} ⊆ {1, . . . ,m}

and
I(xj) = {i | xij = 1} ⊆ {1, . . . , p}.

Clearly, J(y) is the set of selected ellipses according to y and, for j ∈ J(y), I(xj) is the set of
points to be covered by ellipse j according to xj . Note that the value of the objective function
in (1) is already determined by (x, y) and is given by

φ(x, y) =
∑

j∈J(y)

∑

i∈I(xj)

ŵi −
∑

j∈J(y)

w̃j . (8)

The question that arises is whether, given x and y satisfying (2–4), c satisfying (5) exists, i.e. c
such that (x, y, c) is a feasible point for problem P1.

Deciding whether such c exists is equivalent to answering, for each j ∈ J(y), whether cj ∈ R
2,

a position for the center of ellipse j, exists such that pi belongs to ellipse j, for all i ∈ I(xj).
If the answer is positive for all j ∈ J(y), then c satisfying (5) exists. (For j /∈ J(y) we have
that xij = 0, i = 1, . . . , n, and any value for cj satisfies (5) provided that constant M in (5)
is large enough.) If the answer is negative for some j ∈ J(y), then c satisfying (5) does not
exist. Therefore, for given x and y, determining whether c such that (x, y, c) satisfies (2–5)
exists reduces to solving the |J(y)| independent bivariate feasibility problems of the form

(cxj − pxi )
2/a2j + (cyj − pyi )

2/b2j ≤ 1, ∀ i ∈ I(xj), (9)

for all j ∈ J(y), or finding that there is at least one j ∈ J(y) such that (9) is infeasible.
Furthermore, if we define

fI(xj)(cj) ≡
∑

i∈I(xj)

max{0, (cxj − pxi )
2/a2j + (cyj − pyi )

2/b2j − 1}2,

for a given j ∈ J(y), solving (9), or deciding (9) is infeasible, is equivalent to finding the global
solution to the optimization problem

Mincj∈R2fI(xj)(cj). (10)
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Problem (10) is a bivariate, convex, continuous and differentiable unconstrained minimization
problem whose global minimizer c∗j can be found using any unconstrained minimization method
devised to find stationary points. If fI(xj)(c

∗
j ) > 0, then the feasibility problem (9) is infeasible.

Otherwise, if fI(xj)(c
∗
j ) vanishes, then c∗j satisfies (9) and it represents a feasible location of

ellipse j to cover points pi for all i ∈ I(xj).
Summing up, for a given (x, y) satisfying (2–4), finding c such that (x, y, c) satisfies (2–5), or

determining that such c does not exist, is an easy problem. Hence, the proposed deterministic
global optimization method to solve problem P1 given by (1–5) basically consists in an efficient
semi-enumerative approach that checks every combination (x, y, c) that satisfies (2–5) to find
one that minimizes the objective function (1). The efficiency of the proposed approach lies on
several procedures described below, built with the intention of reducing the size of the search
tree of combinations of (x, y, c).

3.1 Solving problems with a single ellipse

We start the description of the semi-enumerative approach for solving problem P1 by considering
the case of a single ellipse, i.e. k = 1 and S = {ℓ} for some ℓ ∈ {1, . . . ,m}. Therefore, to
satisfy (2), we must have yℓ = 1 and yj = 0, for all j 6= ℓ, while (3) and (4) are automatically
satisfied by setting xij = 0 for all i = 1, . . . , n and for all j 6= ℓ and for any choice of xiℓ ∈
{0, 1}, i = 1, . . . , n. The idea consists of potentially considering all possible 2n choices for
xℓ ∈ {0, 1}

n, discarding those that certainly produce sub-optimal or infeasible solutions. The
strategy that follows was developed with the intention of being used to solve the problem with
multiple ellipses, i.e. k > 1. If the original problem has, in fact, k = 1, many simplifications can
be done, that will be mentioned at the end of Subsection 3.3.

Consider first the case in which it is already known that there exists a position cℓ for the
center of ellipse ℓ such that it covers points pi1 , pi2 , . . . , pit . In this case, it makes no sense to
check whether a position exists such that the ellipse covers any proper subset of {pi1 , pi2 , . . . , pit},
since the answer is clearly true and those proper subsets are associated to sub-optimal solutions.
Another example of a combination of variables xiℓ that does not need to be checked is the case
in which there are indices i1 and i2 such that xi1,ℓ = xi2,ℓ = 1 and

|pxi1 − pxi2 | > 2aℓ or |pyi1 − pyi2 | > 2bℓ or ‖pi1 − pi2‖2 > 2aℓ, (11)

since, clearly, there is no way for ellipse ℓ to cover any subset of points containing pi1 and pi2 ,
and, therefore, problem (9) is infeasible, or equivalently, the objective function of problem (10)
does not vanish at a global minimizer. There is also another test involving three points pi1 , pi2 ,
and pi3 . Consider the three pairs (r1, h1), (r2, h2), and (r3, h3) of possible bases and heigths of
the triangle determined by those three points. If

ri ≥ 2bℓ and hi ≥ 2bℓ for i = 1, 2, 3, (12)

then there is no way for ellipse ℓ to cover any subset of points containing pi1 , pi2 , and pi3 .
Summing up, considering all possible choices for xℓ ∈ {0, 1}

n means that, for all combinations
that can not be discarded by pre-processing strategies as the ones already described, the global
solution cℓ of the bivariate continuous nonlinear convex optimization problem (10) is computed.
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If cℓ is such that fI(xℓ)(cℓ) vanishes, then (x, y, c) satisfies (2–5) and it is a feasible point for
problem P1. In this case, the value of the objective function (1) of problem P1 is computed
and, if necessary, the incumbent solution is updated. At the end of the process, the strategy
obtains the optimal solution for problem P1 for the particular case of considering only ellipse ℓ.
By repeating this strategy for all possible values of ℓ ∈ {1, . . . ,m}, the optimal solution for
problem P1 with k = 1 can be computed. We now describe the way in which combinations of
xiℓ ∈ {0, 1}, i = 1, . . . , n, are generated and stored.

3.2 Data structure and algorithms for the single ellipse case

All maximal subsets of points that can be covered by a given ellipse ℓ are stored in a tree
structure named Tℓ in which each node represents an appearance of a point pi, i ∈ {1, . . . , n}. In
the tree, a subset S of points, S ⊆ {p1, . . . , pn}, is represented by a walk from a leaf to the root,
that can be transversed in both directions. From the root to a leaf, points appear in increasing
order of their indices. Still regarding the ordering of the tree’s nodes, sibling nodes are saved in
a linked list in increasing order of their indices. Each leaf saves important information related
to the subset it represents: (a) the value of the covering, and (b) the position of ellipse’s center.
In addition, the tree data structure contains several linked lists. There is a linked list of leaves,
sorted in decreasing order by the value of the covering. It means that the first leaf in the list
represents the most valuable covering for ellipse ℓ. There are also n linked list, one for each
pi, i = 1, . . . , n. Each list i links all appearances of point pi in the tree. The tree starts with its
root node, that is a special node unrelated to any point.

Figure 1 illustrates the tree data structure Tℓ for an ellipse ℓ with cost w̃ℓ = 1.2. In this
example, points’ profits are ŵ1 = ŵ6 = ŵ7 = 0.5, ŵ2 = ŵ4 = ŵ5 = ŵ8 = ŵ9 = 1.0, and ŵ3 = 2.0.
In Figure 1, each path from the root to a leaf represents a maximal set of points covered by the
ellipse. For example, the path most to the left represents the set given by points p1, p2, p3, and
p4. The associated leaf shows that the value of this covering is 3.3 and that it corresponds to
placing ellipse ℓ with its center at coordinates (3.0, 1.0)T . The figure also shows that there is a
linked list of leaves sorted in decreasing order by the value of the covering they represent, and
that there are also lists linking the appearances of each point. The list for point p3 is shown as
an example. The lists of the other points are omitted in the figure to avoid an overabundance
of information. Figure 2 illustrates the maximal coverings related to the tree Tℓ of Figure 1.
Ellipse ℓ has semi major axis aℓ = 5 and semi minor axis bℓ = 3.5. The set of demand points
is given by {p1, . . . , p9} = {(12.5, 7.5)T , (17.5, 7.5)T , (10, 5)T , (20, 5)T , (12.5, 10)T , (10, 2.5)T ,
(25, 0)T , (0, 5)T , (5, 6.5)T }.

