
SOME OF MY FAVOURITE PROBLEMS IN NUMBER

THEORY, COMBINATORICS, AND GEOMETRY

Paul Erdős

To the memory of my old friend Professor George Svéd.

I heard of his untimely death while writing this paper.

Introduction

I wrote many papers on unsolved problems and I cannot avoid repetition, but I
hope to include at least some problems which have not yet been published. I will
start with some number theory.

I. Number theory

1. Let 1 ≤ a1 < a2 < · · · < ak ≤ n be a sequence of integers for which all the

subset sums
∑k

i=1 εiai (εi = 0 or 1) are distinct. The powers of 2 have of course
this property. Put f(n) = max k. Is it true that

f(n) <
log n

log 2
+ c1 (1)

for some absolute constant c1? I offer 500 dollars for a proof or a disproof of (1).
The inequality

f(n) <
log n

log 2
+

log log n

log 2
+ c2

is almost immediate, since there are 2k sums of the form
∑

i εiai and they must
be all distinct and all are < kn. In 1954 Leo Moser and I (see [28]) by using the
second moment method proved

f(n) <
log n

log 2
+

log log n

2 log 2
+ c3,

which is the current best upper bound.
Conway and Guy found 24 integers all ≤ 222 for which all the subset sums are

distinct. Perhaps

f(2n) ≤ n+ 2??
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2 PAUL ERDŐS

Perhaps the following variant of the problem is more suitable for computation:
Let 1 ≤ b1 < b2 < · · · < b` be a sequence of integers for which all the subset
sums

∑n
i=1 εiai (εi = 0 or 1) are different. Is it true that

min b` > 2`−c (2)

for some absolute constant c? Inequality (2) of course is equivalent to (1). The
determination of the exact value of b` is perhaps hopeless but for small ` the value
of min b` can no doubt be determined by computation, and this I think would be
of some interest.

2. Covering congruences. This is perhaps my favourite problem. It is really sur-
prising that it has not been asked before. A system of congruences

ai (mod ni), n1 < n2 < · · · < nk (3)

is called a covering system if every integer satisfies at least one of the congru-
ences in (3). The simplest covering system is 0 (mod 2), 0 (mod 3), 1 (mod 4), 5
(mod 6), 7 (mod 12). The main problem is: Is it true that for every c one can find
a covering system all whose moduli are larger than c? I offer 1000 dollars for a
proof or disproof.

Choi [13] found a covering system with n1 = 20 and a Japanese mathematician
whose name I do not remember found such a system with n1 = 24. If the answer
to my question is positive: Denote by f(t) the smallest integer k for which there is
a covering system

ai (mod ni), 1 ≤ i ≤ k, n1 = t, k = f(t).

It would be of some mild interest to determine f(t) for the few values of t = n1 for
which we know that a covering system exists.

Many further unsolved problems can be asked about covering systems. Selfridge
and I asked: Is there a covering system all whose moduli are odd? Schinzel asked:
Is there a covering system where ni - nj , i.e., where the moduli form a primitive
sequence. A sequence is called primitive if no term divides any other. Schinzel [58]
used such covering systems for the study of irreducibility of polynomials. Her-
zog and Schönheim asked: Let G be a finite abelian group. Can its elements be
partitioned into cosets of distinct sizes?

More generally, let n1 < n2 < . . . be a sequence of integers. Is there a reasonable
condition which would imply that there is a covering system whose moduli are all
among the ni? Quite likely there is no such condition. Let us now drop the
condition that the set of moduli is finite, but to avoid triviality we insist that in the
congruence ai (mod ni) only the integers greater than or equal to ni are considered.
When if ever can we find such a system?

3. Perhaps it is of some interest to relate the story of how I came to the problem
of covering congruences. In 1934 Romanoff [57] proved that the lower density of
the integers of the form 2k + p (p prime) is positive. This was surprising since the
number of sums 2k+p ≤ x is cx. Romanoff in a letter in 1934 asked me if there were
infinitely many odd numbers not of the form 2k + p. Using covering congruences
I proved in [27] that there is an arithmetic progression of odd numbers no term
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of which is of the form 2k + p. Independently Van der Corput also proved that
there are infinitely many odd numbers not of the form 2k + p. Crocker [16] proved
that there are infinitely many odd integers not of the form 2k1 + 2k2 + p, but his
proof only gives that the number of integers ≤ x not of the form 2k1 + 2k2 + p
is > c log log x. This surely can be improved but I am not at all sure if the upper
density of the integers not of the form 2k1 + 2k2 + p is positive. One could ask
the following (probably unattackable) problem. Is it true that there is an r so that
every integer is the sum of a prime and r or fewer powers of 2. Gallagher [47]
proved (improving a result of Linnik) that for every ε there is an rε so that the
lower density of the integers which are the sum of a prime and rε powers of 2 is 1−ε.
No doubt lower density always could be replaced by density, but the proof that the
density of the integers of the form 2k + p exists seems unattackable.

