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Abstract. Cubic-regularization and trust-region methods with worst-case first-order complex-
ity O(ε−3/2) and worst-case second-order complexity O(ε−3) have been developed in the last few
years. In this paper it is proved that the same complexities are achieved by means of a quadratic-
regularization method with a cubic sufficient-descent condition instead of the more usual predicted-
reduction based descent. Asymptotic convergence and order of convergence results are also presented.
Finally, some numerical experiments comparing the new algorithm with a well-established quadratic
regularization method are shown.
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1. Introduction. Assume that f : Rn → R is possibly nonconvex and smooth
for all x ∈ Rn. We will consider the unconstrained minimization problem given by

(1) Minimize f(x).

In the last decade, many works have been devoted to analyze iterative algorithms
for solving (1) from the point of view of their time complexity. See, for example,
[2, 4, 5, 6, 8, 11, 14, 19, 21]. A review of complexity results for the convex case, in
addition to novel techniques, can be found in [12].

Given arbitrary tolerances εg > 0 and εh > 0, the question is about the amount of
iterations and functional and derivative evaluations that are necessary to achieve an
approximate solution defined by ‖∇f(x)‖ ≤ εg or by ‖∇f(x)‖ ≤ εg plus λ1(∇2f(x)) ≥
−εh, where λ1(∇2f(x)) represents the leftmost eigenvalue of ∇2f(x).

In general, gradient-based methods exhibit complexity O(ε−2g ) [4], which means
that there exists a constant c that only depends on the characteristics of the problem,
algorithmic parameters, and, of course, the initial approximation, such that the effort
required to achieve ‖∇f(x)‖ ≤ εg for a bounded-below objective function f is at most
c/ε2g. This bound is sharp for all gradient-based methods [4]. Complexity results for
modified Newton’s methods are available in [14]. Surprisingly, Newton’s method with
the classical trust-region strategy does not exhibit better complexity than O(ε−2g )
either [4]. The same example used in [4] to prove this fact can be applied to Newton’s
method with standard quadratic regularization. On the other hand, Newton’s method
employing cubic regularization [15] for obtaining sufficient descent at each iteration

exhibits the better complexity O(ε
−3/2
g ) (see [5, 6, 19, 21]).
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The best known practical algorithm for unconstrained optimization with worst-

case evaluation complexity O(ε
−3/2
g ) to achieve first-order stationarity and complexity

O(ε
−3/2
g + ε−3h ) to achieve second-order stationarity, defined by Cartis, Gould, and

Toint in [5] and [6], uses cubic regularization and a descent criterion based on the com-
parison of the actual reduction of the objective function and the reduction predicted
by a quadratic model. A nonstandard trust-region method with the same complexity
properties due to Curtis, Robinson, and Samadi [8] employs a cubic descent criterion
for accepting trial increments. In [2], the essential ideas of ARC [5, 6] were extended
in order to introduce high-order methods in which a pth Taylor approximation (p ≥ 2)
plus a (p+ 1)th regularization term is minimized at each iteration. In these methods,

O(ε
−(p+1)/p
g ) evaluation complexity for first-order stationarity is obtained also using

the actual-versus-predicted-reduction descent criterion. However, it is rather straight-
forward to show that this criterion can be replaced by a (p+1)th descent criterion (i.e.,
f(xk+1) ≤ f(xk)− α‖xk+1 − xk‖p+1) in order to obtain the same complexity results.
Moreover, the (p+1)th descent criterion (cubic descent in the case p = 2) seems to be
more naturally connected with the Taylor approximation properties that are used to
prove complexity. Cubic descent was also used in [19] in a variable metric method that
seeks to achieve good practical global convergence behavior. In the trust-region ex-
ample exhibited in [4], the unitary Newtonian step is accepted at every iteration since
it satisfies the adopted sufficient descent criterion. This criterion requires that the
function descent (actual reduction) should be better than a fraction of the predicted
descent provided by the quadratic model (predicted reduction). However, if, instead of
this condition, one requires functional descent proportional to ‖s‖3, where s is the in-
crement given by the model minimization, the given example does not stand anymore.
This state of facts led us to the following theoretical question: Would it be possible to

obtain worst-case evaluation complexities O(ε
−3/2
g ) and O(ε

−3/2
g +ε−3h ) using cubic de-

scent to accept trial increments but only quadratic regularization in the subproblems?
In this paper, we provide an affirmative answer to this question by incorporat-

ing cubic descent into a quadratic regularization framework. Iterative regularization
is a classical idea in unconstrained optimization originated in the seminal works of
Levenberg [17] and Marquardt [18] for nonlinear least-squares. It relies upon the
Levenberg–Marquardt path, which is the set of solutions of regularized subproblems
varying the regularization parameter, both in the case of quadratic and cubic regular-
ized subproblems. It is worth mentioning that this path is also the set of solutions of
Euclidean trust-region subproblems for different trust-region radii. The explicit con-
sideration of the so-called hard case (where the Hessian is not positive definite and the
gradient is orthogonal to the eigenspace related to the leftmost Hessian’s eigenvalue)
and the employment of spectral computations to handle it are in the core of every
careful trust-region implementation [8, 20, 22, 23]. Our new method explicitly deals
with the hard case and uses a regularization parameter with adequate safeguards in
order to guarantee the classical complexity results of cubic regularization and related
methods [8]. The new method has been implemented and compared against a well es-
tablished quadratic regularization method for unconstrained optimization introduced
in [16].

The rest of this paper is organized as follows. A model algorithm with cubic
descent is described in section 2. An implementable version of the algorithm is intro-
duced in section 3. Well-definiteness and complexity results are presented in sections 4
and 5, respectively. Local convergence results are given in section 6. Numerical ex-
periments are presented in section 7, while final remarks are given in section 8.
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Notation. The symbol ‖ · ‖ denotes the Euclidean norm of vectors and the sub-
ordinate matricial norm. We denote g(x) = ∇f(x), H(x) = ∇2f(x), and, some-
times, gk = g(xk) and Hk = H(xk). If a ∈ R, [a]+ = max{a, 0}. If a1, . . . , an ∈
R, diag(a1, . . . , an) denotes the n × n diagonal matrix whose diagonal entries are
a1, . . . , an. If A ∈ Rn×n, A† denotes the Moore–Penrose pseudoinverse of A. The
notation [x]j denotes the jth component of a vector x whenever the simpler notation
xj might lead to confusion.

2. Model algorithm. The following algorithm establishes a general framework
for minimization schemes that use cubic descent. At each iteration k, we compute an
increment sk such that f(xk+sk) ≤ f(xk)−α‖sk‖3. In principle, this is not very useful
because even sk = 0 satisfies this descent condition. However, in Theorem 2.1, we
show that under the additional condition (3), the algorithm satisfies suitable stopping
criteria. As a consequence, practical algorithms should aim to achieve (2) and (3)
simultaneously.

Algorithm 2.1. Let x0 ∈ Rn and α > 0 be given. Initialize k ← 0.
Step 1. Compute sk such that

(2) f
(
xk + sk

)
≤ f

(
xk
)
− α

∥∥sk∥∥3 .
Step 2. Define xk+1 = xk + sk, set k ← k + 1, and go to Step 1.

The theorems below establish that, under suitable assumptions, every limit point
of the sequence generated by Algorithm 2.1 is second-order stationary and provide
an upper bound on the number of iterations that Algorithm 2.1 requires to achieve
a target objective functional value or to find an approximate first- or second-order
stationary point.

Lemma 2.1. Assume that the objective function f is twice continuously differen-
tiable and that there exist γg > 0 and γh > 0 such that, for all k ∈ N, the increment sk

computed at Step 1 of Algorithm 2.1 satisfies

(3)

√
‖gk+1‖
γg

≤ ‖sk‖ and
[−λ1,k]+

γh
≤
∥∥sk∥∥ ,

where λ1,k stands for the leftmost eigenvalue of Hk. Then, it follows that

f(xk+1) ≤ f(xk)−max

{(
α

γ
3/2
g

)∥∥gk+1
∥∥3/2 ,( α

γ3h

)
[−λ1,k]3+

}
.

Proof. The result follows trivially from (2), (3), and the fact that, at Step 2 of
Algorithm 2.1, xk+1 is defined as xk+1 = xk + sk.

Theorem 2.1. Let fmin ∈ R, εg > 0, and εh > 0 be given constants, assume
that the hypothesis of Lemma 2.1 hold, and let {xk}∞k=0 be the sequence generated by
Algorithm 2.1. Then, the cardinality of the set of indices

(4) Kg =
{
k ∈ N | f

(
xk
)
> fmin and

∥∥gk+1
∥∥ > εg

}
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is, at most,

(5)

⌊
1

α

(
f(x0)− fmin

(εg/γg)
3/2

)⌋
,

while the cardinality of the set of indices

(6) Kh =
{
k ∈ N | f(xk) > fmin and λ1,k < −εh

}
is, at most,

(7)

⌊
1

α

(
f(x0)− fmin

(εh/γh)
3

)⌋
.

Proof. From Lemma 2.1, it follows that at every time an iterate xk is such that
‖gk+1‖ > εg the value of f decreases at least α(εg/γg)

3/2, while at every time an
iterate xk is such that λ1,k < −εh the value of f decrease at least α(εh/γh)3. The
thesis follows from the fact that, by (2), {f(xk)}∞k=0 is a nonincreasing sequence.

Corollary 2.1. Let fmin ∈ R, εg > 0, and εh > 0 be given constants and assume

that the hypothesis of Lemma 2.1 hold. Algorithm 2.1 requires O(ε
−3/2
g ) iterations to

compute xk such that
f(xk) ≤ fmin or

∥∥gk+1
∥∥ ≤ εg,

it requires O(ε−3h ) iterations to compute xk such that

f(xk) ≤ fmin or λ1,k ≥ −εh,

and it requires O(ε
−3/2
g + ε−3h ) iterations to compute xk such that

f(xk) ≤ fmin or
(∥∥gk+1

∥∥ ≤ εg and λ1,k ≥ −εh

)
.