The described data structure Tℓ facilitates two important tasks in the process of generating
all maximal subsets of points that can be covered by a given ellipse ℓ: (a) to verify whether,
given a subset of points I, there exists another subset S in Tℓ such that I ⊆ S or not, and (b)
in case that such S does not exist, to insert I in Tℓ. Algorithm 1 presents the pseudo-code for
computing all maximal subsets of points that can be covered by a given ellipse ℓ. Algorithm 1
uses recursive Algorithm 2 to compute all subsets of fixed cardinality γ, for γ = n, n− 1, . . . , 1.
A new subset is included in the tree structure only if it is not a subset of another subset already
included. In this way only maximal subsets are generated. Algorithm 2 uses Algorithms 3–4 to
check whether a new subset I should be included in the tree structure or not and, if this is the
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p2 p3
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p4 p5 p9 p9

p3

p8

p9

p4

p7

3.3(
3.0
1.0

) 3.3(
2.5
1.5

) 3.3(
1.98
1.43

) 2.8(
1.99
1.20

) 2.8(
1.0
1.0

) 0.3(
4.43
0.57

)

p1
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p3

p4
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p6

p7

p8

p9

Leaves

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: Tree Tℓ in the figure represents all possible maximal coverings of an ellipse ℓ with
cost w̃ℓ = 1.2. Points’ profits are ŵ1 = ŵ6 = ŵ7 = 0.5, ŵ2 = ŵ4 = ŵ5 = ŵ8 = ŵ9 = 1.0, and
ŵ3 = 2.0.

p1 p2

p3 p4

p5

p6

p7

p8

p9

Figure 2: This figure shows the maximal coverings represented by the tree Tℓ of Figure 1.
Ellipse ℓ has semi major axis aℓ = 5 and semi minor axis bℓ = 3.5. The set of demand points
is given by {p1, . . . , p9} = {(12.5, 7.5)T , (17.5, 7.5)T , (10, 5)T , (20, 5)T , (12.5, 10)T , (10, 2.5)T ,
(25, 0)T , (0, 5)T , (5, 6.5)T }.
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case, it uses Algorithm 5 to insert it. In Algorithm 5, every time a new node s associated to a
point pi is created and inserted in the tree, it is added to the list of appearances of pi. Moreover,
if the new node is a leaf, it is also added to the list of leaves.

Algorithm 1: All maximal subsets of points p1, . . . , pn with profits ŵ1, . . . , ŵn that can
be covered by a given ellipse with semi major axis a, semi minor axis b, and cost w̃.

Input: a, b, w̃, n, pi, ŵi(i = 1, . . . , n).
Output: Each maximal subset is represented by a walk from the root to a leaf of tree T . The

income (profit minus cost) and the ellipse center’s position associated to each maximal
subset are stored in the corresponding leaf.

GenTree(a, b, w̃, n, pi, ŵi(i = 1, . . . , n))
begin1

Set T as an empty tree containing only its special root node.2

for γ = n, . . . , 1 do3

I ← ∅4

GenTreeR(T , a, b, w̃, n, pi, ŵi(i = 1, . . . , n), γ, n, I)5

return T6

end7

3.3 Solving problems with multiple ellipses

In the previous subsections it was tackled the problem of finding all maximal coverings for
every ellipse j ∈ {1, . . . ,m}. It remains to describe how to compute the optimal solution to
problem P1 using exactly k ellipses for a given k, as required by constraint (2). This optimal
solution is computed as a combination of the maximal coverings for the individual ellipses as we
now describe.

For each ellipse j ∈ {1, . . . ,m}, a tree Tj with all the maximal coverings is computed. Each
tree includes a list of the coverings in decreasing order of their value. The idea is to combine those
coverings to build a covering using k ellipses. Algorithm 6 shows how to compute the optimal
combined covering for a fixed given set of k ellipses. Note that the value of the combination
of k coverings, one for each ellipse ℓ1, . . . , ℓk, is bounded from above by the sum of the values
of each individual covering. Both quantities are not necessarily equal since in the combined
covering some points may be covered by more than one ellipse, in which case their profits
must be considered only once. This bound and the fact that the coverings for each individual
ellipse are sorted by decreasing order of their value help to reduce the number of combinations
in Algorithm 6. Algorithm 7 uses Algorithm 6 to check all possible Cm

k = m!/(k!(m − k)!)
combinations of k ellipses and to report the optimal one. If constraint (2) is substituted by (6)
then we obtain problem P2 in which the optimal solution with at most k ellipses is required. In
this case, the most valuable solution among the solutions with exactly k′ ellipses for k′ = 1, . . . , k
is computed.

For the particular case in which k = 1, no combination has to be done and the optimal
solution is given by the feasible solution with maximum income among the m optimal solutions
with a single ellipse, i.e. suboptimal solutions for the individual ellipses play no role in the
solution strategy. It means that, for each ellipse j, only the most valuable covering needs to
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Algorithm 2: All maximal subsets of size γ of points p1, . . . , pn with profits ŵ1, . . . , ŵn

that can be covered by a given ellipse with semi major axis a, semi minor axis b, and
cost w̃.
Input: T , a, b, w̃, n, pi, ŵi(i = 1, . . . , n), γ, nr, I.
Output: All maximal subsets of size γ are added to T .
GenTreeR(T , a, b, w̃, n, pi, ŵi(i = 1, . . . , n), γ, nr, I)
begin1

if |I| < γ then2

if γ ≤ nr + |I| then3

Given i < j ∈ I, let rij
min

and hij
min

be the smallest basis and height of the triangle4

determined by points pi, pj , and pn+1−nr
, respectively. If there exists i < j ∈ I such

that min{rij
min

, hij
min
} ≥ 2b then set Big△ =True. Otherwise, set Big△ =False.

Let dxmax ← maxi∈I |p
x
i − pxn+1−nr

|, dymax ← maxi∈I |p
y
i − pyn+1−nr

|, and5

dmax ← maxi∈I ‖pi − pn+1−nr
‖2.

if dxmax ≤ 2a and dymax ≤ 2b and dmax ≤ 2a and Big△ =False then6

I ← I ∪ {n+ 1− nr}7

GenTreeR(T , a, b, w̃, n, pi, ŵi(i = 1, . . . , n), γ, nr − 1, I)8

I ← I \ {n+ 1− nr}9

GenTreeR(T , a, b, w̃, n, pi, ŵi(i = 1, . . . , n), γ, nr − 1, I)10

else11

if SearchTree(I,T ) = false then12

Compute the global minimizer c̄ = argmin fI(c).13

if fI(c̄) = 0 then14

Compute the profit ᾱ =
∑

i∈I ŵi − w̃ of covering points pi with i ∈ I by the given15

ellipse with cost w̃.
Insert(I,c̄,ᾱ,T )16

end17

Algorithm 3: Check whether there exists a subset S in the tree T such that I ⊆ S.

Input: I, T .
Output: true, if there exists S in T such that I ⊆ S, false, otherwise.
SearchTree(I, T )
begin1

if I = ∅ then2

return true3

Let imin = min{i | i ∈ I} and let Limin
be the list of nodes associated to appearances of pimin

4

in T .
foreach s ∈ Limin

do5

if SearchTreeR(I, T , s) then6

return true7

return false8

end9

be stored in Tj . To perform this task, only Algorithms 1, 2, and 5 are used and a few simple
modifications has to be done to Algorithms 1 and 2 in order to: (a) Save the incumbent solution
with value ᾱmax related the best covering so far obtained; and (b) In lines 12-16 of Algorithm 2,
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Algorithm 4: Check whether there exists a subset S in the subtree of T with root s such
that I ⊆ S.
Input: I, T , s.
Output: true, if there exists S in the subtree of T with root node s such that I ⊆ S, false,

otherwise.
SearchTreeR(I, T , s)
begin1

if I = ∅ then2

return true3

Let pk be the point associated to node s and let imin = min{i | i ∈ I}.4

if imin > k then5

return false6

if imin = k then7

I ← I \ {imin}8

Let Ls be the list of sons of s.9

foreach t ∈ Ls do10

if SearchTreeR(I, T , t) then11

return true12

return false13

end14

Algorithm 5: Insert subset I in tree T .