I think that every arithmetic progression contains infinitely many integers of the
form 2k1 +2k2 +p. Thus covering congruences cannot be used to improve the result
of Crocker.

Perhaps the following rather silly conjecture could be added. Is it true that the
set of odd integers not of the form 2k + p is the not necessarily disjoint union of an
infinite arithmetic progression and perhaps a sequence of density 0?

4. Let n1 < n2 < . . . be an arbitrary sequence of integers. Besicovitch proved
more than 60 years ago that the set of the multiples of the ni does not have to
have a density. In those prehistoric days this was a great surprise. Davenport and I
proved [19, 20] that the set of multiples of the {ni} have a logarithmic density and
the logarithmic density equals the lower density of the set of multiples of the {ni}.
Now the following question is perhaps of interest: Exclude one or several residues
mod ni (where only the integers ≥ ni are excluded). Is it true that the logarithmic
density of the integers which are not excluded always exists? This question seems
difficult even if we only exclude one residue mod ni for every ni.

For a more detailed explanation of these problems see the excellent book of
Halberstam and Roth, Sequences, Springer–Verlag, or the excellent book of Hall
and Tenenbaum, Divisors, Cambridge University Press.

Tenenbaum and I recently asked the following question: let n1 < n2 < . . . be an
infinite sequence of positive integers. Is it then true that there always is a positive
integer k for which almost all integers have a divisor of the form ni + k? In other
words, the set of multiples of the ni + k (1 ≤ i < ∞) has density 1. Very recently
Ruzsa found a very ingenious counterexample. Tenenbaum thought that perhaps
for every ε > 0 there is a k for which the density of the multiples of the ni + k has
density > 1− ε.

5. Let n1 < n2 < · · · < nk be a sequence of integers. I would like to choose
residues ai (mod ni) for which the number of integers ≤ x not satisfying any of the
congruences ai (mod ni) should be as small as possible. Clearly the density can be

made to be ≤ ∏k
i=1(1 − 1/ni) and if (ni, nj) = 1 then clearly for every choice of

the ai the density equals
∏k

i=1(1− 1/ni), but if (ni, nj) is not always 1 the density

can be both larger and smaller than
∏k

i=1(1− 1/ni).

Let us now restrict ourselves to a special case. The ni are the integers between t
and ct. First of all denote by α1(c, t) the smallest possible value of the density
of the integers satisfying none of the congruences ai (mod m) (t ≤ m ≤ ct), and
let α2(c, t) be the largest possible value of the density of the integers satisfying none
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of these congruences. It is well known that for every c > 1 we have α2(c, t) → 0
as t → ∞. Since an old theorem of mine [24] states that the density of integers
which have a divisor in (t, ct) tends to 0 for every c if t → ∞. Thus to get α2(c, t) →
0 it suffices to take ai = 0 for every i. Now as we already remarked α1(c, t) can
be clearly made at least as large as 1 − ∏

t≤u≤ct(1 − 1/u). Can it in fact be
made much larger? It is easy to see that it can be 1 only if there is a covering
congruence the smallest modulus of which is ≥ t and the largest modulus of which
is ct. On the other hand perhaps there is a c so that for every ε > 0 there is a t for
which α1(c, t) > 1− ε. I am not at all sure if this is possible and I give 100 dollars
for an answer.

6. Some problems in additive number theory. I met Sidon first in 1932 and he posed
two very interesting problems. The first problem stated: Let A = {a1 < a2 < . . . }
be an infinite sequence of integers, and denote by f(n) the number of solutions
of n = ai + aj . Sidon asked: Is there a sequence A for which f(n) > 0 for all n
but for every ε > 0 we have f(n)/nε → 0? I thought for a few minutes and told
Sidon: ‘A very nice problem. I am sure such a sequence exists and I hope to have
an example in a few days.’

I was a bit too optimistic; I did eventually solve the problem but it took 20 years!
Using the probability method I proved that there is a sequence A for which

c1 log n < f(n) < c2 log n. (4)

I offer 500 dollars for a proof or disproof of my conjecture that there is no sequence A
for which f(n)/ log n → c with c > 0 and finite. Also Turán and I conjectured that
if f(n) > 0 for all n > n0, then lim sup f(n) = ∞ and perhaps even

lim sup f(n)/ log n > 0.

I offer 500 dollars for a proof or disproof of my conjecture with Turán. Also I offer
100 dollars for an explicit construction of a sequence A for which f(n) > 0 for all n
but f(n)/nε → 0 for every ε > 0, i.e., for a constructive solution to Sidon’s original
question.