Corollary 2.2. Assume that the hypothesis of Lemma 2.1 hold and let {xk}∞k=0

be the sequence generated by Algorithm 2.1. Then, if the objective function f is
bounded below, we have that

lim
k→∞

∥∥g (xk)∥∥ = 0 and lim
k→∞

[−λ1,k]+ = 0.

Proof. Assume that limk→∞ ‖g(xk)‖ 6= 0. This means that there exists ε > 0
and K, an infinite subsequence of N, such that ‖gk‖ > ε for all k ∈ K. Since f is
bounded below, this contradicts Theorem 2.1. The second part is analogous.

Corollary 2.3. Assume that the hypothesis of Lemma 2.1 hold. Then, if the
objective function f is bounded below, every limit point x∗ of the sequence {xk}∞k=0

generated by Algorithm 2.1 is such that ∇f(x∗) = 0 and ∇2f(x∗) is positive semidef-
inite.

Proof. This corollary follows from Corollary 2.2 by continuity of ∇f and ∇2f .

3. Implementable algorithm. Algorithm 2.1 presented in the previous section
is a “model algorithm” in the sense that it does not prescribe a way to compute
the step sk satisfying (2) and (3). This will be the subject of the present section.
Algorithm 3.1 is almost identical to Algorithm 2.1 with the sole difference that it uses
Algorithm 3.2 to compute sk. Lemma 4.1 shows that Algorithm 3.2 is well defined, and
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Lemma 4.4 shows that the step sk computed by Algorithm 3.2 satisfies hypothesis (3)
of Lemma 2.1. In the following section, it will be shown that Algorithm 3.2 computes
sk using O(1) evaluations of f (and a single evaluation of g and H at the current
iterate xk). This implies that the complexity results on the number of iterations of
the model Algorithm 2.1 also apply to the number of iterations and evaluations of f
and its first- and second-order derivatives performed by Algorithms 3.1 and 3.2.

Algorithm 3.1. Let x0 ∈ Rn, α > 0, and M > 0 be given. Initialize k ← 0.
Step 1. Use Algorithm 3.2 to compute s ∈ Rn satisfying

(8) f
(
xk + s

)
≤ f

(
xk
)
− α‖s‖3

and define sk = s.
Step 2. Define xk+1 = xk + sk, set k ← k + 1, and go to Step 1.

Algorithm 3.2 below describes the way in which the increment sk is computed.
For that purpose, different trial increments are tried along the set of solutions

(9) s(µ) := argmin
〈
gk, s

〉
+

1

2
sT
(
Hk + [−λ1,k]+I

)
s+

µ

2
‖s‖2

for different values of the regularizing parameter µ ≥ 0, where λ1,k is the leftmost
eigenvalue of Hk. Algorithm 3.2 proceeds by increasing the value of the regularization
parameter µ ≥ 0 until the sufficient descent condition (8) is satisfied with s = s(µ).
For each value of µ, we define ρ(µ) = ([−λ1,k]++µ)/(3‖s(µ)‖). By [5, Lemma 3.1] (see
also [15, 21]), s(µ) is a global minimizer of 〈gk, s〉+ 1

2s
THks+ ρ(µ)‖s‖3. The way in

which µ is increased is determined by two necessities related to ρ(µ): the initial ρ(µ)
at each iteration should not be excessively small and the final ρ(µ) should not be
excessively big. Essentially, the technical manipulation of the quadratic regulariza-
tion parameter µ in the algorithm is motivated by these two apparently conflicting
objectives which are necessary to obtain the complexity results.

Algorithm 3.2. Given xk, this algorithm computes a step s ∈ Rn satisfying (8).
Step 1. Let λ1,k be the leftmost eigenvalue of Hk. Consider the linear system

(10)
[
Hk + ([−λ1,k]+ + µ)I

]
s = −gk.

If (10) with µ = 0 is not compatible, then set ρk,0 = 0 and go to Step 5; else
proceed to Step 2 below.

Step 2. Compute the minimum norm solution ŝk,0 to the linear system (10) with
µ = 0 and set

ρk,0 =

 ∞ if ŝk,0 = 0 and [−λ1,k]+ > 0,
0 if ŝk,0 = 0 and [−λ1,k]+ = 0,
[−λ1,k]+/

(
3‖ŝk,0‖

)
if ŝk,0 6= 0.

If ρk,0 ≤M , then go to Step 4; else proceed to Step 3 below.
Step 3. Let q1,k with ‖q1,k‖ = 1 be an eigenvector of Hk associated with its leftmost

eigenvalue λ1,k. Set `3 ← 1 and compute t`3 ≥ 0 and ŝk,`3 = ŝk,0 + t`3q
1,k

such that

(11) [−λ1,k]+/
(
3
∥∥ŝk,`3∥∥) = M.

If (8) holds with s = ŝk,`3 , return s = ŝk,`3 ; else proceed to Step 3.1 below.
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Step 3.1. While ‖ŝk,`3‖ ≥ 2‖ŝk,0‖, execute Steps 3.1.1–3.1.2 below.
Step 3.1.1. Set `3 ← `3 + 1 and compute t`3 ≥ 0 and ŝk,`3 = ŝk,0 + t`3q

1,k such
that

(12)
∥∥ŝk,`3∥∥ =

1

2

∥∥ŝk,`3−1∥∥ .
Step 3.1.2. If (8) holds with s = ŝk,`3 , then return s = ŝk,`3 .

Step 4. If (8) holds with s = ŝk,0, then return s = ŝk,0; else proceed to Step 5 below.
Step 5. Set `5 ← 1 and ρk,`5 = max{0.1, ρk,0} and compute µ̃k,`5 > 0 and s̃k,`5

solution to (10) with µ = µ̃k,`5 such that

(13) ρk,`5 ≤
[−λ1,k]+ + µ̃k,`5

3‖s̃k,`5‖
≤ 100ρk,`5 .

If (8) holds with s = s̃k,`5 , return s = s̃k,`5 ; else proceed to Step 5.1 below.
Step 5.1. While µ̃k,`5 < 0.1, execute Steps 5.1.1–5.1.3 below.

Step 5.1.1. Set `5 ← `5 + 1 and

(14) ρk,`5 = 10

(
[−λ1,k]+ + µ̃k,`5−1

3‖s̃k,`5−1‖

)
.

Step 5.1.2 Compute µ̃k,`5 > 0 and s̃k,`5 solution to (10) with µ = µ̃k,`5 such
that (13) holds.

Step 5.1.3 If (8) holds with s = s̃k,`5 , return s = s̃k,`5 .
Step 6. Set `6 ← 1, µ̄k,`6 = 2µ̃k,`5 , and compute s̄k,`6 solution to (10) with µ = µ̄k,`6 .

Step 6.1. While (8) does not hold with s = s̄k,`6 , execute Steps 6.1.1–6.1.2 below.
Step 6.1.1. Set `6 ← `6 + 1 and µ̄k,`6 = 2µ̄k,`6−1.
Step 6.1.2. Compute s̄k,`6 solution to (10) with µ = µ̄k,`6 .

Step 6.2. Return s = s̄k,`6 .

The reader may have noticed that Algorithm 3.2 includes several constants in
its definition. Those constants are arbitrary, and all of them can be replaced by
any number (sometimes larger or smaller than unity, depending on the case). The
algorithm was presented in this way with the simple purpose of avoiding a large
number of hard-to-recall letters or parameters.

The way in which Algorithm 3.2 proceeds is directly related to the geometry of
the set of solutions of (9), many times called the Levenberg–Marquardt path. On the
one hand, when µ → ∞, s(µ) tends to 0 describing a curve tangent to −gk. On the
other hand, the geometry of the Levenberg–Marquardt path when µ→ 0 depends on
the positive definiteness of Hk and the compatibility or not of the linear system (10)
with µ = 0 as we now describe.

If Hk is positive definite, then the Levenberg–Marquardt path is a bounded curve
that joins s = 0 with the Newtonian step s = −(Hk)−1gk. In this case, we have that
λ1,k > 0, so [−λ1,k]+ = 0. Then, the system (10) with µ = 0 is compatible and,
by Step 2, ρk,0 = 0. Since ρk,0 ≤ M , the algorithm continues at Step 4 and the
increment ŝk,0 is accepted if the sufficient descent condition (8) holds with s = ŝk,0.
(This is always the case if ŝk,0 = 0, which occurs if and only if gk = 0.) However,
if (8) does not hold, after a few initializations at Step 5, the algorithm computes at
Step 5.1.2 a regularization parameter µ such that the corresponding ρ(µ) increases
with respect to the previous one, but not very much. This corresponds to our purpose
of maintaining the auxiliary quantity ρ(µ) within controlled bounds. If s(µ) does not
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satisfy (8) (checked at Step 5.1.3) and the regularization parameter µ is still small
(checked at the loop condition of Step 5.1), we update (increase) the bounds on ρ(µ)
at Step 5.1.1, and we repeat this process until the fulfillment of (8) or until µ is
not small anymore. In that latter case, the process continues in Step 6 with regular
increases of the regularization parameter µ which should lead to the final fulfillment
of (8) at the loop condition of Step 6.1. It is easy to see that, when Hk is positive
semidefinite and the linear system Hks = −gk is compatible, the algorithm proceeds
as in the positive definite case described above.