Input: I, c̄, ᾱ, T .
Output: Updated data structure of T with the new subset I inserted in it.
Insert(I, c̄, ᾱ, T )
begin1

Let i1 < i2 < · · · < i|I| be the elements of I.2

Let s0 be the root node of T and let Ls0 be the list of sons of node s0.3

j ← 14

while ∃ sj ∈ Lsj−1
such that node sj is associated to pij do5

Let Lsj be the list of sons of node sj6

j ← j + 17

for k = j, . . . , |I| do8

Create a new node sk associated to pik and add it to the list Lsk−1
of sons of node sk−1.9

Also add sk to the list of appearances of pik in T .
Save c̄ and ᾱ in the new leaf s|I| and add s|I| to the leaves’ list of T .10

end11

given I, first compute ᾱ and only compute c̄ if ᾱ > ᾱmax. Then, if fI(c̄) = 0, insert (I, c̄, ᾱ) in
T and update the incumbent solution. The fact that ᾱ > ᾱmax assures that there is no set S in
T such that I ⊆ S, which greatly simplifies the strategy and dismiss the usage of Algorithms 3
and 4.
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Algorithm 6: Compute the covering with maximum income using the given fixed set of k
ellipses K = {ℓ1, . . . , ℓk} ⊆ {1, . . . ,m} whose costs are w̃ℓ1 , . . . , w̃ℓk . All maximal subsets of
points p1, . . . , pn that can be covered by ellipse ℓj are stored in the tree Tℓj , for j = 1, . . . , k.
The profits of points p1, . . . , pn are given by ŵ1, . . . , ŵn.

Input: k, Tℓj , w̃ℓj (j = 1, . . . , k), m, n, ŵi(i = 1, . . . , n).
Output: Maximum-income covering using the given fixed subset of k ellipses

K = {ℓ1, . . . , ℓk} ⊆ {1, . . . ,m}. This is a feasible solution for problem P1 and, on
output, it is represented by (x̄, ȳ, c̄). Its value is given by φ̄.

CombinedCovering(k, Tℓj , w̃ℓj (j = 1, . . . , k), m, n, ŵi(i = 1, . . . , n))
begin1

Let Lℓj be the leaves’ list of tree Tℓj for j = 1, . . . , k. Let uℓj be a pointer to a leaf in list Lℓj .2

This leaf is associated to a certain maximal subset of points being covered by ellipse ℓj . Let
I[uℓj ] be the set of indices of the covered points, α[uℓj ] be the covering value (profit of the
covered points minus cost of ellipse ℓj), and c[uℓj ] be the associated position of ellipse ℓj .
for j = 1, . . . , k do3

uℓj ← first(Lℓj )4

φ̄← −∞5

while uℓ1 6= null do6

φub ←
∑k

j=1
α[uℓj ]7

if φub < φ̄ then8

u1 ← next(Lℓ1)9

for j = 2, . . . , k do10

uℓj ← first(Lℓj )11

else12

for t = 1, . . . ,m do13

if ∃ ℓj ∈ K such that t = ℓj then14

ct ← c[uℓj ], yt ← 115

for i = 1, . . . , n do16

if i ∈ I[uℓj ] and i 6∈ I[uℓh ], ∀ ℓh ∈ K such that ℓh < ℓj then17

xit ← 118

else19

xit ← 020

else21

ct ← 0, yt ← 0, xt ← 022

Compute the value of the objective function φ(x, y) of (1–5) given by (8)23

if φ(x, y) > φ̄ then24

φ̄← φ(x, y), (x̄, ȳ, c̄)← (x, y, c)25

uℓk ← next(Lℓk)26

q ← k27

while q > 1 and uℓq = null do28

uℓq ← first(Lℓq ), uℓq−1
← next(Lℓq−1

), q ← q − 129

return (φ̄, x̄, ȳ, c̄)30

end31

3.4 Allowing individual ellipses’ rotations

Problems P3 and P4 are the counterparts of problems P1 and P2, respectively, for the case in
which rotations in the ellipses are allowed. Therefore, P3 corresponds to minimize (1) subject
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Algorithm 7: Compute the solution for problem P1.

Input: k, m, aj , bj , w̃j(j = 1, . . . ,m), n, pi, ŵi(i = 1, . . . , n).
Output: Solution (x∗, y∗, c∗) for problem P1.
SolveP1(k, m, aj , bj , cj(j = 1, . . . ,m), n, pi, wi(i = 1, . . . , n))
begin1

for ℓ = 1, . . . ,m do2

Tℓ ← GenTree(aℓ, bℓ, w̃ℓ, n, pi, ŵi(i = 1, . . . , n))3

φ∗ ← −∞4

foreach {ℓ1, . . . , ℓk} ⊆ {1, . . . ,m} do5

(φ̄, x̄, ȳ, c̄)← CombinedCovering(k, Tℓj , w̃ℓj (j = 1, . . . , k), m, n, ŵi(i = 1, . . . , n))6

if φ̄ > φ∗ then7

(φ∗, x∗, y∗, c∗)← (φ̄, x̄, ȳ, c̄)8

return (φ∗, x∗, y∗, c∗)9

end10

to (2–4,7), while P4 corresponds to minimize (1) subject to (3,4,6,7).
Defining

(
v1(cj , θj)
v2(cj , θj)

)
≡

(
1/aj 0
0 1/bj

)(
cos θj − sin θj
sin θj cos θj

)(
cxj − pxi
cyj − pyi

)
, (13)

equation (7) can be re-written as

v1(cj , θj)
2 + v2(cj , θj)

2 ≤ 1 + (1− xij)M, i = 1, . . . , n, j = 1, . . . ,m. (14)

Therefore, for given x and y satisfying (2–4) (or (3,4,6)), to determine whether c and θ exist such
that (x, y, c, θ) satisfies (2–4,7) (or (3,4,6,7)) reduces to solving the |J(y)| independent trivariate
feasibility problems of the form

v1(cj , θj)
2 + v2(cj , θj)

2 ≤ 1, ∀ i ∈ I(xj), (15)

for all j ∈ J(y). Defining

gI(xj)(cj , θj) ≡
∑

i∈I(xj)

max{0, v1(cj , θj)
2 + v2(cj , θj)

2 − 1}2, (16)

solving (15) is equivalent to finding the global solution to

MingI(xj)(cj , θj). (17)

The main difference with respect to the previous situation (for problems P1 and P2) is that
gI(xj)(cj , θj) is a non-convex continuous and differentiable function whose global minimizer
must be found. However, a property of the objective function (16) makes problem (17) easier
to be solved: objective function (16) is a convex function of cj when θj is fixed.

There is another small difference between problems P1-P2 and P3-P4 that is related to
the ellipses’ rotation. In problems P1 and P2, inequalities (11,12) are used to discard subsets
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of points that can not be covered by a given ellipse, avoiding the task of solving feasibility
problem (9). When rotations are allowed, it is trivial to see that feasibility problem (15) is
infeasible in the case in which there exist points pi1 and pi2 such that

‖pi1 − pi2‖2 > 2aℓ. (18)

Therefore, lines 5–6 in Algorithm 2 must be modified to replace (11) by (18), while keeping (12).
Other than that, the whole strategy depicted by Algorithms 1–7, can also be used to solve
problems P3 and P4 with no further modifications.

4 Numerical experiments

Algorithms 1–7 were coded in C language and compiled with gcc (GCC 4.4.5). The compiler
optimization option -O4 was adopted. All the experiments were run on a 3.0GHz Intel Core 2
Quad Q950 with 4.0GB of RAM memory and a 64bits Linux Operating System (Ubuntu 11.10).
Codes are available at http://www.ime.usp.br/∼egbirgin/ for benchmarking purposes.

In our implementation, the unconstrained convex continuous optimization problem (10) is
solved with Algencan [4, 5]. Algencan is an NLP solver for smooth nonlinear programming prob-
lems with general constraints that, when applied to (10), roughly speaking reduces to the Newton
method (see [6, 9, 10] for details). Algencan is part of the TANGO Project and is also available at
http://www.ime.usp.br/∼egbirgin/tango/. The global solution to the unconstrained non-convex
continuous optimization problem (17) is computed with the αBBmethod introduced in [1, 2, 3, 7]
and implemented in [8] for bound-constrained minimization. Since bound constraints for the
variables θj ∈ R and cj ∈ R

2 are needed, we considered −π/2 ≤ θj ≤ π/2, maxi∈I(xj){p
x
i }−aj ≤

cxj ≤ mini∈I(xj){p
x
i } + aj , and maxi∈I(xj){p

y
i } − aj ≤ cyj ≤ mini∈I(xj){p

y
i } + aj . These bound

constraints define a three-dimensional box such that, if gI(xj)(·) vanishes at the global mini-
mizers to problem (17), then the box contains a global minimizer. Bounds for θj are straight-
forward, while bounds for the center of the ellipse are not very intuitive and require further
comments. The argument that follows shows that the given bounds do not eliminate any
feasible point of (17) at which the objective function gI(xj)(·) vanishes. Consider, for exam-
ple, the bound cxj ≤ mini∈I(xj){p

x
i } + aj and let pxt = argmini∈I(xj){p

x
i }. If cj is such that

cxj > mini∈I(xj){p
x
i }+ aj = pxt + aj then the ellipse can not contain pt and, in consequence, the

objective function does not vanishes at cj . The other three cases are analogous.
A few words regarding the precision of the computed solutions are in order. We will refer to

problem P1 but the same claims apply to the other problems too. In problem P1, the objective
function (1) and constraints (2–4) involve only binary variables and, hence, the objective function
value will be computed up to the machine precision as well as the constraints will be satisfied
up to the machine precision. On the other hand, constraints (5) involves continuous variables.
By using the default values for Algencan and the αBB method, constraint (5) will be satisfied
with precision 10−8, i.e. reported solutions to instances of problem P1 will satisfy