Sidon also asked: Let 1 ≤ a1 < a2 < · · · < ak ≤ n and assume that ai + aj
are all distinct. Put h(n) = max k. Determine or estimate h(n) as accurately as
possible. The exact determination of h(n) is perhaps hopeless but Chowla, Turán
and I proved

h(n) = (1 + o(1))n1/2.

Perhaps
h(n) = n1/2 +O(1), (5)

but this is perhaps too optimistic. I give 500 dollars for a proof or disproof of the
conjecture

h(n) = n1/2 + o(nε)

for any ε > 0. The excellent book of Halberstam and Roth, Sequences, contains a
great deal more about this problem and the probabilistic method.

Sidon also asked: Let A = {a1 < a2 < . . . } be an infinite sequence for which all
the sums ai + aj are distinct. Put

h(n) =
∑

a`<n

1.
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What can one say about h(n)? The greedy algorithm easily gives that there is a
sequence A for which for every n we have

h(n) > cn1/3.

I proved that for every sequence A

lim inf h(n)/n1/2 = 0.

Ajtai, Komlós and Szemerédi [2] in a very ingenious way constructed a Sidon

sequence A = {a1 < a2 < . . . } (i.e., a sequence with all ai + aj distinct) for which

h(n) > c(n log n)1/3

for some c > 0. Probably there is a Sidon sequence A for which

h(n) > n1/2−ε, (6)

but (6) is far beyond reach. Rényi and I [42] proved that for every ε > 0 there
is a sequence A with h(n) > n1/2−ε for which the number of solutions of ai +
aj = n is bounded. We used the probability method. Does there exist such a

sequence with h(n) > n1/2/(log n)c? A sharpening of our old conjecture with
Turán would state: If an < Cn2 for all n then lim sup f(n) = ∞. In fact, for what
functions g(n) → ∞ does an < n2g(n) imply lim sup f(n) = ∞? (500 dollars)

Here is an old conjecture of mine: Let a1 < a2 < . . . be an infinite sequence for
which all the triple sums ai+aj+ak are distinct. Is it then true that lim sup an/n

3 =
∞? I offer 500 dollars for a proof or disproof of this.

7. Let 1 ≤ a1 < a2 < · · · < ah ≤ n be a maximum Sidon sequence. Can one find
a Sidon sequence b1 < b2 < · · · < br ≤ n for every r and n > n0(r) so that the
differences aj − ai, bv − bu are all distinct, i.e., so that

aj − ai 6= bv − bu for all i < j and u < v?

More generally: Let a1 < a2 < · · · < ak1
≤ n, b1 < b2 < · · · < bk2

≤ n be two Sidon
sequences for which aj − ai 6= bv − bu for all i < j and u < v. How large can

max

((

k1
2

)

+

(

k2
2

))

be? I guessed [31] that it is less than
(

h(n)
2

)

+O(1). I offer 100 dollars for a proof
or disproof. Assume next that k1 = k2. I am sure that then

(

k1
2

)

+

(

k2
2

)

< (1− c)

(

h(n)

2

)

.

An old problem of mine states as follows: Let a1 < a2 < · · · < ak be a Sidon
sequence. Can one extend it to a larger Sidon sequence

a1 < · · · < ak < ak+1 < · · · < a`, a` = (1 + o(1))`2.

In other words, loosely speaking: can one extend every Sidon sequence to a Sidon
sequence which is substantially maximal? Many generalizations are possible.
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8. One last Ramsey type problem: Let nk be the smallest integer (if it exists)
for which if we colour the proper divisors of nk by k colours then nk will be a
monochromatic sum of distinct divisors, namely a sum of distinct divisors in a
colour class. I am sure that nk exists for every k but I think it is not even known
if n2 exists. It would be of some interest to determine at least n2. An old problem
of R.L. Graham and myself states: Is it true that if mk is sufficiently large and we
colour the integers 2 ≤ t ≤ mk by k colours then

1 =
∑ 1

ti
is always solvable monochromatically? I would like to see a proof that m2 exists.
(Clearly mk ≥ nk.) Perhaps this is really a Turán type problem and not a Ramsey
problem. In other words, if m is sufficiently large and 1 < a1 < a2 < · · · < a` ≤ m
is a sequence of integers for which

∑

` 1/a` > δ logm then

1 =
∑ εi

ai
(εi = 0 or 1)

is always solvable. I offer 100 dollars for a proof or disproof. Perhaps it suffices to
assume that

∑

ai<m

1

ai
> C(log logm)2

for some large enough C. For further problems of this kind as well as for related
results see my book with R.L. Graham [34]. I hope before the year 2000 a second
edition will appear.

9. Some problems on ϕ(n) and σ(n). Euler’s ϕ(n) function is the number of inte-
gers 1 ≤ t < n relatively prime to n, and σ(n) is the sum of divisors of n.