The case in which Hk is not positive definite but the linear system (10) with µ = 0
is compatible is called the “hard case” in the trust-region literature [7]. In the hard
case, the Levenberg–Marquardt path is constituted by two branches. The first branch,
which corresponds to µ > 0, is a bounded curve that joins s = 0 with the minimum-
norm solution of (10) with µ = 0. The second branch, which corresponds to µ = 0,
is given by the infinitely many solutions to the system (10) with µ = 0. This set of
infinitely many solutions form an affine subspace that contains −[Hk + [−λ1,k]+I]†gk

and is spanned by the eigenvectors of Hk associated with λ1,k. Usually, one restricts
this affine subspace to the line −[Hk + [−λ1,k]+I]†gk + tv with t ∈ R, where v is
one of the eigenvectors associated with λ1,k. The algorithm starts by computing the
minimum norm solution of (10) with µ = 0, which corresponds to the intersection
of the two branches of the Levenberg–Marquardt path. If taking the regularizing
parameter µ = 0 we have that the associated ρ(µ) is not very big (ρk,0 ≤ M at
Step 2), then we proceed exactly as in the positive definite and compatible positive
semidefinite cases, increasing µ and seeking an acceptable increment along the first
branch of the Levenberg–Marquardt path. However, if ρk,0 > M , we are in the case
in which ρ(µ) could be very big. Then, the search starts at Step 3 by seeking an
increment along the second branch of the Levenberg–Marquardt path. This happens
when λ1,k < 0 and ŝk,0 = 0 (because gk = 0), since in that case, we set ρk,0 = ∞
at Step 2. Note that, along this branch, the value of µ = 0 does not change and the
reduction of ρ(µ) is achieved trivially by increasing the norm of s(µ). Starting with a
sufficiently large ‖s(µ)‖, and by means of successive reductions of ‖s(µ)‖ at Step 3.1.1,
we seek the fulfillment of (8). However, after a finite number of reductions of ‖s(µ)‖
this norm becomes smaller than a multiple of the norm of the minimum-norm solution
(except in the case in which we have ŝk,0 = 0). If this happens, we enter Step 4 and
then initiate a search in the other branch in an analogous way as we do in the positive
definite case. In this situation, we have the guarantee that ρ(µ) is suitable bounded
in the intersection point because, otherwise, the sufficient descent condition (8) would
have been satisfied.

If Hk is not positive definite and the system (10) with µ = 0 is not compatible,
then the Levenberg–Marquardt path is an unbounded curve that, as µ tends to 0,
becomes tangent to an affine subspace generated by an eigenvector of Hk associated
with λ1,k. In this case, the control goes to Step 5 and the algorithm proceeds as in
the already described situation in which Hk is positive definite but the Newtonian
step does not satisfy the sufficient descent condition (8).

4. Well-definiteness results. In this section, we will show that Algorithm 3.2
is well defined and that the computed increment sk that satisfies (8) also satisfies (3).
We start by describing how Algorithm 3.2 could be implemented considering the spec-
tral decomposition of Hk. Of course, this is an arbitrary choice and other options are
possible like, for example, computing the leftmost eigenvalue of Hk only, and possibly
its associated eigenvector, and then solving the linear systems by any factorization
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suitable for symmetric matrices. In any case, the description based on the spectral
decomposition of Hk introduces some useful notation for the rest of the section.

Consider the spectral decomposition Hk = QkΛkQ
T
k , where Qk = [q1,k . . . qn,k] is

orthogonal and Λk = diag(λ1,k, . . . , λn,k) with λ1,k ≤ · · · ≤ λn,k. Substituting Hk by
its spectral decomposition in (10), we obtain [Λk + ([−λ1,k]+ + µ)I]QTk s = −QTk gk.
Therefore, for µ = 0, the linear system (10) is compatible if and only if [QTk g

k]j = 0
whenever λj,k + [−λ1,k]+ = 0. Assuming that the linear system (10) with µ = 0 is
compatible, its minimum norm solution is given by ŝk,0 = Qky

k, where

ykj =

{
−[QTk g

k]j/(λj,k + [−λ1,k]+), j ∈ J,
0, j ∈ J̄ ,

J = {j ∈ {1, . . . , n} | λj,k + [−λ1,k]+ 6= 0}, and J̄ = {1, . . . , n} \ J . Moreover, note
that

‖ŝk,0‖ =

√∑
j∈J

(
[QTk g

k]j/(λj,k + [−λ1,k]+)
)2
.

The norm of ŝk,`3 = ŝk,0 + t`3q
1,k (for any `3 ≥ 1) computed at Step 3 is given by

‖ŝk,`3‖ =
√
‖ŝk,0‖2 + t`32〈ŝk,0, q1,k〉+ t2`3 =

√
‖ŝk,0‖2 + t2`3 ,

where the last equality holds because ŝk,0 is orthogonal to q1,k by definition. Thus,
given a desired norm c`3 for ŝk,`3 (c`3 = [−λ1,k]+/(3M) when `3 = 1 and c`3 =
1
2‖ŝ

k,`3−1‖ when `3 > 1), we have that t`3 =
√
c2`3 − ‖ŝ

k,0‖2.

The following technical lemma establishes that Step 5 of Algorithm 3.2 can al-
ways be completed finding a regularization parameter µ and an increment s(µ) that
satisfies (13). The assumption gk 6= 0 in the lemma is perfectly reasonable because,
as will be shown later, it always holds at Step 5.

Lemma 4.1. Suppose that gk 6= 0. At Step 5 of Algorithm 3.2, for any `5 ≥ 1,
there exists µ̃k,`5 > 0 and s̃k,`5 solution to (10) with µ = µ̃k,`5 satisfying (13).

Proof. For any µ > 0, the matrix of the system (10) is positive definite and the
solution s(µ) to (10) is such that

(15) ‖s(µ)‖ =

√√√√ ∑
{j | [QT

k g
k]j 6=0}

(
[QTk g

k]j
(λj,k + [−λ1,k]+ + µ)

)2

.

Moreover, clearly,

(16) lim
µ→∞

‖s(µ)‖ = 0.

In order to analyze the case µ → 0, the proof will be divided in two cases: (a) the
linear system (10) with µ = 0 is compatible and (b) the linear system (10) with µ = 0
is not compatible.

Consider first case (a). In this case, since [QTk g
k]j = 0 whenever λj,k+[−λ1,k]+ =

0, (15) is equivalent to

‖s(µ)‖ =

√√√√∑
j∈J

(
[QTk g

k]j
(λj,k + [−λ1,k]+ + µ)

)2

.
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Therefore,

(17) lim
µ→0
‖s(µ)‖ =

∥∥ŝk,0∥∥ > 0

because gk 6= 0 implies ŝk,0 6= 0. Thus, by (16) and (17), we have that

(18) lim
µ→∞

[−λ1,k]+ + µ

3‖s(µ)‖
=∞ and lim

µ→0

[−λ1,k]+ + µ

3‖s(µ)‖
=

[−λ1,k]+
3‖ŝk,0‖

.

Since, by definition, for any `5 ≥ 1,

ρk,`5 ≥ ρk,0 =
[−λ1,k]+
3‖ŝk,0‖

,

the desired result follows by continuity from (18).
Consider now case (b). In this case, there exists j such that λj,k + [−λ1,k]+ = 0

and [QTk g
k]j 6= 0. Therefore, from (15), we have that

(19) lim
µ→0
‖s(µ)‖ =∞.

Thus, by (16) and (19), we have that

(20) lim
µ→∞

[−λ1,k]+ + µ

3‖s(µ)‖
=∞ and lim

µ→0

[−λ1,k]+ + µ

3‖s(µ)‖
= 0.

Since, by definition, for any `5 ≥ 1, in this case we have ρk,`5 ≥ ρk,0 = 0.1, the desired
result follows by continuity from (20).

Below we state the main assumption that supports the complexity results. Essen-
tially, we will assume that the objective function is twice continuously differentiable
and that ∇2f satisfies a Lipschitz condition on a suitable region that contains the
iterates xk and the trial points xk + strial. Of course, a sufficient condition for the
fulfillment of this assumption is the Lipschitz-continuity of ∇2f on Rn, but in some
cases this global assumption may be unnecessarily strong.

Assumption A1. The function f is twice continuous differentiable for all x ∈ Rn,
and there exists a constant L > 0 such that, for all xk computed by Algorithm 3.2
and every trial increment strial computed at Steps 2, 3, 3.1.1, 5, 5.1.2, 6, or 6.1.2 of
Algorithm 3.2, we have that

f
(
xk + strial

)
≤ f(xk) +

(
strial

)T
gk +

1

2

(
strial

)T
Hkstrial + L

∥∥strial∥∥3
and ∥∥g (xk + strial

)
− gk −Hkstrial

∥∥ ≤ L∥∥strial∥∥2 .
In the following lemma we prove that any trial increment necessarily satisfies the

sufficient descent condition (8) if the regularization parameter is large enough.

Lemma 4.2. Suppose that Assumption A1 holds and µ ≥ 0. If 0 6= strial ∈ Rn
computed at Step 2, 3, 3.1.1, 5, 5.1.2, 6, or 6.1.2 of Algorithm 3.2, which by definition
satisfies

(21)
[
Hk + ([−λ1,k]+ + µ)

]
strial = −gk,
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is such that

(22)
[−λ1,k]+ + µ

3‖strial‖
≥ L+ α,

then (8) is satisfied with s = strial.

Proof. Let us define, for all s ∈ Rn,

q(s) = sT gk +
1

2
sTHks.

Since Hk + ([−λ1,k]+ + µ)I is positive semidefinite for any µ ≥ 0, by (21),

(23) strial minimizes q(s) +
1

2
([−λ1,k]+ + µ)‖s‖2.

Define

(24) ρ =
[−λ1,k]+ + µ

3‖strial‖
.

By [5, Lemma 3.1], strial is a minimizer of q(s) + ρ‖s‖3. In particular,

(25) q
(
strial

)
+ ρ

∥∥strial∥∥3 ≤ q(0) = 0.

Now, by Assumption A1, we have that

f
(
xk + strial

)
≤ f

(
xk
)

+
(
strial

)T
gk +

1

2

(
strial

)T
Hkstrial + L

∥∥strial∥∥3
= f

(
xk
)

+ q
(
strial

)
+ ρ

∥∥strial∥∥3 + (L− ρ)
∥∥strial∥∥3 .

Thus, by (22), (24), and (25), f(xk + strial) ≤ f(xk)− α‖strial‖3. This completes the
proof.

The lemma below shows that Algorithm 3.2 may return a null increment only at
Step 4.