(cxj − pxi )
2/a2j + (cyj − pyi )

2/b2j ≤ 1 + (1− xij)M + ε, i = 1, . . . , n, j = 1, . . . ,m,

where ε = 10−8.
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4.1 Instances of problems P1 and P3 using data taken from [11]

In a first set of experiments, we considered six instances of problem P1 presented in [11] for which
the availability of their data allows reproducibility. These instances are based on three sets of
points P1, P2, and P3 with |P1| = 25, |P2| = 50, and |P3| = 100. Points are randomly generated
with uniform distribution within the two-dimensional box [0, 50]2 and all of them have unitary
profit. Three ellipses with semi major and semi minor axes (a1, b1) = (6, 4), (a2, b2) = (8, 5),
and (a3, b3) = (10, 6), and costs w̃1 = 2.0, w̃2 = 3.2, and w̃3 = 4.8, respectively, are considered
in all the six instances, i.e. m = 3 in all cases. The six instances consist on considering each one
of the three sets of points, P1, P2, and P3, with k = 1 and k = 2. In addition, we also considered
the case k = 3. The sets of points that complete the definition of the instances can be found
in [11] (pp. 207–208). Table 1 shows the results. In the table, the first four columns are related
to the instances definition and are self-explanatory; “Selected ellipses” means ellipses that are
selected to be used in the optimal solution, and “Optimal income” corresponds to the value of
the global minimum. The remaining columns show some figures related to the performance of
the introduced method. Columns “Trees’ figures: # nodes and # leaves” display the sum of the
number of nodes and leaves in the three generated trees (one for each ellipse). Columns “# NLP
subproblems: feasible and infeasible” show the number of times an NLP solver was called to
solve feasible and infeasible NLP feasibility problems, respectively. Finally, “CPU Time” shows
the CPU time in seconds needed to solve each instance. Figure 3 completes the description of
the solutions found by illustrating the location of the selected ellipses and which point is covered
by each ellipse.

It is important to notice that the solutions found in this experiment to the six instances
taken from [11] are the same as the ones reported in [11]. It shows that the heuristic method
present in [11] is capable to find optimal solutions for the present set of instances. Regarding the
performance of the introduced method, figures in the table show that the size of the generated
trees is very moderate. In principle, the number of feasible NLP solved subproblems should
coincide with the number of leaves in the trees. The table shows that the former number is a
little bit smaller than the later. For instances of problem P1, in which rotations of the ellipses are
not allowed, the position of the ellipse to cover a given set of points can be trivially determined
in at least two situation: (i) when the set of points consists in a solely point; and (b) when the set
of points consists in two points whose distance is less than or equal to twice the semi minor axis
of the ellipse. In this cases, the NLP solver is not used to solve those trivial feasibility problems.
The same arguments applies to problem P2. In addition to those cases, in problems P3 and P4
it also trivial the case of a set of two points whose distance is not grater than twice the semi
major axis of the ellipse. Finally, regarding the figures in the table, the huge amount of infeasible
feasibility subproblems being solved by the NLP solver shows that this is the bottleneck of the
introduced method. In this sense, more sophisticated strategies than the ones represented by
inequalities (11), (12), and (18), developed to determine in advance that a feasible subproblem
is infeasible, would help to improve the performance of the method.

In a second set of experiments, we considered the same data of the instances described in
the paragraph above, but as input data for instances of problem P3, i.e. allowing individual
angles of rotation for the ellipses1. Table 2 shows the results. In the table, “–” means that the

1Note the abuse of notation as we will use the same name for instances of problems P1 and P3 based on the
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method attained the CPU time limit of 12 hours. As expected, the optimal incomes for the
instances of problem P3 are greater than or equal to the optimal incomes of the corresponding
instances of problem P1. In the case of problem P3, unconstrained nonlinear minimization
subproblem (17) is non-convex and, even being a problem with a small number of variables,
finding a global solution is much more expensive than in the previous case. For that reason,
instances CM8 and CM9 were not solved within a CPU time limit of 12 hours. As an alternative,
we considered an heuristic approach: a global solution of subproblem (17) was approximated by
the stationary point computed with only one call the local solver Algencan. Table 3 and Figure 4
show the results. Comparing Tables 3 and 2 it can be seen that this simple heuristic strategy
found the known global optimal solution for instances CM1–CM7. In case the results would
have been unsatisfactory, more than a solely run of the local solver Algencan could have been
used, configuring a multistart stochastic global optimization strategy. Therefore, we refer to this
method as a stochastic global optimization approach in contrast with the determinstic global
optimization approach that uses the αBB method to find a global solution to the subproblems.

4.2 Instances of problems P2 and P4 using data taken from [11]

Problem P1 corresponds to require that the number of used ellipses must be equal to k. As it
can be seen in Table 1, instances CM1–CM3 are given by the set of points P1 with n = |P1| = 25,
the same m = 3 ellipses, and k = 1, 2, 3, respectively. As more ellipses are allowed to be used
in CM2 than in CM1, it might be expected the optimal income of CM2 to be larger than the
optimal income of CM1; and the same situation with CM3 with respect to CM2 (and also with
the subsets CM4–CM6 and CM7–CM9). However, the numerical experiments in Table 1 show
that the optimal income of CM3 is smaller than the optimal income of CM2. This is due to the
fact that, in CM3, being forced to use k = 3 ellipses, the third ellipse with (a3, b3) = (10, 6)T and
w̃3 = 4.8 is used to cover four points with unitary profit (see Figure 3), presenting a negative
profit of 4 − 4.8 = −0.8, that is the difference between the optimal incomes of instances CM2
and CM3. In all the other situations, using more ellipses is in fact more profitable and the
described unexpected situation does not occur. Consider now the case of problem P2, in which
the number of used ellipses is not forced to be equal to k, but to be not greater than k. The
described scenario implies that the optimal solution of instance CM3 of problem P2 coincide
with the optimal solution of instance CM2 of problem P1; while for the other eight instances
the solutions to problems P1 and P2 coincide. For the nine considered instances, Table 3 shows
that the optimal solutions to instances of problem P4 coincide with the optimal solutions to the
corresponding instances of problems P3.

4.3 Other instances

To further analyse the performance of the proposed methods, new sets of instances like the ones
suggested in [11] were generated. We considered instances based on ten different sets of points,
namely, Q1, . . . , Q10, with n ∈ {10, 20, . . . , 100} unitary-profit points randomly generated with
uniform distribution within the two-dimensional box [0, 50]2. The five considered ellipses have
semi major and minor axes (a1, b1) = (1, 1), (a2, b2) = (3, 2), (a3, b3) = (5, 3), (a4, b4) = (7, 4),

same data.
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Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

CM1
P1 25 3

1 1 2.0 4 1 1 1 0.00
CM2 2 1,2 3.8 151 59 49 158 0.11
CM3 3 1,2,3 3.0 151 59 49 158 0.11
CM4

P2 50 3
1 3 4.2 15 2 2 34 0.10

CM5 2 1,3 8.2 514 140 133 4,925 4.59
CM6 3 1,2,3 10.0 514 140 133 4,925 4.60
CM7

P3 100 3
1 3 12.0 40 3 3 212 71.61

CM8 2 2,3 20.0 2,388 410 409 1,432,878 2,772.33
CM9 3 1,2,3 27.0 2,388 410 409 1,432,878 2,786.42

Table 1: Numerical results of the deterministic global optimization method applied to the six
instances of problem P1 taken from [11] (CM1, CM2, CM4, CM5, CM7, CM8) plus the three
additional instances with k = 3 (CM3, CM6, CM9).

Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

CM1
P1 25 3

1 2 2.8 10 2 2 2 1.66
CM2 2 1,2 4.8 237 88 64 174 152.42
CM3 3 1,2,3 5.0 237 88 64 174 177.27
CM4

P2 50 3
1 2 5.8 15 2 2 346 200.87

CM5 2 2,3 10.0 1,038 270 214 26,048 27,146.31
CM6 3 1,2,3 13.0 1,038 270 214 26,048 27,302.67
CM7

P3 50 3
1 3 13.2 42 3 3 774 665.33

CM8 2 – – – – – – –
CM9 3 – – – – – – –

Table 2: Numerical results of the deterministic global optimization method applied to instances
CM1–CM9 of problem P3.

Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

CM1
P1 25 3

1 2 2.8 10 2 2 2 0.00
CM2 2 1,2 4.8 249 93 71 197 0.33
CM3 3 1,2,3 5.0 249 93 71 197 0.33
CM4

P2 50 3
1 2 5.8 15 2 2 346 1.16

CM5 2 2,3 10.0 1,124 295 287 26,107 58.64
CM6 3 1,2,3 13.0 1,124 295 287 26,107 69.80
CM7

P3 100 3
1 3 13.2 42 3 3 774 369.68

CM8 2 2,3 22.0 8,452 1,564 1,561 7,678,669 27,185.65
CM9 3 1,2,3 28.0 8,452 1,564 1,561 7,678,669 27,053.48

Table 3: Numerical results of the heuristic or stochastic global optimization method applied to
instances CM1–CM9 of problem P3.
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 3: Graphical representation of the solutions found by the deterministic global optimiza-
tion method applied to the six instances of problem P1 taken from [11] (CM1, CM2, CM4,
CM5, CM7, CM8) plus the three additional instances with k = 3 (CM3, CM6, CM9). (a)–
(c) correspond to instances CM1–CM3, (d)–(f) correspond to instances CM4–CM6, and (g)–(i)
correspond to instances CM7–CM9.
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 4: Graphical representation of the solutions found by the heuristic or stochastic global
optimization method applied to the six instances of problem P1 taken from [11] (CM1, CM2,
CM4, CM5, CM7, CM8) plus the three additional instances with k = 3 (CM3, CM6, CM9).
(a)–(c) correspond to instances CM1–CM3, (d)–(f) correspond to instances CM4–CM6, and
(g)–(i) correspond to instances CM7–CM9.
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and (a5, b5) = (9, 5), and profits w̃1 = 0.1, w̃2 = 0.6, w̃3 = 1.5, w̃4 = 2.8, and w̃5 = 4.5,
respectively. Combining the ten sets of points, with m ∈ {3, 4, 5} (i.e, the first three, the first
four, and all the five ellipses) and k ∈ {1, . . . ,m}, we totalized 120 instances. Instances will be
named AB001, . . . , AB120 from now on, and are available at http://www.ime.usp.br/∼egbirgin/
for benchmarking purposes.

Tables 4 and 5 show the results of solving instances AB001–AB120 of problem P1 by the
deterministic global optimization approach, while Tables 6 and 7 show the results of solving in-
stances AB001–AB120 of problem P3. As expected, optimal incomes of instances of problem P3
are larger than or equal to the optimal incomes of the corresponding instances of problem P1.
Note that optimal solutions of some large instances of problem P3 were not found by the method
within the CPU time limit of twelve hours. Tables 8 and 9 show the results of solving the same
instances of problem P3 by the stochastic approach. Much less CPU time was needed by the
latter method to find the known optimal solutions of all the instances the deterministic approach
was able to solve.

As already explained, the observation of Tables 4–9 allows us to identify the instances for
which solving problem P2 or P4 delivers an optimal income larger than its corresponding instance
of problem P1 or P3, respectively. Those are the instances for which the constraint that requires
the number of used ellipses to be equal to k forces the usage of an ellipse whose cost does not
compensate the profit of the points it covers. Tables 10 and 11 show the results of solving
those selected instances of problems P2 and P4, respectively, using the deterministic global
optimization approach, while Table 12 shows the results of solving those selected instances of
problems P4 by the heuristic approach. For the remaining instances, numerical results would
coincide with the ones already reported in the previous tables. Figure 5 shows solutions to
instance AB024 of problems P1–P4. Tables 4–12 indicate that the optimal incomes related to
solutions depicted on Figures 5(a–d) are 2.5, 3.5 4.8, and 5.0, respectively. The tables and
the graphics illustrate that, when the problem formulation allows at most k ellipses to be used
instead of exactly k, optimal solutions associated to larger incomes may be found.

5 Concluding remarks

Covering problems with ellipses were considered in the present work. Deterministic and stochas-
tic global optimization methods were developed for different variants of the covering problem.
The introduced deterministic method is able to solve instances of the problem presented in [11]
in which rotations of the ellipses are not allowed. Numerical experiments show that the heuristic
method presented in [11] found a global solution in all the six considered instances.

As suggested in [11], the situation in which each ellipse has an individual angle of rotation
was also tackled in the present work. Since NLP subproblems are non-convex in this case, the
problem is harder than the one in which ellipses axes are fixed (being parallel to the Cartesian
axes or fixed at any arbitrary angle). The introduced deterministic global optimization method
was able to find an optimal solution for small and moderate-size instances of the problem, while
the stochastic global optimization version of the method found the optimal solutions to all the
small and moderate-size instances and delivered “reasonable” solutions to the larger instances.
As the quality of the solution delivered in the larger instances remains to be determined, those
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(a) (b)

(c) (d)

Figure 5: Graphical representation of the solutions found to instance AB024. (a) Problem P1,
i.e. no rotations and exactly 5 ellipses, (b) Problem P3, i.e. rotations allowed and exactly
5 ellipses, (c) Problem P2, i.e. no rotations and at most 5 ellipses, and (d) Problem P4, i.e.
rotations allowed and at most 5 ellipses.
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Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB001
Q1 10 3

1 2 1.4 4 2 2 0 0.00
AB002 2 1,2 2.3 30 27 3 2 0.00
AB003 3 1,2,3 2.8 30 27 3 2 0.00
AB004

Q1 10 4

1 1 0.9 5 3 0 1 0.00
AB005 2 1,3 1.4 40 36 0 2 0.00
AB006 3 1,2,3 1.8 40 36 0 2 0.00
AB007 4 1,2,3,4 1.0 40 36 0 2 0.00
AB008

Q1 10 5

1 1 0.9 8 4 2 6 0.00
AB009 2 1,3 1.4 60 48 11 14 0.00
AB010 3 1,2,3 1.8 60 48 11 14 0.00
AB011 4 1,2,3,4 1.0 60 48 11 14 0.00
AB012 5 1,2,3,4,5 -1.5 60 48 11 14 0.00
AB013

Q2 20 3
1 2 1.4 4 2 1 0 0.00

AB014 2 1,2 2.3 61 53 4 1 0.00
AB015 3 1,2,3 2.8 61 53 4 1 0.00
AB016

Q2 20 4

1 3 1.5 6 2 2 2 0.00
AB017 2 2,3 2.9 91 65 16 14 0.00
AB018 3 1,2,3 3.8 91 65 16 14 0.00
AB019 4 1,2,3,4 4.0 91 65 16 14 0.00
AB020

Q2 20 5

1 2 2.4 13 4 4 5 0.00
AB021 2 2,3 3.9 112 75 20 20 0.02
AB022 3 1,2,3 4.8 112 75 20 20 0.01
AB023 4 1,2,3,4 4.0 112 75 20 20 0.01
AB024 5 1,2,3,4,5 2.5 112 75 20 20 0.01
AB025

Q3 30 3
1 3 2.5 4 1 1 0 0.00

AB026 2 2,3 4.9 101 67 16 10 0.00
AB027 3 1,2,3 6.8 101 67 16 10 0.01
AB028

Q3 30 4

1 3 2.5 9 2 2 4 0.00
AB029 2 2,3 4.9 156 93 31 52 0.03
AB030 3 2,3,4 6.1 156 93 31 52 0.04
AB031 4 1,2,3,4 7.0 156 93 31 52 0.03
AB032

Q3 30 5

1 3 2.5 15 3 3 8 0.00
AB033 2 2,3 4.9 225 110 51 196 0.14
AB034 3 2,3,4 7.1 225 110 51 196 0.15
AB035 4 1,2,3,4 9.0 225 110 51 196 0.15
AB036 5 1,2,3,4,5 9.5 225 110 51 196 0.15
AB037

Q4 40 3
1 3 2.5 4 1 1 6 0.00

AB038 2 2,3 4.9 148 95 29 36 0.02
AB039 3 1,2,3 6.8 148 95 29 36 0.02
AB040

Q4 40 4

1 4 5.2 8 1 1 0 0.00
AB041 2 2,4 7.1 216 114 43 191 0.16
AB042 3 1,3,4 8.6 216 114 43 191 0.16
AB043 4 1,2,3,4 10.0 216 114 43 191 0.16
AB044