Is it true that for infinitely many integers ϕ(n) = σ(m) holds? If there are
infinitely many primes p for which p + 2 is also a prime then of course σ(p) =
ϕ(p + 2) = p + 1, but I could not prove that ϕ(n) = σ(m) has infinitely many
solutions. It is not difficult to prove that for all t we have that ϕ(n) = t! is solvable.
Probably for every sufficiently large t the equation σ(m) = t! is also solvable.

Let a1, . . . , at be the longest sequence for which

a1 < · · · < at ≤ n and ϕ(a1) < · · · < ϕ(at). (7)

Probably t = π(n). Can one even prove t < (1+o(1))π(n) or at least t = o(n)? This
latest conjecture will probably be easy. Similar questions can be posed about σ(n).

A more serious problem states as follows: Schoenberg proved about 70 years ago
that ϕ(n) has a distribution function. In other words the density of the integers
for which ϕ(n)/n < c exists for every c (0 ≤ c ≤ 1). I proved that the distribution
function is purely singular. Denote the distribution function by f(x). Is it true
that for no x can f(x) have a finite positive derivative? (250 dollars for a proof or
disproof.) For more details about these and related questions consult the excellent
book of Elliot, Probabilitstic Number Theory , Springer-Verlag.

One more problem on the ϕ function. Is there an infinite sequence of inte-
gers a1 < a2 < . . . so that ϕ(n) = ai is solvable but if ni is the smallest integer
for which ϕ(ni) = ai then ni/ai → ∞? A more significant problem is due to
Carmichael. Is it true that there is no integer t for which ϕ(n) = t has exactly
one solution? I proved that if there is an integer tk for which ϕ(n) = tk has ex-
actly k solutions then there are infinitely many such integers [29]. For many more
problems see R.K. Guy, Unsolved Problems in Number Theory , Springer-Verlag.
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10. Let 1 ≤ a1 < a2 < · · · < an be n integers. Denote by f(n) the largest integer
for which there are at least f(n) distinct integers of the form {ai + aj , aiaj}. Sze-
merédi and I [44] proved f(n) > n1+ε for some ε > 0 and conjectured f(n) > n2−ε

for any ε > 0 and n > n0(ε). This conjecture is still open and I offer 100 dol-
lars for a proof or disproof, and 250 dollars for a more exact bound. The fact
that f(n)/n2 → 0 and more is in our paper. Nathanson proved f(n) > n1+1/31.

11. A paper by Burr and myself which I think has been undeservedly forgotten
is [11]. Let A be a sequence of integers and let P (A) denote the integers which can
be represented as the sum of distinct terms of A, e.g., if A consists of the powers
of 2 then P (A) is the set of all positive integers.

A sequence A = {a1 < a2 < . . . } is Ramsey r-complete if whenever the sequence
is partitioned into r classes A = A1∪· · ·∪Ar every sufficiently large positive integer
is a member of

⋃r
i=1 P (Ai). It is entirely Ramsey r-complete if every positive integer

is a member of
⋃r

i=1 P (Ai). In our paper we investigate r = 2. We prove that there
is an entirely Ramsey 2-complete sequence satisfying

ax > exp

{

1

2
(log 2)x1/3

}

(8)

for all sufficiently large x. Also there is a C > 0 so that no infinite sequence A =
{a1 < a2 < . . . } satisfying

ax > exp
{

Cx1/2
}

(9)

for all sufficiently large x is Ramsey 2-complete. Many problems remain. We could
do nothing for r > 2 (250 dollars for any non-trivial result). Also, could (8) and (9)
be improved (100 dollars)?

Burr has a proof that for every k the sequence tk (1 ≤ t < ∞) is Ramsey
r-complete.

12. A purely computational problem (this problem cannot be attacked by other
means at present). Call a prime p good if every even number 2r ≤ p − 3 can be
written in the form q1 − q2 where q1 ≤ p, q2 ≤ p are primes. Are there infinitely
many good primes?

The first bad prime is 97 I think. Selfridge and Blecksmith have tables of the
good primes up to 1037 at least, and they are surprisingly numerous.

13. I proved long ago that every m < n! is the distinct sum of n − 1 or fewer
divisors of n!. Let h(m) be the smallest integer, if it exists, for which every integer
less than m is the distinct sum of h(m) or fewer divisors of m. Srinivasan called
the numbers for which h(m) exists practical . It is well known and easy to see that
almost all numbers m are not practical. I conjectured that there is a constant c ≥ 1
for which for infinitely many m we have h(m) < (log logm)c. M. Vose proved
that h(n!) < cn1/2. Perhaps h(n!) < c(log n)c2 . I would be very glad to see a proof
of h(n!) < nε.