Lemma 4.3. Suppose that Assumption A1 holds. Algorithm 3.2 returns a null
increment s = 0 if and only if gk = 0 and λ1,k ≥ 0. Moreover, an increment s = 0
may only be returned by Algorithm 3.2 at Step 4 (i.e., Steps 3, 3.1.2, 5, 5.1.3, and 6.2
always return nonnull increments).

Proof. Assume that gk = 0 and λ1,k ≥ 0. Then, we have that the minimum norm
solution ŝk,0 to the linear system (10) with µ = 0 computed at Step 2 is null and that
ρk,0 = 0 ≤M . Therefore, the algorithm goes to Step 4 and returns s = ŝk,0 = 0 since
it satisfies (8).

Assume now that Algorithm 3.2 returned an increment s = 0. Since every trial
increment computed by the algorithm is a solution to the linear system (10) for some
µ ≥ 0, we must have gk = 0. If λ1,k ≥ 0, the first part of thesis holds and it remains
to show that the null increment is returned at Step 4. Note that, since gk = 0 implies
ŝk,0 = 0 and λ1,k ≥ 0 means [−λ1,k]+ = 0, at Step 2 we have ρk,0 = 0 ≤M . Thus, the
algorithm goes to Step 4, where the null increment is returned since it satisfies (8).
We now show that assuming λ1,k < 0 leads to a contradiction. Since λ1,k < 0 means
[−λ1,k]+ > 0 and gk = 0 implies ŝk,0 = 0, by the way ρk,0 is defined at Step 2, we
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have that ρk,0 =∞ 6≤M . In this case the algorithm goes to Step 3. On the one hand,
note that ŝk,0 = 0 implies that the algorithm never leaves the loop in Step 3.1 because
its condition reduces to ‖ŝk,`3‖ ≥ 0. On the other hand, note that, by halving the
norm of the trial increments ŝk,`3 , since µ = 0 is fixed, in a finite number of trials,
(22) holds and, by Lemma 4.2, the algorithm returns s = ŝk,`3 6= 0 for some `3 ≥ 1,
contradicting the fact that the algorithm returned a null increment.

We finish this section proving that the increment sk computed at Algorithm 3.2,
which satisfies (8) and defines xk+1 in section 3.1, is such that it also satisfies (3).
Note that this result assumes the existence of sk by hypothesis. Up to the present
moment we proved that Algorithm 3.2 is well defined. The existence of sk for all k will
be proved in the following section when proving that Algorithm 3.2 always computes
sk performing a finite number of operations.

Lemma 4.4. Suppose that Assumption A1 holds. Then, there exist γg > 0 and
γh > 0 such that, for all k ∈ N, the increment sk computed by Algorithm 3.2 and the
new iterate xk+1 = xk + sk computed at Step 2 of Algorithm 3.1 satisfy√

‖gk+1‖
γg

≤ ‖sk‖ and
[−λ1,k]+

γh
≤ ‖sk‖.

Moreover,

(26) γg ≤ max {3M + L, 3000(L+ α) + L, 30 + L}

and

(27) γh ≤ max {3M, 3000(L+ α), 30} .

Proof. If sk = 0, then, by Lemma 4.3, we have that gk = 0 and λ1,k ≥ 0 and,
therefore, the thesis follows trivially. We now assume sk 6= 0. Since sk is a solution
to (10) for some µ ≥ 0, we have that Hksk + gk + ([−λ1,k]+ + µ)sk = 0. Therefore,

Hksk + gk +

(
[−λ1,k]+ + µ

‖sk‖

)∥∥sk∥∥ sk = 0.

Then ∥∥Hksk + gk
∥∥ =

(
[−λ1,k]+ + µ

‖sk‖

)∥∥sk∥∥2 .
But, by Assumption A1 and the triangle inequality,∥∥gk+1

∥∥− ∥∥gk +Hksk
∥∥ ≤ ∥∥gk+1 − gk −Hksk

∥∥ ≤ L∥∥sk∥∥2 .
Therefore,

(28)
∥∥gk+1

∥∥ ≤ ( [−λ1,k]+ + µ

‖sk‖
+ L

)∥∥sk∥∥2 .
We now analyze in separate the cases in which sk 6= 0 is returned by Algorithm 3.2

at Steps 3, 3.1.2, 4, 5, 5.1.3, and 6.2
Case sk = ŝk,`3 with `3 = 1 was returned at Step 3: In this case, sk,`3 is a solution

to (10) with µ = 0 and, by (11), it satisfies

(29) [−λ1,k]+/
∥∥sk,`3∥∥ = 3M.
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Case sk = ŝk,`3 with `3 > 1 was returned at Step 3.1.2: This means that there
exists ŝk,`3−1 6= 0 that is a solution to (10) with µ = 0 and for which (8) with s =
ŝk,`3−1 did not hold. Therefore, by Lemma 4.2, we have that [−λ1,k]+/(3‖ŝk,`3−1‖) <
L+ α. Thus, by (12), we have that

(30) [−λ1,k]+/
∥∥ŝk,`3∥∥ < 6(L+ α).

Case sk = ŝk,0 was returned at Step 4: In this case, we have that

(31) [−λ1,k]+/
(
3‖ŝk,0‖

)
≤M

or that there exists ŝk,`3 6= 0 with `3 ≥ 1 such that

(32)
∥∥ŝk,`3∥∥ < 2

∥∥ŝk,0∥∥ ,
ŝk,`3 is a solution to (10) with µ = 0, and (8) did not hold with s = ŝk,`3 . Therefore,
by Lemma 4.2, we have that

(33) [−λ1,k]+/
(
3
∥∥ŝk,`3∥∥) < L+ α

and, by (32) and (33),

(34) [−λ1,k]+/
∥∥ŝk,0∥∥ < 6(L+ α).

Thus, by (31) and (34),

(35) [−λ1,k]+/
∥∥sk,0∥∥ ≤ max{3M, 6(L+ α)}.

Case sk = s̃k,`5 with `5 = 1 was returned at Step 5: In this case there are two
possibilities: the linear system (10) with µ = 0 is compatible or not. In the first case,
ŝk,0 was computed,

ρk,0 = [−λ1,k]+/
(
3
∥∥ŝk,0∥∥) ,

and, since (8) with s = ŝk,0 did not hold, by Lemma 4.2, ρk,0 < L+ α. In the second
case, we simply have that ρk,0 = 0. Thus, by (13) and by the fact that, by definition,
ρk,1 = max{0.1, ρk,0}, in the first case, we have

(36)
[−λ1,k]+ + µ̃k,`5

3‖s̃k,`5‖
≤ 100ρk,`5 = 100 max{0.1, ρk,0} ≤ max{10, 100(L+ α)},

and, in the second case, we have

(37)
[−λ1,k]+ + µ̃k,`5

3‖s̃k,`5‖
≤ 100ρk,`5 = 100 max{0.1, 0} = 10.

Therefore, µ̃k,`5 ≥ 0, (36), and (37) imply that

(38)
[−λ1,k]+
‖sk,`5‖

≤ [−λ1,k]+ + µ̃k,`5
‖sk,`5‖

≤ max{30, 300(L+ α)}.

Case sk = s̃k,`5 with `5 > 1 was returned at Step 5.1.3: This means that there
exists µ̃k,`5−1 > 0 and s̃k,`5−1 solution to (10) with µ = µ̃k,`5−1 for which (8) did not
hold. Thus, by Lemma 4.2,

[−λ1,k]+ + µ̃k,`5−1
3‖s̃k,`5−1‖

< L+ α.
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Moreover, by (13) and (14),

[−λ1,k]+ + µ̃k,`5
3‖s̃k,`5‖

≤ 100ρk,`5 = 1000

(
[−λ1,k]+ + µ̃k,`5−1

3‖s̃k,`5−1‖

)
.

Thus,

(39)
[−λ1,k]+
‖s̃k,`5‖

≤ [−λ1,k]+ + µ̃k,`5
‖s̃k,`5‖

≤ 3000(L+ α).

Case sk = s̄k,`6 was returned at Step 6.2: If `6 = 1, then µ̄k,`6 = 2µ̃k,`5 for some
`5 ≥ 1 and the solution s̃k,`5 to (10) with µ = µ̃k,`5 is such that (8) with s = s̃k,`5

does not hold. Thus, by Lemma 4.2,

[−λ1,k]+ + µ̃k,`5
3‖s̃k,`5‖

< L+ α.

On the other hand, and since µ̄k,`6 = 2µ̃k,`5 , we have that
(40)

‖s̄k,`6‖

=

√√√√∑
j∈J

(
[QTk g

k]j
λj,k + [−λ1,k]+ + µ̄k,`6

)2

=

√√√√∑
j∈J

(
[QTk g

k]j
λj,k + [−λ1,k]+ + 2µ̃k,`5

)2

=

√√√√∑
j∈J

(
[QTk g

k]j

2( 1
2 (λj,k + [−λ1,k]+) + µ̃k,`5)

)2

≥

√√√√∑
j∈J

(
[QTk g

k]j
2(λj,k + [−λ1,k]+ + µ̃k,`5)

)2

=
1

2

√√√√∑
j∈J

(
[QTk g

k]j
λj,k + [−λ1,k]+ + µ̃k,`5

)2

=
1

2

∥∥s̃k,`5∥∥ > 0.

Therefore,

(41)

[−λ1,k]+
‖s̄k,`6‖

≤ [−λ1,k]+ + µ̄k,`6
‖s̄k,`6‖

=
[−λ1,k]+ + 2µ̃k,`5

‖s̄k,`6‖
=

2
(
1
2 [−λ1,k]+ + µ̃k,`5

)
‖s̄k,`6‖

≤ 2 ([−λ1,k]+ + µ̃k,`5)

‖s̄k,`6‖
≤ 2 ([−λ1,k]+ + µ̃k,`5)

1
2‖s̃k,`5‖

= 4

(
[−λ1,k]+ + µ̃k,`5

‖s̃k,`5‖

)
< 12(L+ α).