Q4 40 5

1 5 3.5 8 1 1 0 0.01
AB045 2 2,5 7.0 323 139 75 227 0.17
AB046 3 3,4,5 9.2 323 139 75 227 0.16
AB047 4 1,3,4,5 11.1 323 139 75 227 0.16
AB048 5 1,2,3,4,5 12.5 323 139 75 227 0.16
AB049

Q5 50 3
1 3 5.5 7 1 1 1 0.01

AB050 2 1,3 7.9 218 113 49 210 0.18
AB051 3 1,2,3 9.8 218 113 49 210 0.17
AB052

Q5 50 4

1 4 5.2 8 1 1 2 0.02
AB053 2 3,4 8.7 336 150 79 1,020 0.80
AB054 3 2,3,4 11.1 336 150 79 1,020 0.80
AB055 4 1,2,3,4 13.0 336 150 79 1,020 0.80
AB056

Q5 50 5

1 5 3.5 8 1 1 7 0.02
AB057 2 2,5 6.9 482 198 118 1,137 0.89
AB058 3 2,3,5 9.4 482 198 118 1,137 0.90
AB059 4 2,3,4,5 11.6 482 198 118 1,137 0.91
AB060 5 1,2,3,4,5 13.5 482 198 118 1,137 0.93

Table 4: Numerical results of the deterministic global optimization method applied to instances
AB001–AB120 of problem P1.
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Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB061
Q6 60 3

1 3 3.5 5 1 1 0 0.00
AB062 2 2,3 5.9 248 134 55 81 0.07
AB063 3 1,2,3 7.8 248 134 55 81 0.06
AB064

Q6 60 4

1 4 5.2 8 1 1 8 0.05
AB065 2 3,4 8.7 427 185 99 1,116 0.87
AB066 3 2,3,4 12.1 427 185 99 1,116 0.88
AB067 4 1,2,3,4 14.0 427 185 99 1,116 0.87
AB068

Q6 60 5

1 5 4.5 9 1 1 41 0.16
AB069 2 3,5 9.0 665 258 165 4,393 3.90
AB070 3 2,3,5 12.4 665 258 165 4,393 3.88
AB071 4 2,3,4,5 14.6 665 258 165 4,393 3.90
AB072 5 1,2,3,4,5 16.5 665 258 165 4,393 4.12
AB073

Q7 70 3
1 3 4.5 6 1 1 2 0.02

AB074 2 2,3 7.9 314 161 75 268 0.20
AB075 3 1,2,3 9.8 314 161 75 268 0.21
AB076

Q7 70 4

1 4 5.2 8 1 1 4 0.03
AB077 2 3,4 9.7 469 201 114 918 0.80
AB078 3 2,3,4 13.1 469 201 114 918 0.73
AB079 4 1,2,3,4 16.0 469 201 114 918 0.79
AB080

Q7 70 5

1 5 5.5 10 1 1 78 0.30
AB081 2 3,5 10.0 808 266 187 6,220 6.75
AB082 3 3,4,5 14.2 808 266 187 6,220 6.76
AB083 4 2,3,4,5 17.6 808 266 187 6,220 7.12
AB084 5 1,2,3,4,5 19.5 808 266 187 6,220 7.07
AB085

Q8 80 3
1 3 4.5 6 1 1 0 0.02

AB086 2 2,3 7.9 343 178 81 173 0.14
AB087 3 1,2,3 10.8 343 178 81 173 0.17
AB088

Q8 80 4

1 4 7.2 10 1 1 4 0.20
AB089 2 3,4 12.7 713 260 161 4,851 5.11
AB090 3 2,3,4 16.1 713 260 161 4,851 5.25
AB091 4 1,2,3,4 18.0 713 260 161 4,851 5.10
AB092

Q8 80 5

1 4 6.2 19 2 2 94 0.59
AB093 2 4,5 10.7 1,079 365 251 13,882 17.20
AB094 3 3,4,5 15.2 1,079 365 251 13,882 17.49
AB095 4 2,3,4,5 18.6 1,079 365 251 13,882 18.64
AB096 5 1,2,3,4,5 19.5 1,079 365 251 13,882 17.42
AB097

Q9 90 3
1 3 5.5 7 1 1 1 0.03

AB098 2 2,3 9.9 451 216 110 520 0.61
AB099 3 1,2,3 11.8 451 216 110 520 0.50
AB100

Q9 90 4

1 4 6.2 9 1 1 31 0.24
AB101 2 3,4 10.7 739 292 188 3,537 4.30
AB102 3 2,3,4 14.1 739 292 188 3,537 4.26
AB103 4 1,2,3,4 17.0 739 292 188 3,537 4.32
AB104

Q9 90 5

1 4 8.2 23 2 2 18 1.80
AB105 2 4,5 12.7 1,410 417 311 41,337 56.37
AB106 3 3,4,5 16.2 1,410 417 311 41,337 56.71
AB107 4 2,3,4,5 19.6 1,410 417 311 41,337 58.52
AB108 5 1,2,3,4,5 21.5 1,410 417 311 41,337 58.13
AB109

Q10 100 3
1 3 5.5 7 1 1 11 0.08

AB110 2 2,3 10.9 541 249 139 781 1.05
AB111 3 1,2,3 13.8 541 249 139 781 0.96
AB112

Q10 100 4

1 4 7.2 10 1 1 35 0.76
AB113 2 3,4 12.7 1,011 339 239 13,614 17.87
AB114 3 2,3,4 17.1 1,011 339 239 13,614 17.84
AB115 4 1,2,3,4 20.0 1,011 339 239 13,614 17.58
AB116

Q10 100 5

1 5 8.5 13 1 1 287 13.16
AB117 2 3,5 16.0 1,814 495 380 183,136 293.94
AB118 3 3,4,5 22.2 1,814 495 380 183,136 298.43
AB119 4 2,3,4,5 25.6 1,814 495 380 183,136 291.37
AB120 5 1,2,3,4,5 27.5 1,814 495 380 183,136 293.73

Table 5: Numerical results of the deterministic global optimization method applied to instances
AB001–AB120 of problem P1 (cont.).
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Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB001
Q1 10 3

1 2 1.4 4 2 0 0 0.00
AB002 2 1,2 2.3 33 28 0 0 0.00
AB003 3 1,2,3 2.8 33 28 0 0 0.00
AB004

Q1 10 4

1 2 1.4 6 3 0 0 0.00
AB005 2 1,2 2.3 42 34 0 0 0.00
AB006 3 1,2,3 2.8 42 34 0 0 0.00
AB007 4 1,2,3,4 2.0 42 34 0 0 0.00
AB008

Q1 10 5

1 2 1.4 10 4 2 8 6.53
AB009 2 1,2 2.3 74 53 9 12 9.03
AB010 3 1,2,3 2.8 74 53 9 12 9.70
AB011 4 1,2,3,4 2.0 74 53 9 12 8.20
AB012 5 1,2,3,4,5 -0.5 74 53 9 12 8.20
AB013

Q2 20 3
1 3 1.5 3 1 1 0 0.00

AB014 2 2,3 2.9 65 52 2 0 0.00
AB015 3 1,2,3 3.8 65 52 2 0 0.00
AB016

Q2 20 4

1 3 1.5 7 2 2 3 2.36
AB017 2 2,3 2.9 116 74 16 9 7.70
AB018 3 2,3,4 4.1 116 74 16 9 7.62
AB019 4 1,2,3,4 5.0 116 74 16 9 7.78
AB020

Q2 20 5

1 2 2.4 14 4 4 3 2.10
AB021 2 2,3 3.9 141 85 20 21 13.74
AB022 3 1,2,3 4.8 141 85 20 21 14.43
AB023 4 1,2,3,4 5.0 141 85 20 21 13.40
AB024 5 1,2,3,4,5 3.5 141 85 20 21 14.45
AB025

Q3 30 3
1 3 3.5 5 1 1 0 0.00

AB026 2 2,3 5.9 119 74 15 10 8.27
AB027 3 1,2,3 7.8 119 74 15 10 8.68
AB028

Q3 30 4

1 3 2.5 9 2 2 15 11.43
AB029 2 2,3 4.9 216 115 46 127 121.16
AB030 3 2,3,4 7.1 216 115 46 127 122.57
AB031 4 1,2,3,4 8.0 216 115 46 127 123.31
AB032

Q3 30 5

1 5 2.5 7 1 1 4 5.51
AB033 2 3,5 5.0 350 151 80 288 313.50
AB034 3 2,3,5 7.4 350 151 80 288 320.39
AB035 4 1,2,3,5 9.3 350 151 80 288 312.91
AB036 5 1,2,3,4,5 9.5 350 151 80 288 321.95
AB037