A practical number n is called a champion if for every m > n, we have h(m) >
h(n). For instance, 6 and 24 are champions, as h(6) = 2, the next practical number
is 24, h(24) = 3, and for every m > 24, we have h(m) > 3. It would be of some
interest to prove some results about champions. A table of the champions < 106

would be of some interest. I conjecture that n! is not a champion for n > n0.
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The study of champions of various kinds was started by Ramanujan (Highly
composite numbers, Collected Papers of Ramanujan). See further my paper with
Alaouglu on highly composite and similar numbers [3], and many papers of J.L. Ni-
colas and my joint papers with Nicolas.

The following related problem is perhaps of some mild interest, in particular, for
those who are interested in numerical computations. Denote by gr(n) the smallest
integer which is not the distinct sum of r or fewer divisors of n. A number n is an
r-champion if for every t < n we have gr(n) > gr(t). For r = 1 the least common
multiple Mm of the integers ≤ m is a champions for any m, and these are all the 1-
champions. Perhaps the Mm are r-champions too, but there are other r-champions;
e.g., 18 is a 2-champion.

14. Let fk(n) be the largest integer for which you can give fk(n) integers ai ≤ n for
which you cannot find k+1 of them which are relatively prime. I conjectured that
you get fk(n) by taking the multiples ≤ n of the first k primes. This has been proved
for small k by Ahlswede, and Khachatrian disproved it for k ≥ 8 (see Ahlswede and
Khachatrian [1] and also a forthcoming paper of theirs). Perhaps if n ≥ (1 + ε)p2

k,
where pk is the kth prime, the conjecture remains true.

II. Combinatorics

First I state some of my favourite old problems.

1. Conjecture of Faber, Lovász and myself. Let G1, . . . , Gn be n edge-disjoint
complete graphs on n vertices. We conjectured more than 20 years ago that the
chromatic number of

⋃n
i=1 Gi is n. I offer 500 dollars for a proof or disproof.

About 3 years ago Jeff Kahn [54] proved that the chromatic number of
⋃n

i=1 Gi is
less than (1 + o(1))n. I immediately gave him a consolation prize of 100 dollars.
(For a related result, see Kahn and Seymour [55]). Hindman proved our conjecture
for n < 10 many years ago.

It might be of interest to determine the maximum of the chromatic number
of
⋃n

i=1Gi if we ask that Gi ∩Gj (i 6= j) should be triangle-free or should have at
most one edge in common, but it is not clear to me if we get a nice answer. Also one
could assume that the Gi are edge-disjoint and could try to determine the largest
chromatic number of

⋃m
i=1 Gi for m > n. Again I am not sure if we can hope for a

nice answer.

2. Problems on ∆-systems. A family of sets Ai, i = 1, 2, . . . , is called a strong ∆-

system if all the intersections Ai ∩Aj (i 6= j) are identical, i.e., if Ai ∩Aj =
⋂

iAi.
The family is called a weak ∆-system if we only assume that the size Ai∩Aj (i 6= j)
is always the same.

Rado and I [40, 41] investigated the following question: Denote by fs(n, k) the
smallest integer for which every family of sets Ai (1 ≤ i ≤ fs(n, k)) with |Ai| = n
for all i contains k sets which form a strong ∆-system. In particular, we proved

2n < fs(n, 3) ≤ 2nn! (10)

Abott and Hanson proved fs(n, 3) > 10n/2. Rado and I conjectured

fs(n, 3) < cn3 (11)
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and no doubt also

fs(n, k) < cnk .

I offer 1000 dollars for a proof or disproof of (11). Milner, Rado and I [37] also
considered finite and infinite strong and weak ∆-systems. We could not prove

fw(n, 3) = o(n!).

Curiously, the infinite problems were not very difficult; conjecture (11) and the
corresponding conjecture for fw(n, 3) remained open.

Recently Kostochka proved

fs(n, 3) < n!

(

c log n

log log n

)−n

. (12)

I gave Kostochka a consolation prize of 100 dollars. Very recently, Axenovich,
Fon-der-Flaas and Kostochka proved

fw(n, 3) < n!1/2+ε

for every ε > 0 and n > n0(ε).

3. Many years ago Hajnal and I conjectured that if G is an infinite graph whose
chromatic number is infinite, then if a1 < a2 < . . . are the lengths of the odd cycles
of G we have

∑

i

1

ai
= ∞

and perhaps a1 < a2 < . . . has positive upper density. (The lower density can be 0
since there are graphs of arbitrarily large chromatic number and girth.)

We never could get anywhere with this conjecture. About 10 years ago Mihók
and I conjectured that G must contain for infinitely many n cycles of length 2n.
More generally it would be of interest to characterize the infinite sequences A =
{a1 < a2 < . . . } for which every graph of infinite chromatic number must contain
infinitely many cycles whose length is in A. In particular, assume that the ai are
all odd.