If `6 > 1, then µ̄k,`6 = 2µ̄k,`6−1 and the solution s̄k,`6−1 to (10) with µ = µ̄k,`6−1
is such that (8) with s = s̄k,`6−1 does not hold. Thus, by Lemma 4.2,

(42)
[−λ1,k]+ + µ̄k,`6−1

3‖s̄k,`6−1‖
< L+ α.

Moreover, µ̄k,`6 = 2µ̄k,`6−1 implies, as shown above, that

(43)
∥∥s̄k,`6∥∥ ≥ 1

2

∥∥s̄k,`6−1∥∥ .
Therefore, by (42) and (43), and since µ̄k,`6 ≥ 0, we have that

(44)
[−λ1,k]+
‖s̄k,`6‖

≤ [−λ1,k]+ + µ̄k,`6
‖s̄k,`6‖

< 12(L+ α).

The desired result (27) follows from (29), (30), (35), (38), (39), (41), and (44),
while (26) follows from the same set of inequalities plus (28).
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5. Complexity results. In this section, complexity results on Algorithm 3.2 are
presented. In particular, we show that the number of functional evaluations required
to compute the increment sk using Algorithm 3.2 is O(1), i.e., it does not depend on
εg nor εh. The section finishes establishing the complexity of Algorithms 3.1 and 3.2
in terms of the number of functional (and derivatives) evaluations. The sufficient
condition (8) is tested at Steps 3, 3.1.2, 4, 5, 5.1.3, and 6.1. These are the only steps
of Algorithm 3.2 in which the objective function is evaluated. Condition (8) is tested
only once per iteration at Steps 3, 4, and 5. Therefore, in order to assess the worst-
case evaluation complexity of Algorithm 3.2, we must obtain a bound for the number
of executions of the remaining mentioned steps, namely, Steps 3.1.2, 5.1.3, and 6.1.

Step 3.1 of Algorithm 3.2 describes the loop that corresponds to the hard case,
in which we seek an increment along an appropriate eigenvector of Hk. For each trial
increment, f is evaluated and the condition (8) is tested (at Step 3.1.2). Therefore,
it is necessary to establish a bound on the number of executions of Step 3.1.2. This
is done in Lemma 5.1.

Lemma 5.1. Suppose that Assumption A1 holds. If Step 3.1.2 of Algorithm 3.2
is executed, it is executed at most blog2((L+ α)/M)c+ 1 times.

Proof. By (11) when `3 = 1 and by (12) when `3 > 1, ŝk,`3 6= 0 for all `3 ≥ 1 and∥∥ŝk,`3∥∥ =

{
[−λ1,k]+/(3M), `3 = 1,
‖ŝk,`3−1‖/2, `3 > 1,

or, equivalently,

(45) 2`3−1M = [−λ1,k]+/
(
3
∥∥ŝk,`3∥∥) .

Thus, by Lemma 4.2, if (8) does not hold with s = ŝk,`3 , we must have 2`3−1M < L+α,
i.e., `3 ≤ blog2((L+ α)/M)c+ 1 as we wanted to prove.

Step 5.1 of Algorithm 3.2 describes a loop where one tries to find an “initial”
sufficiently big regularization parameter. Each time the regularization parameter is
increased one tests the condition (8) (at Step 5.1.3). Therefore, it is necessary to
establish a bound on the number of evaluations that may be performed at Step 5.1.3.
This is done in Lemma 5.2.

Lemma 5.2. Suppose that Assumption A1 holds. If Step 5.1.3 of Algorithm 3.2
is executed, it is executed at most blog10(L+ α)c+ 2 times.

Proof. For all `5 ≥ 1, when (8) is tested at Step 5.1.3 with s = s̃k,`5 , s̃k,`5 is
a solution to (10) with µ = µ̃k,`5 > 0 and satisfies (13). Therefore, by Lemma 4.3,
s̃k,`5 6= 0 and, thus, by Lemma 4.2, if (8) does not hold with s = s̃k,`5 , we must have

(46) ρk,`5 < L+ α.

On the other hand, since, by definition, ρk,1 ≥ 0.1 and, by (13) and (14), ρk,`5 ≥
10ρk,`5−1 for all `5 ≥ 2, we have that

(47) ρk,`5 ≥ 10`5−2

for all `5 ≥ 1. By (46) and (47), if (8) does not hold with s = s̃k,`5 , we must have
10`5−2 < L+ α, i.e., `5 ≤ blog10(L+ α)c+ 2 as we wanted to prove.

Finally, at Step 6.1 we increase the regularization parameter by means of a dou-
bling process (µ̄k,`6 = 2µ̄k,`6−1). This process guarantees, by Lemmas 4.2 and 4.3,
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that the sufficient condition will eventually hold. In Lemma 5.3, we prove that the
number of doubling steps is also bounded by a quantity that only depends on charac-
teristics of the problem and algorithmic parameters. For proving this lemma, we need
to assume boundedness of ‖Hk‖ at the iterates generated by the algorithm. Note
that, since f(xk+1) ≤ f(xk) for all k, a sufficient condition for Assumption A2 is the
boundedness of ‖H(x)‖ on the level set defined by f(x0).

Assumption A2. There exists a constant hmax ≥ 0 such that, for all iterates xk

computed by Algorithm 3.1, we have that ‖Hk‖ ≤ hmax.

Lemma 5.3. Suppose that Assumptions A1 and A2 hold. If Step 6.1.2 of Algo-
rithm 3.2 is executed, it is executed at most⌊[

log

(
1 +

0.2

hmax + 0.2

)]−1
log

(
L+ α

0.1

)⌋
+ 1

times.

Proof. For all `6 ≥ 1, Lemma 4.3 implies that s̄k,`6 6= 0, and straightforward
calculations show that

‖s̄k,`6‖ =

√∑
j∈J

(
[QTk g

k]j/(λj,k + [−λ1,k]+ + µ̄k,`6)
)2
.

Moreover, it is easy to see that ‖s̄k,`6‖ decreases when µ̄k,`6 increases. Therefore,
since, by definition, µ̄k,`6+1 = 2µ̄k,`6 , for all `6 ≥ 1, we have that

(48)
‖s̄k,`6‖
‖s̄k,`6+1‖

≥ 1.

Thus, for all `6 ≥ 1,
(49)(

[−λ1,k]+ + µ̄k,`6+1

3‖s̄k,`6+1‖

)/(
[−λ1,k]+ + µ̄k,`6

3‖s̄k,`6‖

)
=

(
[−λ1,k]+ + µ̄k,`6+1

[−λ1,k]+ + µ̄k,`6

)(
‖s̄k,`6‖
‖s̄k,`6+1‖

)
≥ [−λ1,k]+ + µ̄k,`6+1

[−λ1,k]+ + µ̄k,`6
=

[−λ1,k]+ + 2µ̄k,`6
[−λ1,k]+ + µ̄k,`6

= 1 +
µ̄k,`6

[−λ1,k]+ + µ̄k,`6

≥
(

1 +
0.2

hmax + 0.2

)
> 1,

where the first inequality follows from (48) and the second inequality follows from the
fact that, by the definition of the algorithm, µ̄k,`6 ≥ 0.2, and by Assumption A2.

From (49) and the fact that, by the definition of the algorithm, `6 = 1 implies

[−λ1,k]+ + µ̄k,`6
3‖s̄k,`6‖

≥ 0.1,

it follows that

(50)
[−λ1,k]+ + µ̄k,`6

3‖s̄k,`6‖
≥ 0.1

(
1 +

0.2

hmax + 0.2

)`6−1
for all `6 ≥ 1. For all `6 ≥ 1, when (8) is tested at Step 6.1.2 with s = s̄k,`6 , s̄k,`6

satisfies (10) with µ = µ̄k,`6 > 0. Therefore, by Lemma 4.2, if (8) does not hold with
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s = s̄k,`6 we must have, by (50),

0.1

(
1 +

0.2

hmax + 0.2

)`6−1
< L+ α.

This implies the desired result.

We finish this section summarizing the complexity and asymptotic results on
Algorithms 3.1 and 3.2.

Theorem 5.1. Let fmin ∈ R, εg > 0, and εh > 0 be given constants, suppose
that Assumptions A1 and A2 hold, and let {xk}∞k=0 be the sequence generated by
Algorithms 3.1 and 3.2. Then, the cardinality of the set of indices

(51) Kg =
{
k ∈ N | f

(
xk
)
> fmin and

∥∥gk+1
∥∥ > εg

}
is, at most,

(52)

⌊
1

α

(
f(x0)− fmin

(εg/γg)
3/2

)⌋
,

while the cardinality of the set of indices

(53) Kh =
{
k ∈ N | f

(
xk
)
> fmin and λ1,k < −εh

}
is, at most,

(54)

⌊
1

α

(
f(x0)− fmin

(εh/γh)
3

)⌋
,

where constants γg and γh are as in the thesis of Lemma 4.4 (i.e., they satisfy (26)
and (27), respectively).

Proof. Assumptions A1 and A2 imply, by Lemma 4.4, that the hypothesis of
Lemma 2.1 hold. Therefore, since Algorithm 3.1 is a particular case of Algorithm 2.1,
the thesis follows from Theorem 2.1.

Corollaries 2.1 to 2.3 also hold for Algorithms 3.1 and 3.2 under the hypothesis
of Theorem 5.1, the most significant result being the complexity rates that possess
the same dependencies on εg and εh whether we consider iteration or evaluation com-
plexity. Note that the number of iterations is a direct consequence of Theorem 5.1.
On the other hand, Lemmas 5.1 to 5.3 show that, every time Algorithm 3.2 is used
by section 3.1 to compute an increment sk, it performs O(1) evaluations of the ob-
jective function f , while, by definition, it performs a single evaluation of g and H.
Thus, the evaluation complexity of Algorithms 3.1 and 3.2 coincides with its iteration
complexity.