Q4 40 3
1 3 3.5 5 1 1 1 1.22

AB038 2 2,3 6.9 165 97 23 26 30.46
AB039 3 1,2,3 8.8 165 97 23 26 29.66
AB040

Q4 40 4

1 4 5.2 8 1 1 0 0.00
AB041 2 3,4 7.7 297 144 64 189 234.73
AB042 3 1,3,4 9.6 297 144 64 189 227.60
AB043 4 1,2,3,4 11.0 297 144 64 189 233.56
AB044

Q4 40 5

1 5 3.5 8 1 1 8 10.40
AB045 2 3,5 7.0 571 219 130 1144 1313.65
AB046 3 2,3,4 10.1 571 219 130 1144 1280.58
AB047 4 1,2,3,4 12.0 571 219 130 1144 1296.32
AB048 5 1,2,3,4,5 13.5 571 219 130 1144 1269.12
AB049

Q5 50 3
1 3 7.5 9 1 1 1 0.83

AB050 2 2,3 9.9 292 139 55 700 762.71
AB051 3 1,2,3 11.8 292 139 55 700 749.34
AB052

Q5 50 4

1 4 5.2 8 1 1 35 33.84
AB053 2 3,4 9.7 568 214 127 2524 2307.74
AB054 3 2,3,4 12.1 568 214 127 2524 2371.22
AB055 4 1,2,3,4 14.0 568 214 127 2524 2310.90
AB056

Q5 50 5

1 5 4.5 9 1 1 7 9.92
AB057 2 3,5 8.0 903 313 212 2977 3271.87
AB058 3 2,3,5 11.4 903 313 212 2977 3377.17
AB059 4 2,3,4,5 14.6 903 313 212 2977 3275.01
AB060 5 1,2,3,4,5 16.5 903 313 212 2977 3392.49

Table 6: Numerical results of the deterministic global optimization method applied to instances
AB001–AB120 of problem P3.
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Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB061
Q6 60 3

1 3 4.5 6 1 1 6 8.40
AB062 2 2,3 7.9 357 179 81 145 171.71
AB063 3 1,2,3 9.8 357 179 81 145 166.30
AB064

Q6 60 4

1 4 6.2 9 1 1 34 57.23
AB065 2 3,4 10.7 819 298 176 6827 7857.43
AB066 3 2,3,4 14.1 819 298 176 6827 7795.17
AB067 4 1,2,3,4 16.0 819 298 176 6827 7601.76
AB068

Q6 60 5

1 5 6.5 11 1 1 35 32.24
AB069 2 3,5 11.0 1308 417 286 22871 24766.92
AB070 3 3,4,5 14.2 1308 417 286 22871 25462.20
AB071 4 2,3,4,5 16.6 1308 417 286 22871 26526.68
AB072 5 1,2,3,4,5 18.5 1308 417 286 22871 25217.38
AB073

Q7 70 3
1 3 5.5 7 1 1 3 3.86

AB074 2 2,3 8.9 492 220 110 497 517.73
AB075 3 1,2,3 10.8 492 220 110 497 502.58
AB076

Q7 70 4

1 4 6.2 9 1 1 5 6.66
AB077 2 3,4 11.7 786 296 179 1667 1853.19
AB078 3 2,3,4 16.1 786 296 179 1667 1888.11
AB079 4 1,2,3,4 19.0 786 296 179 1667 1865.49
AB080

Q7 70 5

1 5 7.5 12 1 1 14 12.18
AB081 2 4,5 12.7 1739 501 377 29086 36013.01
AB082 3 3,4,5 17.2 1739 501 377 29086 36439.96
AB083 4 2,3,4,5 20.6 1739 501 377 29086 36264.07
AB084 5 1,2,3,4,5 23.5 1739 501 377 29086 38871.69
AB085

Q7 80 3
1 3 5.5 7 1 0 1 0.03

AB086 2 3,2 8.9 500 229 110 245 221.65
AB087 3 3,2,1 11.8 500 229 110 245 251.58
AB088

Q7 80 4

1 4 8.2 11 1 0 18 26.42
AB089 2 4,3 13.7 1491 459 312 19438 22026.24
AB090 3 4,3,2 17.1 1491 459 312 19438 22167.69
AB091 4 4,3,2,1 19.0 1491 459 312 19438 22824.37
AB092

Q7 80 5

1 5 6.5 11 1 1 691 721.11
AB093 2 – – – – – – –
AB094 3 – – – – – – –
AB095 4 – – – – – – –
AB096 5 – – – – – – –
AB097

Q7 90 3
1 3 5.5 7 1 0 9 5.34

AB098 2 3,2 9.9 738 319 179 1022 1055.14
AB099 3 3,2,1 11.8 738 319 179 1022 1043.77
AB100

Q7 90 4

1 4 7.2 10 1 0 3 2.45
AB101 2 4,3 12.7 1417 489 350 7173 8284.02
AB102 3 4,3,2 16.1 1417 489 350 7173 8154.56
AB103 4 4,3,2,1 19.0 1417 489 350 7173 8122.51
AB104

Q7 90 5

1 5 10.5 15 1 1 72 120.50
AB105 2 – – – – – – –
AB106 3 – – – – – – –
AB107 4 – – – – – – –
AB108 5 – – – – – – –
AB109

Q7 100 3
1 3 7.5 9 1 1 4 4.36

AB110 2 3,2 12.9 842 363 214 1721 1789.56
AB111 3 3,2,1 15.8 842 363 214 1721 1748.79
AB112

Q7 100 4

1 4 8.2 11 1 1 270 366.45
AB113 2 – – – – – – –
AB114 3 – – – – – – –
AB115 4 – – – – – – –
AB116

Q7 100 5

1 5 9.5 14 1 1 7316 6725.64
AB117 2 – – – – – – –
AB118 3 – – – – – – –
AB119 4 – – – – – – –
AB120 5 – – – – – – –

Table 7: Numerical results of the deterministic global optimization method applied to instances
AB001–AB120 of problem P3 (cont.).
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Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB001
Q1 10 3

1 2 1.4 4 2 0 0 0.00
AB002 2 1,2 2.3 33 28 0 0 0.00
AB003 3 1,2,3 2.8 33 28 0 0 0.00
AB004

Q1 10 4

1 2 1.4 6 3 0 0 0.00
AB005 2 1,2 2.3 42 34 0 0 0.00
AB006 3 1,2,3 2.8 42 34 0 0 0.00
AB007 4 1,2,3,4 2.0 42 34 0 0 0.00
AB008

Q1 10 5

1 2 1.4 10 4 2 8 0.01
AB009 2 1,2 2.3 74 53 11 10 0.01
AB010 3 1,2,3 2.8 74 53 11 10 0.01
AB011 4 1,2,3,4 2.0 74 53 11 10 0.01
AB012 5 1,2,3,4,5 -0.5 74 53 11 10 0.01
AB013

Q2 20 3
1 3 1.5 3 1 1 0 0.00

AB014 2 2,3 2.9 65 52 2 0 0.00
AB015 3 1,2,3 3.8 65 52 2 0 0.00
AB016

Q2 20 4

1 3 1.5 7 2 2 3 0.00
AB017 2 2,3 2.9 116 75 15 10 0.01
AB018 3 2,3,4 4.1 116 75 15 10 0.02
AB019 4 1,2,3,4 5.0 116 75 15 10 0.01
AB020

Q2 20 5

1 2 2.4 14 4 4 3 0.00
AB021 2 2,3 3.9 141 85 23 18 0.03
AB022 3 1,2,3 4.8 141 85 23 18 0.03
AB023 4 1,2,3,4 5.0 141 85 23 18 0.02
AB024 5 1,2,3,4,5 3.5 141 85 23 18 0.03
AB025

Q3 30 3
1 3 3.5 5 1 1 0 0.00

AB026 2 2,3 5.9 119 74 15 10 0.02
AB027 3 1,2,3 7.8 119 74 15 10 0.02
AB028

Q3 30 4

1 3 2.5 9 2 2 15 0.04
AB029 2 2,3 4.9 216 115 48 125 0.27
AB030 3 2,3,4 7.1 216 115 48 125 0.29
AB031 4 1,2,3,4 8.0 216 115 48 125 0.29
AB032

Q3 30 5

1 5 2.5 7 1 1 4 0.01
AB033 2 3,5 5.0 353 154 86 288 0.64
AB034 3 2,3,5 7.4 353 154 86 288 0.65
AB035 4 1,2,3,5 9.3 353 154 86 288 0.63
AB036 5 1,2,3,4,5 9.5 353 154 86 288 0.66
AB037