All these problems were unattackable (at least for us). About three years ago
Gyárfás and I thought that perhaps every graph whose minimum degree is ≥ 3 must
contain a cycle of length 2k for some k ≥ 2. We became convinced that the answer
almost surely will be negative but we could not find a counterexample. We in fact
thought that for every r there must be a Gr every vertex of which has degree ≥ r
and which contains no cycle of length 2k for any k ≥ 2. The problem is wide open
(cf. 4 below).

Gyárfás, Komlós and Szemerédi [49] proved that if k is large and a1 < a2 < . . .
are the lengths of the cycles of a G(n, kn), that is, an n-vertex graph with kn edges,
then

∑ 1

ai
> c log n.

The sum is probably minimal for the complete bipartite graphs.
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4. Many years ago I asked: Is it true that for every a and b for which the arithmetic
progression a (mod b) contains infinitely many even numbers there is a c(a, b) so
that every G(n, c(a, b)n) contains a cycle whose length is ≡ a (mod b)? Bollobás [7]
proved this conjecture, but the best value of the constant c(a, b) is not known.

Now perhaps the following question is of interest: Is there a sequence A of
density 0 for which there is a constant c(A) so that for n > n0(A) every G(n, c(A)n)
contains a cycle whose length is in A? This question seems very interesting to me
and I offer 100 reais or 100 dollars, whichever is worth more, for an answer. I am
almost certain that if A is the sequence of the powers of 2 then no such constant
exists. What if A is the sequence of squares? I have no guess. Let f(n) be the
smallest integer for which every G(n, f(n)) contains a cycle of length a power of 2.
I think that f(n)/n → ∞ but f(n) < n(log n)c for some c > 0.

5. Let k be fixed and n → ∞. Is it true that there is an f(k) so that if G(n) has the
property that for every m every subgraph of m vertices contains an independent set
of size m/2 − k then G(n) is the union of a bipartite graph and a graph of ≤ f(k)
vertices, i.e., the vertex set of G(n) is the union of three disjoint sets S1, S2 and S3

where S1 and S2 are independent and |S3| ≤ f(k). Gyárfás pointed out that even
the following special case is perhaps difficult. Assume that for every even m every m
vertices of our G(n) induces an independent set of size at least m/2. Is it then true
that G(n) is the union of a bipartite graph and a bounded set? Perhaps this will
be cleared up before this paper appears, or am I too optimistic?

Hajnal, Szemerédi and I proved that for every ε > 0 there is a graph of infinite
chromatic number for which every subgraph of m vertices contains an independent
set of size (1−ε)m/2 and in fact perhaps (1−ε)m/2 can be replaced by m/2−f(m)
where f(m) tends to infinity arbitrarily slowly. A result of Folkman implies that
if G is such that every subgraph of m vertices contains an independent set of
size m/2− k then the chromatic number of G is at most 2k + 2 (see [36]).

6. Many years ago I proved by the probability method that for every k and r there
is a graph of girth ≥ r and chromatic number ≥ k. Lovász when he was still in high
school found a fairly difficult constructive proof. My proof still had the advantage
that not only was the chromatic number of G(n) large but the largest independent
set was of size < εn for every ε > 0 if n > n0(ε, r, k). Nešetřil and Rödl later found
a simpler constructive proof which also had this property.

There is a very great difference between a graph of chromatic number ℵ0 and
a graph of chromatic number ≥ ℵ1. Hajnal and I in fact proved that if G has
chromatic number ℵ1 then G must contain a C4 and more generally G contains
the complete bipartite graph K(n,ℵ1) for every n < ℵ0. Hajnal, Shelah and I [35]
proved that every graph G of chromatic number ℵ1 must contain for some k0 every
odd cycle of size ≥ k0 (for even cycles this was of course contained in our result
with Hajnal), but we observed that for every k and every m there is a graph of
chromatic number m which contains no odd cycle of length < k. Walter Taylor has
the following very beautiful problem: Let G be any graph of chromatic number ℵ1.
Is it true that for every m > ℵ1 there is a graph Gm of chromatic number m all
finite subgraphs of which are contained in G? Hajnal and Komjáth [51] have some
results in this direction but the general conjecture is still open. If it would have
been my problem, I certainly would offer 1000 dollars for a proof or a disproof. (To
avoid financial ruin I have to restrict my offers to my problems.)
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7. Hajnal, Szemerédi and I [36] have the following problems and results. Let
f(n) → ∞ arbitrarily slowly. Is it true that there is a graph G of infinite chromatic
number such that, for every n, every subgraph of G of n vertices can be made
bipartite by the omission of fewer than f(n) edges? I offer 250 dollars for a proof
or disproof. Rödl [56] proved the corresponding result for hypergraphs in 1982. It
would be of interest to prove or disprove the existence of a G of infinite chromatic
number for which f(n) = o(nε) or f(n) < (log n)c for some c > 0.