6. Local convergence. Note that if Hk is positive definite then the minimum
norm solution ŝk,0 to the linear system (10) with µ = 0 computed at Step 2 of
Algorithm 3.2 is given by ŝk,0 = −(Hk)−1gk, i.e., ŝk,0 is the Newton direction. More-
over, since, independently of having ŝk,0 = 0 or ŝk,0 6= 0, λ1,k > 0 implies that
ρk,0 = 0 ≤M , in this case (Hk positive definite) the algorithm goes directly to Step 4
and checks whether the Newton direction satisfies the sufficient cubic decrease con-
dition (8). The lemma below shows that, if (55) holds, then the Newton direction
satisfies (8). (If λ1,k > 0 and gk = 0 and, in consequence, sk,0 = 0, it is trivial to
see that the (null) Newton direction satisfies (8) and there is nothing to be proved.
Anyway, the lemma below covers this case as well.)
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Lemma 6.1. Suppose that Assumption A1 holds. If Hk is positive definite and

(55)
∥∥gk∥∥ ≤ 1

2(L+ α)
λ21,k,

then we have that the trial increment ŝk,0 computed at Step 2 of Algorithm 3.2 is such
that (8) holds with s = ŝk,0.

Proof. By Assumption A1,

f
(
xk + ŝk,0

)
≤ f(xk) +

(
ŝk,0

)T
gk +

1

2

(
ŝk,0

)T
Hkŝk,0 + L

∥∥ŝk,0∥∥3 .
Then, since ŝk,0 = −(Hk)−1gk,

f
(
xk + ŝk,0

)
≤ f(xk)− 1

2

(
ŝk,0

)T
Hkŝk,0 + L

∥∥ŝk,0∥∥3 .
Therefore,

(56) f
(
xk + ŝk,0

)
≤ f

(
xk
)
− 1

2
λ1,k

∥∥ŝk,0∥∥2 + L
∥∥ŝk,0∥∥3 .

On the other hand, since ŝk,0 = −(Hk)−1gk, we have that

(57)
∥∥ŝk,0∥∥ =

∥∥(Hk)−1gk
∥∥ ≤ ∥∥(Hk)−1

∥∥∥∥gk∥∥ =
1

λ1,k

∥∥gk∥∥ .
Then, by (55), ‖ŝk,0‖ ≤ λ1,k/(2(L + α)) or, equivalently, −λ1,k/2 + L‖ŝk,0‖ ≤
−α‖ŝk,0‖. Therefore, multiplying by ‖ŝk,0‖2 and adding f(xk), we have that

f
(
xk
)
− 1

2
λ1,k

∥∥ŝk,0∥∥2 + L
∥∥ŝk,0∥∥3 ≤ f (xk)− α ∥∥ŝk,0∥∥3 ,

and the thesis follows from (56).

In the next theorem, we use the classical local convergence result of Newton’s
method plus continuity arguments (that imply that the hypothesis (55) always holds
in a neighborhood of a local minimizer with positive definite Hessian) to prove the
quadratic local convergence of Algorithms 3.1 and 3.2.

Assumption A3. Let x∗ be a local minimizer of f . We say that this assumption
holds if H(x∗) is positive definite with ‖H(x∗)−1‖ ≤ β and, in addition, there exist
r > 0 and γ > 0 such that ‖H(x)−H(x∗)‖ ≤ γ‖x− x∗‖ whenever ‖x− x∗‖ ≤ r.

Theorem 6.1. Let x∗ be a local minimizer of f at which Assumption A3 holds
and suppose that Assumption A1 also holds. Define δ1 = min{r, 1

2βγ }. Then, there

exists δ ∈ (0, δ1] such that

(58)
∥∥H(x)−1

∥∥ ≤ 2β whenever ‖x− x∗‖ ≤ δ

and such that, if ‖x0 − x∗‖ ≤ δ, the sequence {xk}∞k=0 generated by Algorithms 3.1
and 3.2 satisfies∥∥g (xk)∥∥ ≤ [ 1

2(L+ α)

]
/(2β)2,(59) ∥∥xk+1 − x∗

∥∥ ≤ 1

2

∥∥xk − x∗∥∥ , and
∥∥xk+1 − x∗

∥∥ ≤ βγ ∥∥xk − x∗∥∥2(60)

for all k = 0, 1, 2, . . . .
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Proof. By the classical Newton convergence theory (see, for example, [9, Thm. 5.2.1,
p. 90]), whenever ‖x0 − x∗‖ ≤ δ1 the sequence generated by xk+1 = xk − (Hk)−1gk

is well defined and satisfies (60) for all k ≥ 0. By continuity of g(x), since g(x∗) = 0,
there exists δ2 ∈ (0, δ1] such that whenever ‖xk − x∗‖ ≤ δ2 one has that (59) holds,
while, by continuity of H(x), there exists δ ∈ (0, δ2] such that whenever ‖x− x∗‖ ≤ δ
one has that (58) holds.

On the other hand, by (59), if ‖xk − x∗‖ ≤ δ, we have that

‖g(xk)‖ ≤
[

1

2(L+ α)

]/∥∥∥(Hk
)−1∥∥∥2

and, since ‖(Hk)−1‖ = 1/λ1,k,∥∥g (xk)∥∥ ≤ 1

2(L+ α)
λ21,k.

Thus, by Lemma 6.1 and the definition of Algorithm 3.2, we have that xk+1 is, in fact,
defined by xk+1 = xk − (Hk)−1gk and, therefore, the thesis follows by an inductive
argument.

Theorem 6.2. Let x∗ be a local minimizer of f at which Assumption A3 holds.
Suppose also that Assumption A1 holds and, in addition, that x∗ is a limit point of
the sequence {xk}∞k=0 generated by Algorithms 3.1 and 3.2. Then, the whole sequence
{xk}∞k=0 converges quadratically to x∗.

Proof. Since x∗ is a limit point, there exists k0 such that ‖xk0 − x∗‖ ≤ δ. Thus,
the convergence of {xk} follows from Theorem 6.1 replacing x0 with xk0 .

The following is a global nonflatness assumption that will allow us to prove a
complexity result that takes advantage of local quadratic convergence.

Assumption A4. Let δ > 0 be as in the thesis of Theorem 6.1. There exists κ > 0
such that, for all xk generated by Algorithms 3.1 and 3.2, if ‖xk − x∗‖ > δ, then
‖g(xk)‖ > κ.

Note that Assumption A4 holds under the uniform nonsingularity assumption that
says that for all k ∈ N and x ∈ [xk, xk+1], H(x) is nonsingular and ‖H(x)−1‖ ≥ 1/η.
In fact, by the mean value theorem, the uniform nonsingularity assumption implies
that, for all xk generated by Algorithms 3.1 and 3.2, ‖g(xk)‖ ≥ η‖xk − x∗‖.

Theorem 6.3. Let f be bounded below and let x∗ be a local minimizer of f at
which Assumption A3 holds. Suppose also that Assumptions A1, A2, and A4 hold,
and, in addition, that x∗ is a limit point of the sequence {xk}∞k=0 generated by Al-
gorithms 3.1 and 3.2. Then, after a number of iterations k0 = O(κ−3/2), where κ
is as in Assumption A4 and it only depends on characteristics of the problem and
algorithmic parameters, we obtain that ‖xk − x∗‖ ≤ δ for all k ≥ k0, where δ is as in
the thesis of Theorem 6.1.

Proof. By construction (see Theorem 6.1), δ only depends on characteristics of
the problem. By Assumption A4, ‖g(xk)‖ > κ for all k such that ‖xk − x∗‖ > δ.
Then, by Assumptions A1 and A2 and Theorem 5.1, after k0 = O(κ−3/2) iterations,
we obtain that ‖g(xk0)‖ ≤ κ, i.e., ‖xk0 −x∗‖ ≤ δ. This implies, by Theorem 6.1, that
‖xk − x∗‖ ≤ δ for all k ≥ k0, as we wanted to prove.

Theorem 6.4. Let f be bounded below and let x∗ be a local minimizer of f
at which Assumption A3 holds. Suppose also that Assumptions A1, A2, and A4
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hold and, in addition, that x∗ is a limit point of the sequence {xk}∞k=0 generated
by Algorithms 3.1 and 3.2. Let εg > 0 be a given constant. Then, in at most

k̂ = O(log2(− log2(εg))) iterations we have that ‖g(xk)‖ ≤ εg for all k ≥ k̂.

Proof. By the mean value theorem of integral calculus, we have that, for any
k ≥ 0,

(61) g(xk+1) =

[∫ 1

0

H(ξk+1(t))dt

]
(xk+1−x∗), where ξk+1(t) = x∗+t

(
xk+1 − x∗

)
.

By the triangle inequality Theorems 6.1 and 6.3, since ‖xk+1− x∗‖ ≤ δ for all k ≥ k0
implies ‖ξ(t)− x∗‖ ≤ δ for all k ≥ k0 and t ∈ [0, 1], we have that

(62) ‖H(ξk+1(t))‖ − ‖H(x∗)‖ ≤ ‖H(ξk+1(t))−H(x∗)‖ ≤ γ‖ξk+1(t)− x∗‖ ≤ γδ

for all k ≥ k0 and t ∈ [0.1]. Therefore, by (61) and (62),

(63) ‖g(xk+1)‖ =

∥∥∥∥[∫ 1

0

H(ξk+1(t))dt

]
(xk+1 − x∗)

∥∥∥∥ ≤ (‖H(x∗)‖+ γδ)
∥∥xk+1 − x∗

∥∥
for all k ≥ k0.

On the other hand, by the mean value theorem of integral calculus, we have that,
for any k ≥ 0,

xk − x∗ =

[∫ 1

0

H(ξk(t))dt

]−1
g
(
xk
)
, where ξk(t) = x∗ + t

(
xk − x∗

)
,

and, thus, by Theorems 6.1 and 6.3, since ‖xk − x∗‖ ≤ δ implies ‖ξk(t)− x∗‖ ≤ δ for
all k ≥ k0 and t ∈ [0, 1], we have that

(64) ‖xk − x∗‖ ≤ 2β
∥∥g (xk)∥∥ for all k ≥ k0.