Q4 40 3
1 3 3.5 5 1 1 1 0.00

AB038 2 2,3 6.9 165 97 23 26 0.04
AB039 3 1,2,3 8.8 165 97 23 26 0.06
AB040

Q4 40 4

1 4 5.2 8 1 1 0 0.00
AB041 2 3,4 7.7 297 144 64 189 0.46
AB042 3 1,3,4 9.6 297 144 64 189 0.40
AB043 4 1,2,3,4 11.0 297 144 64 189 0.44
AB044

Q4 40 5

1 5 3.5 8 1 1 8 0.03
AB045 2 3,5 7.0 566 217 141 1,136 2.79
AB046 3 2,3,4 10.1 566 217 141 1,136 2.73
AB047 4 1,2,3,4 12.0 566 217 141 1,136 2.66
AB048 5 1,2,3,4,5 13.5 566 217 141 1,136 2.76
AB049

Q5 50 3
1 3 7.5 9 1 1 1 0.02

AB050 2 2,3 9.9 289 137 53 703 1.58
AB051 3 1,2,3 11.8 289 137 53 703 1.65
AB052

Q5 50 4

1 4 5.2 8 1 1 35 0.14
AB053 2 3,4 9.7 576 216 141 2,522 6.10
AB054 3 2,3,4 12.1 576 216 141 2,522 5.67
AB055 4 1,2,3,4 14.0 576 216 141 2,522 5.96
AB056

Q5 50 5

1 5 4.5 9 1 1 7 0.08
AB057 2 3,5 8.0 909 316 231 2,994 7.27
AB058 3 2,3,5 11.4 909 316 231 2,994 7.04
AB059 4 2,3,4,5 14.6 909 316 231 2,994 7.33
AB060 5 1,2,3,4,5 16.5 909 316 231 2,994 7.15

Table 8: Numerical results of the heuristic or stochastic global optimization method applied to
instances AB001–AB120 of problem P3.
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Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB061
Q6 60 3

1 3 4.5 6 1 1 6 0.02
AB062 2 2,3 7.9 357 179 81 145 0.33
AB063 3 1,2,3 9.8 357 179 81 145 0.34
AB064

Q6 60 4

1 4 6.2 9 1 1 34 0.36
AB065 2 3,4 10.7 828 306 206 6,853 18.96
AB066 3 2,3,4 14.1 828 306 206 6,853 16.82
AB067 4 1,2,3,4 16.0 828 306 206 6,853 18.00
AB068

Q6 60 5

1 5 6.5 11 1 1 35 1.35
AB069 2 3,5 11.0 1342 425 325 22,930 63.88
AB070 3 3,4,5 14.2 1342 425 325 22,930 59.98
AB071 4 2,3,4,5 16.6 1342 425 325 22,930 61.59
AB072 5 1,2,3,4,5 18.5 1342 425 325 22,930 65.22
AB073

Q7 70 3
1 3 5.5 7 1 1 3 0.03

AB074 2 2,3 8.9 502 224 120 498 0.91
AB075 3 1,2,3 10.8 502 224 120 498 1.10
AB076

Q7 70 4

1 4 6.2 9 1 1 5 0.07
AB077 2 3,4 11.7 788 297 195 1,656 4.07
AB078 3 2,3,4 16.1 788 297 195 1,656 3.81
AB079 4 1,2,3,4 19.0 788 297 195 1,656 4.08
AB080

Q7 70 5

1 5 7.5 12 1 1 14 0.81
AB081 2 4,5 12.7 1,859 542 445 29,228 81.52
AB082 3 3,4,5 17.2 1,859 542 445 29,228 83.33
AB083 4 2,3,4,5 20.6 1,859 542 445 29,228 82.76
AB084 5 1,2,3,4,5 23.5 1,859 542 445 29,228 82.19
AB085

Q8 80 3
1 3 5.5 7 1 1 0 0.03

AB086 2 2,3 8.9 501 231 120 239 0.57
AB087 3 1,2,3 11.8 501 231 120 239 0.58
AB088

Q8 80 4

1 4 8.2 11 1 1 17 1.21
AB089 2 3,4 13.7 1,540 479 365 19,665 50.17
AB090 3 2,3,4 17.1 1,540 479 365 19,665 50.46
AB091 4 1,2,3,4 19.0 1,540 479 365 19,665 50.03
AB092

Q8 80 5

1 5 6.5 11 1 1 691 7.71
AB093 2 4,5 12.7 2,689 786 654 100,394 298.73
AB094 3 3,4,5 18.2 2,689 786 654 100,394 293.76
AB095 4 2,3,4,5 22.6 2,689 786 654 100,394 299.28
AB096 5 1,2,3,4,5 23.5 2,689 786 654 100,394 294.53
AB097

Q9 90 3
1 3 5.5 7 1 1 8 0.06

AB098 2 2,3 9.9 733 318 188 1,018 2.30
AB099 3 1,2,3 11.8 733 318 188 1,018 2.21
AB100

Q9 90 4

1 4 7.2 10 1 1 7 0.57
AB101 2 3,4 12.7 1,471 506 392 7,326 18.63
AB102 3 2,3,4 16.1 1,471 506 392 7,326 18.55
AB103 4 1,2,3,4 19.0 1,471 506 392 7,326 19.70
AB104

Q9 90 5

1 5 10.5 15 1 1 72 26.53
AB105 2 4,5 15.7 4,182 1,032 918 396,579 1,196.00
AB106 3 3,4,5 20.2 4,182 1,032 918 396,579 1,172.51
AB107 4 2,3,4,5 23.6 4,182 1,032 918 396,579 1,189.70
AB108 5 1,2,3,4,5 25.5 4,182 1,032 918 396,579 1,183.69
AB109

Q10 100 3
1 3 7.5 9 1 1 4 0.16

AB110 2 2,3 12.9 849 366 225 1,728 4.19
AB111 3 1,2,3 15.8 849 366 225 1,728 4.18
AB112

Q10 100 4

1 4 8.2 11 1 1 270 3.94
AB113 2 3,4 14.7 2,257 648 532 63,504 166.33
AB114 3 2,3,4 19.1 2,257 648 532 63,504 163.69
AB115 4 1,2,3,4 22.0 2,257 648 532 63,504 165.36
AB116

Q10 100 5

1 5 9.5 14 1 1 7316 189.01
AB117 2 4,5 17.7 6,221 1,494 1,352 1,763,651 5,476.20
AB118 3 5,4,3 25.2 6,221 1,494 1,352 1,763,651 5,493.64
AB119 4 2,3,4,5 29.6 6,221 1,494 1,352 1,763,651 5,433.90
AB120 5 1,2,3,4,5 31.5 6,221 1,494 1,352 1,763,651 5,442.50

Table 9: Numerical results of the heuristic or stochastic global optimization method applied to
instances AB001–AB120 of problem P3 (cont.).
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Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB007 Q1 10 4 4 1,2,3 1.8 40 36 0 2 0.00
AB011

Q1 10 5
4 1,2,3 1.8 60 48 11 14 0.00

AB012 5 1,2,3 1.8 60 48 11 14 0.00
AB023

Q2 20 5
4 1,2,3 4.8 112 75 20 20 0.01

AB024 5 1,2,3 4.8 112 75 20 20 0.02

Table 10: Numerical results of the deterministic global optimization method applied to selected
instances within AB001–AB120 of problem P2.

Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB007 Q1 10 4 4 1,2,3 2.8 42 34 0 0 0.00
AB011

Q1 10 5
4 1,2,3 2.8 74 53 9 12 8.15

AB012 5 1,2,3 2.8 74 53 9 12 8.14
AB024 Q2 20 5 5 1,2,3,4 5.0 141 85 20 21 11.02

Table 11: Numerical results of the deterministic global optimization method applied to selected
instances within AB001–AB120 of problem P4.

Problem Solution Performance metrics

Name Points n m k
Selected Optimal Trees’ figures # NLP subproblems CPU Time
ellipses income # nodes # leaves feasible infeasible in secs.

AB007 Q1 10 4 4 1,2,3 2.8 42 34 0 0 0.00
AB011

Q1 10 5
4 1,2,3 2.8 74 53 11 10 0.01

AB012 5 1,2,3 2.8 74 53 11 10 0.01
AB024 Q2 20 5 5 1,2,3,4 5.0 141 85 23 18 0.02

Table 12: Numerical results of the heuristic or stochastic global optimization method applied to
selected instances within AB001–AB120 of problem P4.
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instances would be used to benchmark other heuristic methods in the future. Codes and instances
are fully available for benchmarking purposes.

Developing an efficient deterministic global optimization technique for the situation in which
the ellipses’ semi major and minor axes are variables of the problem, the ellipse cost being a
function of their axes, like, for example, the ellipse’s area, would be the subject of future research.
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