Let G have chromatic number ≥ ℵ1. Then by our result with Hajnal and She-
lah [35] the graphG has for every n a subgraph of n vertices the largest independent
set of which is < (1−ε)n/2. In our paper with Hajnal and Szemerédi we ask: Does
there exist a G of chromatic number ℵ1 every subgraph of n vertices of which has
an independent set of size > cn for some c > 0? If the answer is negative, can cn
be replaced by n1−ε? I.e., is there a G of chromatic number ℵ1 every subgraph
of n vertices of which contains an independent set of size > n1−ε for every ε > 0
if n ≥ n0(ε)?

8. A problem of Faudree, Ordman and myself states: Denote by h(n) the largest
integer for which if you colour the edges of the complete graph K(n) by two colours
we always have a family of ≥ h(n) edge-disjoint monochromatic triangles. We
conjectured that

h(n) = (1 + o(1))
n2

12
. (13)

If true (13) is easily seen to be best possible. We divide the vertex set into two
sets S1 and S2 with

∣

∣|S1| − |S2|
∣

∣ ≤ 1. The edges joining S1 and S2 are coloured
with the first colour and all the other edges are coloured with the second colour.

Perhaps there is an absolute constant c > 0 for which there are more than (1 +
c)n2/24 monochromatic triangles all of which have the same color. Jacobson con-
jectured that the result could be n2/20; he has a simple example which shows that
if true this is best possible.

If we drop the condition of edge-disjointness then the number of monochromatic
triangles was determined long ago by Goodman [48] and others.

9. Some Ramsey type problems. Let G and H be two graphs. Then r(G,H) is
the smallest integer n for which if we colour the edges of K(n) by two colours I
and II there is either a G all whose edges are coloured I or an H all whose edges
are coloured II. For simplicity put r(t) = r(K(t),K(t)). It is known that

ct2t/2 < r(t) < t−1/2

(

2t− 2

t− 1

)

, (14)

for some constant c > 0. It would be very desirable to improve (14) and prove that

c = lim
t→∞

r(t)1/t

exists and if c exists determine its value. By (14) the value of this limit, if it exicts,

is between
√
2 and 4. I offer 100 dollars for the proof of the existence of c and

250 dollars for the value of c. I give 1000 dollars for a proof of the non-existence
of c, but this is really a joke as c certainly exists. The proof of the lower bound
of (14) is probabilistic. I give 100 dollars for a constructive proof of

r(t) > (1 + c)t
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for some c > 0. All these problems are well known. Now I state a few less well
known questions. Harary conjectured and Sidorenko [59] proved that for any Hn

of size n without isolated vertices

r(K3,Hn) ≤ 2n+ 1

(the size is the number of edges).

In a recent paper, Faudree, Rousseau, Schelp and I [33] define G to be Ramsey

size linear if there is an absolute constant C for which

r(G,Hn) < Cn (15)

holds for any graph Hn of size n. We obtain many results about graphs which
satisfy (15) but I have to refer to our paper. Here I only state some of our unsolved
problems: K(4) is known not to be Ramsey size linear but all its subgraph are
Ramsey size linear. Are there other such graphs and in fact are there infinitely
many such graphs?

Is K(3, 3) Ramsey size linear? For further problems I have to refer to our paper.

10. In a recent paper with Ordman and Zalcstein [38] we have among many others
the following question: Let G(n) be a chordal graph, i.e., a graph whose every
cycle of length greater than 3 has a diagonal. Can we partition the edges of G(n)
into n2/6+cn cliques? We could only prove this with n2/4−εn2 cliques where ε > 0
is very small. For further problem I have to refer to our paper.

11. Fajtlowicz, Staton and I considered the following problem (the main idea was
due to Fajtlowicz). Let F (n) be the largest integer for which every graph of n ver-
tices contains a regular induced subgraph of ≥ F (n) vertices. Ramsey’s theorem
states that G(n) contains a trivial subgraph, i.e., a complete or empty subgraph
of c log n vertices. (The exact value of c is not known but 1/2 ≤ c ≤ 2; cf. 9 above.)
We conjectured F (n)/ log n → ∞. This is still open. We observed F (5) = 3 (since
if G(5) contains no trivial subgraph of 3 vertices then it must be a pentagon).
Kohayakawa and I worked out that F (7) = 4 but the proof is by an uninterest-
ing case analysis. It would be very interesting to find the smallest integer n for
which F (n) = 5, i.e., the smallest n for which every G(n) contains a regular in-
duced subgraph of ≥ 5 vertices. Probably this will be much more difficult than
the proof of F (7) = 4 since in the latter we could use properties of perfect graphs.
Bollobás observed that F (n) < c

√
n for some c > 0. Fajtlowicz, McColgan, Reid,

and Staton have a forthcoming paper on this problem [45].