Now, by (63), (64), and Theorems 6.1 and 6.3,

(65)

∥∥g (xk+1
)∥∥ ≤ (‖H(x∗)‖+ γδ)‖xk+1 − x∗‖

≤ βγ(‖H(x∗)‖+ γδ)
∥∥xk − x∗∥∥2 ≤ 4β3γ(‖H(x∗)‖+ γδ)

∥∥gk∥∥2
for all k ≥ k0.

Up to this point, we have that ‖gk0‖ ≤ κ with k0 = O(κ−3/2) and that, for
all ` ≥ 0, ‖g(xk0+1+`)‖ ≤ cquad‖gk0+`‖2, where κ and cquad = 4β3γ(‖H(x∗)‖ + γδ)
depend only on characteristics of the problem and algorithmic parameters. This
means that

(66)
∥∥g (xk0+1+`

)∥∥ ≤ c`+1
quad

∥∥g (xk0)∥∥2`+1

≤ c`+1
quad κ

2`+1

for all ` ≥ 0.

We now consider, with the simple purpose of simplifying the presentation, k1 ≥ k0,

k1 = O(c
3/2
quad), whose existence is granted by Assumptions A1 and A2 and Theo-

rem 5.1, such that ‖gk‖ ≤ 1
2c
−1
quad for all k ≥ k1. Thus, (66) can be restated as

(67)
∥∥g (xk1+1+`

)∥∥ ≤ c`+1
quad

∥∥g (xk1)∥∥2`+1

≤
c`+1
quad

c2
`+1

quad

(
1

2

)2`+1

≤ 2−2
`+1

for all ` ≥ 0.

Thus, since 2−2
`+1 ≤ εg if and only if ` ≥ log2(− log2(εg))+1, we have that ‖gk‖ ≤ εg

for all k ≥ k1 + log2(− log2(εg)) + 1. This implies the desired result recalling that k1
does not depend on εg.
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7. Numerical experiments. We implemented Algorithms 3.1 and 3.2 in For-
tran 90. At each iteration k, the spectral decomposition of matrix Hk is computed
by the Lapack [1] subroutine dsyev. At Steps 5 and 5.1.2 of Algorithm 3.2, µ̃k,`5 > 0
and s̃k,`5 solution to (10) with µ = µ̃k,`5 such that (13) holds are computed using
bisection. In the numerical experiments, we arbitrarily considered α = 10−8 and
M = 103. It should be noted that these two parameters, as well as the other con-
stants that appeared hard-coded in Algorithms 3.1 and 3.2 (in order to simplify the
exposition), were not subject to tuning at all. All those values were chosen because
they seemed to be “natural choices” and the intention of the numerical experiments
below is not to deliver the most robust or efficient version of the proposed method
but to illustrate its practical behavior.

The method proposed in the present work will be compared against the line-
search Newton’s method with quadratic regularization and Armijo descent introduced
in [16]. With this purpose, we implemented (also in Fortran 90) Algorithm 1 described
in [16, p. 348]. In order to focus the comparison on the methods’ differences (mainly
the way in which the regularizing parameter is computed and the descent criterion),
our implementation uses the Lapack subroutine dsyev for computing the spectral
decomposition of Hk. This choice provides the value of the leftmost eigenvalue of Hk

required by the algorithm and also trivializes solving the Newtonian linear system. A
classical quadratic interpolation (taking t/2 as a new trial step when the minimizer
of the quadratic model lies outside the interval [0.1t, 0.9t]) was considered. In the
numerical experiments, we set, as suggested in [16], β = 10−2, η = 0.25, L0 = 10−6,
and δ = 10−16. We considered the two choices µk = µ−k and µk = µ+

k and, thus the
method introduced in [16] with these two choices will be referred, from now on, as
“KSS with µk = µ−k ” and “KSS with µk = µ+

k .”
The Fortan 90 implementation of Algorithms 3.1 and 3.2, as well as our imple-

mentation of the algorithm introduced in [16], is freely available at http://www.ime.
usp.br/∼egbirgin/. Interfaces for solving user-defined problems coded in Fortran 90
as well as problems from the CUTEst collection [13] are available. All tests reported
below were conducted on a computer with 3.5 GHz Intel Core i7 processor and 16GB
1600 MHz DDR3 RAM memory, running OS X Yosemite (version 10.10.5). Codes
were compiled by the GFortran compiler of GCC (version 5.1.0) with the -O3 opti-
mization directive enabled.

7.1. An ad hoc toy problem with expected hard case. In this section, we
illustrate the behavior of Algorithms 3.1 and 3.2 in a simple problem in which the
hard case is expected to appear. Consider the function defined by f(x1, x2) = x1x2 +
0.1(x1−x2)4 +(x1 +x2)4. This function has two global minimizers at, approximately,
(0.559017,−0.559017) and (−0.559017, 0.559017), at which the functional value is
approximately −0.15625. Moreover, (0, 0) is a saddle point at which f vanishes. We
are interested in the behavior of the considered algorithms when the initial point is
in the line x1 = x2 and relatively close to (0, 0).

The Hessian is indefinite if x1 = x2 and the eigenvalues of ∇2f(x1, x2) tend to 1
and −1 when x1 = x2 and x1 → 0. For all iterates satisfying x1 = x2 the minimum
norm solution of (10) satisfies s1 = s2 ≈ −x1 = −x2. Since the regularization
parameter tends to 1 when x1 = x2 and x1 → 0, it turns out that the associated
ρ tends to infinity when x1 = x2 and x1 → 0. As a consequence, when an iterate
(xk1 , x

k
2) with xk1 = xk2 is close to the origin, the test ρk,0 ≤ M eventually fails at

Step 2 of Algorithm 3.2 and a search along the eigenvector orthogonal to x1 = x2 is
initiated. So, the process quickly converges to one of the global minimizers. On the

http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/
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other hand, a Newtonian method like the one considered in [16] never leaves the line
x1 = x2 and convergence to the saddle point (0, 0) is expected.

If we run Algorithms 3.1 and 3.2 starting from (x01, x
0
2) = (1, 1), for all it-

erations k ≤ 14, we observe that, in fact, the linear system (10) is compatible,
ρk,0 ≤ M , and ŝk,0 satisfies the descent condition (8). Therefore, we have that
x14 ≈ (2.53523, 2.53523)× 10−4 still lies in the line x1 = x2. At iteration k = 15, we
have that ρk,0 > M and a search along the eigenvector is performed. Having aban-
doned the line x1 = x2, convergence to the global minimizer (−0.559017, 0.559017)
occurs and the algorithm stops at iteration k = 20 satisfying ‖∇f(x20)‖∞ ≤ 10−8

and λ1(∇2f(x20)) ≥ −10−8 and performing, as a whole, 23 functional evaluations
and having solved 30 linear systems.

Methods KSS with µk = µ−k and KSS with µk = µ+
k , as expected, converge to

the saddle point (0, 0) (using only two iterations, three functional evaluations, and
solving three linear systems). The considered ad hoc problem was presented in order
to highlight a property of the proposed method (related to robustness) that may not
be shared by other methods. Since different final iterates are being found, it would be
meaningless to compare the effort required by each method for achieving a stopping
criterion (first- or second-order criticality), while ignoring the objective functional
value at the final iterate.

If we now run Algorithms 3.1 and 3.2 starting from (0, 0), it converges to the same
global minimizer in 9 iterations using 11 functional evaluations and having solved 18
linear systems, while, as expected, methods KSS with µk = µ−k and KSS with µk = µ+

k

satisfy the stopping criteria at the initial point.

7.2. A family of problems with “unreachable” second-order stationary
points. Let v : Rn1 → R and w : Rn2 → R be such that ∇w(0) = 0 and ∇2w(0)
is not positive semidefinite. Consider f : Rn → R with n = n1 + n2 given by
f(x) = v(x1, . . . , xn1

) + w(xn1+1, . . . , xn1+n2
). Note that

∇f(x)T =
(
∇v(x1, . . . , xn1

)T ,∇w(xn1+1, . . . , xn1+n2
)T
)

and

∇2f(x) =

(
∇2v(x1, . . . , xn1

) 0
0 ∇2w(xn1+1, . . . , xn1+n2

)

)
.

This means that any method for minimizing f based on iterations of the form xk+1 =
xk + αkd

k, where dk is a solution to a linear system of the form
(
∇f2(xk) +Dk

)
d =

−∇f(xk), for any diagonal matrix Dk, never leaves the subspace xn1+1 = · · · =
xn1+n2

= 0 if the initial point belongs to that subspace. Thus, since, by assumption,
this subspace does not contain any point satisfying second-order necessary optimality
conditions, methods of this type are fated to fail, in the sense that they (hopefully)
converge to first-order stationary points that do not satisfy second-order optimality
conditions.

A simple example of this family of problems is given by v(x1) = x21 and w(x2) =
x22(x22 − 1), i.e., f(x1, x2) = x21 + x22(x22 − 1). This problem has two global minimizers
at (0,±1/

√
2) and a local maximizer at (0, 0). Starting from the point (1, 0), methods

KSS with µk = µ−k and KSS with µk = µ+
k converge to an approximation to the

local maximizer (0, 0) in 21 iterations (using 22 functional evaluations and solving 21
linear systems). Starting from the same initial guess, Algorithms 3.1 and 3.2 converge
to the global minimizer (0, 1/

√
2). For k = 0, 1, . . . , 10, the minimum norm solution

ŝk,0 to the linear system (Hk + [−λ1,k]+I)s = −gk is such that the associated cubic
regularization parameter ρk,0 is smaller than or equal to M and ŝk,0 satisfies the
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cubic descent criterion. However ‖ŝk,0‖ decreases, and, in consequence, ρk,0 increases
for k = 0, 1, . . . , 10. Thus, at iteration k = 11, ρk,0 6≤ M and a search along the
eigenvector (0, 1) makes the iterate x11 to abandon the subspace x2 = 0. The second-
order stopping criterion ‖∇f(xk)‖ ≤ 10−8 and λ1,k ≥ −10−8 is satisfied at iteration
k = 18 (using 19 functional evaluations and having solved 25 linear systems).

7.3. Massive comparison. In this section we consider the 87 problems from
the CUTEst collection already considered in the numerical experiments presented
in [16]. The same dimensions chosen in [16] were preserved (most of the problems have
n = 1 000 variables). These problems correspond to all the unconstrained problems
from the CUTEst collection with available second-order derivatives.

For the stopping criteria, we set fmin = −1010, εag = 10−6, and εrg = 10−15. Other

than stopping if an iterate xk satisfies f(xk) ≤ fmin or

(68)
∥∥gk∥∥ ≤ εag ,

the methods also stop if

(69)
∥∥gk∥∥ ≤ εrg ∥∥g0∥∥

or if the elapsed CPU time exceeds one hour. It should be noted that, in order to
allow a fair comparison, the same first-order criticality stopping criteria are being
used for KSS with µk = µ−k and KSS with µk = µ+

k as well as for Algorithms 3.1
and 3.2. However, this choice does not affect the quality of the final points ob-
tained by Algorithms 3.1 and 3.2 because a simple inspection of the results reveals
that, in the considered set of problems, any time the stopping criteria (68) or (69)
is satisfied, its second-order counterpart, given by ‖gk‖ ≤ εag and λ1,k ≥ −εah and

‖gk‖ ≤ εrg‖g0‖ and λ1,k ≥ −εrh maxj=1,n{|λj,0|} (with εah = εag and εrh = εrg), re-
spectively, is satisfied as well. We will refer to these stopping criteria as “UN” (un-
bounded f), “AS” (first- or second-order absolute stopping), “RS” (first- or second-
order relative stopping), and “TE” (CPU time limit exceeded). Exceptionally, al-
though ‖ · ‖ stands for the Euclidean norm everywhere in the text, the sup-norm
of the gradient was considered at the stopping criteria described above. None other
stopping criterion was considered.

Detailed information regarding the performance of each method on each problem
can be found at http://www.ime.usp.br/∼egbrigin/. For a given problem, let f1, f2,
and f3 be the value of the objective function at the final iterate delivered by each of
the three methods. Following [3], we will say that the three methods found equivalent
solutions if

fi − fbest
max{1, |fbest|}

≤ 10−2 for i = 1, 2, 3,

where fbest = min{f1, f2, f3}. The 87 problems will be separated into two sets.
Set 1 will be given by the 66 problems in which the three methods found equivalent
solutions and stopped satisfying the absolute or the relative stopping criterion. Set 2
will contain the remaining 21 problems. Problems in set 1 will be used to analyze
the efficiency of the methods, while problems in set 2 will be observed with an eye on
robustness.

For analyzing the efficiency of the methods through its performance on the 66
problems on set 1, we used performance profiles [10]. See Figure 1. By definition of
the performance profiles and the way in which the problems were selected, all curves
reach the value 1 at the right-hand side of the graphic. Thus, these pictures evaluate

http://www.ime.usp.br/~egbrigin/
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Fig. 1. Performance profiles considering the 66 problems in which the three methods stopped
satisfying the same stopping criterion related to absolute or relative criticality and found equivalent
solutions.
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Table 1
Details of the 21 problems in which it does not hold that “the three methods stopped satisfying

the first- or second-order criticality stopping criterion and found equivalent solutions.”

Problem Algorithms 3.1 and 3.2 KSS with µk = µ−k KSS with µk = µ+k

name f
(
xk

) ∥∥gk∥∥ SC f
(
xk

) ∥∥gk∥∥ SC f
(
xk

) ∥∥gk∥∥ SC

BROYDN7D 3.54624D+02 2.1D−10 AS 4.81627D+02 1.6D−11 AS 4.60601D+02 6.7D−07 AS
CHAINWOO 1.57548D+02 2.1D−12 AS 1.00000D+00 1.7D−12 AS 1.00000D+00 1.5D−09 AS
COSINE −9.99000D+02 1.1D−12 AS −1.40035D+02 2.4D+04 TE −9.44546D+02 1.6D+00 TE
ENGVAL1 1.10819D+03 1.3D−12 AS 1.10819D+03 1.3D−12 AS 1.10819D+03 1.8D−06 TE
FLETCBV3 −1.54153D+03 3.0D−02 TE −1.00026D+08 1.2D−01 UN −1.00026D+08 1.4D−01 UN
FLETCHBV −1.84122D+09 2.8D+06 UN −1.84122D+09 2.8D+06 UN −1.84122D+09 2.8D+06 UN
GENHUMPS 8.73814D+06 1.1D+02 TE 5.90238D+06 1.3D+02 TE 7.70165D+06 1.5D+02 TE
INDEF −2.72320D+06 1.0D+00 TE −1.09591D+08 1.0D+00 UN −1.09760D+08 1.0D+00 UN
MANCINO 1.67148D−14 1.0D−03 RS 2.14315D+17 3.0D+12 TE 1.67797D−14 5.5D−04 RS
MODBEALE 1.10832D−20 9.5D−10 AS 5.19223D+01 1.8D−04 TE 8.04120D+00 1.7D−05 TE
NCB20 9.32122D+02 4.5D−10 AS 9.16688D+02 5.9D−07 AS 9.17763D+02 5.6D−08 AS
NONCVXUN 2.32878D+03 1.6D−03 TE 2.32595D+03 3.4D−08 AS 2.31974D+03 1.4D−07 AS
NONMSQRT 9.02177D+01 3.6D−04 TE 8.99049D+01 3.1D−01 TE 8.99048D+01 4.4D−01 TE
PENALTY2 1.12970D+83 3.4D+75 TE 1.44640D+83 2.1D+38 TE 1.44640D+83 2.1D+38 TE
PENALTY3 9.99523D−04 1.2D−07 AS 3.98575D+04 8.7D−02 TE 9.94993D−04 7.2D−04 TE
SBRYBND 8.80296D−27 3.5D−06 TE 2.49040D+04 2.0D+07 TE 1.85974D−21 6.8D−07 AS
SCOSINE 1.09888D+02 2.9D+13 TE 8.76705D+02 1.2D+05 TE 8.57518D+02 1.2D+11 TE
SCURLY10 −1.00316D+05 4.3D−08 AS 0.00000D+00 1.8D+05 TE −1.00316D+05 1.5D−07 AS
SCURLY20 −1.00316D+05 1.4D−07 AS 0.00000D+00 3.4D+05 TE −1.00316D+05 1.2D−07 AS
SCURLY30 −1.00316D+05 1.1D−07 AS 0.00000D+00 5.0D+05 TE −1.00316D+05 3.1D−07 AS
SENSORS −2.10853D+05 6.8D−10 AS −2.10916D+05 1.7D−05 TE −2.10633D+05 1.1D−09 AS
SPMSRTLS 4.34760D−16 3.2D−11 AS 4.37365D−16 3.1D−09 AS 1.75675D+00 2.4D−07 AS

efficiency only. The three pictures show the same thing: Algorithms 3.1 and 3.2 are
more efficient in most of the problems but there are a few problems in which they
take much longer than the other two methods.

Table 1 shows the details of the final iterates found by the three methods on
problems in set 2. It can be said that, considering these 21 problems, Algorithms 3.1
and 3.2 satisfied the first-order criticality stopping criteria 13 times, while KSS with
µk = µ−k and KSS with µk = µ+

k satisfied the first-order criticality stopping criteria
5 and 11 times, respectively. Other than that, there are 3 problems (FLETCBV3,
FLETCHBV, INDEF) in which the objective function appears to be unbounded from
below. KSS with µk = µ−k and KSS with µk = µ+

k were both able to identify this
situation and stopped by the UN stopping criterion. Algorithms 3.1 and 3.2 recog-
nized the situation in only one of the cases and stopped by TE in the other two.
This may indicate that Algorithms 3.1 and 3.2 take longer to reduce the objective
functional value when it is unbounded below. There are also cases in which the three
methods found an approximate stationary point but did not find equivalent solutions.
BROYDN7D, CHAINWOO, and NCB20 are examples of these cases. The methods
take turns to be the one that finds the stationary point with the lowest functional
value, and, therefore, the presented experiment did not show whether any of the
methods is able to find better quality solutions.

8. Final remarks. The present paper explored the relation between quadratic
and cubic regularization with the principal objective of developing a quadratic-regula-
rization-based method while preserving the complexity results that hold in the case of
cubic regularization. Although there are good algorithms for solving the cubic regu-
larization subproblem, these algorithms, as well as the ones for solving the trust-region
subproblem, generally need to solve more than one linear system for computing a trial
point. Unfortunately, in the algorithm introduced in this paper we could not preserve
the property of “one linear system per trial point” at every iteration, because the
preservation of complexity needed safeguarded choices for computing the first nonnull
regularization parameter µ. On the other hand, even a preliminary implementation
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in which algorithmic parameters were not tuned at all produced satisfactory results in
comparison with a well-established regularization method for unconstrained optimiza-
tion. In addition to first- and second-order complexity results, we proved asymptotic
convergence to first- and second-order stationary points, as well as local convergence
and a complexity result corresponding to the case in which local quadratic convergence
takes place.

The regularization method introduced in [16] and our present regularized method
were conceived with quite different purposes. While in our case we were worried about
the compatibility of the most simple updating rules of the regularization parameter
with the preservation of optimal complexity results, in [16] the main concern was the
determination of regularizing parameters that optimize the accuracy of the quadratic
model. The natural challenge that emerges is related, therefore, to the compatibility
between the updating rules of [16] and our updating rules and purposes. It should be
mentioned, moreover, that in [16] a line search follows the obtention of the adequate
point on the Levenberg–Marquardt path, motivating additional questions about the
compatibility of this search with complexity bounds. Needless to say, this type of
studies should be complemented with insightful and extensive numerical experiments.
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