12. Here is an old conjecture of Erdős–Ko–Rado: Let |S| = 4n, A` ⊂ S, |A`| = 2n,
and assume that for 1 ≤ i < j ≤ h(n) we have |Ai ∩Aj | ≥ 2. Then

maxh(n) =
1

2

(

(

4n

2n

)

−
(

2n

n

)2
)

. (16)

I offer 400 dollars for a proof or disproof of (16). It is easy to see that if (16) is true
then it is best possible.
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13. Ralph Faudree and I considered the following problem: Let G(n) be a graph
of n vertices; let 3 ≤ a1 < a2 < · · · < ak ≤ n be the lengths of the cycles of
our G(n). Now conisder all the graphs of n vertices and consider all the possible
sequences, in other words 3 ≤ b1 < b2 < · · · < bk ≤ n belongs to our set of sequences
if there is a graph G(n) which has cycles of length {bi} and no cycle of length t
if t is not one of our bi. Now denote by f(n) the number of our possible sequences.
Clearly f(n) ≤ 2n−2 and for n ≥ 5 we have f(n) < 2n−2. Our first problem is
to prove f(n)/2n → 0. We showed f(n) > 2n/2. To see this consider a Hamilton
cycle and join one of its points to some of the points to the right of our point at
distance a1 < · · · < ak < n/2. This graph has all the cycles of length n − ai,
which are > n/2, and not other cycles of length > n/2. This shows f(n) > 2n/2.
Probably f(n)/2n/2 → ∞.

One hopes to be able to prove f(n)/2n → 0 by showing that many conditions are
necessary for a sequence 3 ≤ a1 < · · · < ak ≤ n to be the sequence of cycle lengths
of a graph. As far as I know the only such result is due to Faudree, Flandrin,
Jacobson, Lehel, and Schelp: If G(n) contains all the odd cycles then it must
contain at least nc even cycle lengths for c = 1/6, and they conjecture that c = 1/3
is the correct value. Further, if the conjecture is true they have shown this to be
best possible. To prove f(n)/2n → 0 we would need a much more precise result.
It would be of interest to determine lim f(n)1/n = c. We know that 21/2 ≤ c ≤ 2.
The determination of the exact value of f(n) may be hopeless.

14. I did a great deal of work on extremal graph problems. Those who are inter-
ested can study the excellent book of Bollobás [8] and the excellent survey paper
of Simonovits [60]. Here I just want to mention a little known conjecture of mine:
Let f(n) be the smallest integer for which every G(n) every vertex of which has de-
gree ≥ f(n) contains a C4. Is it true that f(n+1) ≥ f(n)? If this is too optimistic
is it at least true that there is an absolute constant c so that for every m > n

f(m) > f(n)− c?

The same question can of course be asked for other graphs instead of C4.
Finally let g(n) be the smallest integer for which every subgraph of the n-

dimensional cube which has g(n) edges contains a C4. An old conjecture of mine
states that

g(n) <

(

1

2
+ o(1)

)

n2n−1. (17)

I offer 100 dollars for a proof or a disproof of (17). See for this problem and
generalizations (C4 may be replaced by other graphs) the recent papers of Fan
Chung [14], Conder [15] and Brouwer, Dejter and Thomassen [10].

15. In the book of Bondy and Murty [9] the following old conjecture of mine is
stated (Problem 26, p. 250). Let G be an arbitrary n-chromatic graph. Then

r(G,G) ≥ r(n) = r(K(n),K(n)). (18)

Inequality (18) is trivial for n = 3. Unfortunately it already fails for n = 4. Faudree
and McKay [46] proved that the Ramsey number of the pentagonal wheel is 17.
Probably the conjecture fails for every n > 4 but perhaps r(G,G) cannot be much
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smaller than r(n). In fact, r(G,G) > (1− ε)nr(n) should hold for some 0 < ε < 1
and perhaps even

lim
n→0

r(G,G)/r(n) > 0.

Both conjectures may be unattackable at present.

16. Brendan McKay and I conjectured that if G(n, c1n
2) is a graph which contains

no trivial subgraph of c2 log n vertices then there is a t > εn2 (ε > 0 a constant) so
that our G(n) has an induced subgraph of i edges for each i ≤ t edges. I think this
is a nice conjecture and I offer 100 dollars for a proof or disproof. The problem has
been almost completely forgotten and perhaps it is not difficult. We only proved it
for some t < c(log n)2.

III. Some Problems in Combinatorial Geometry

1. Let x1, . . . , xn be n distinct points in the plane. Let f(n) be the number of
distinct distances that these points are guaranteed to determine. In other words,
if d(xi, xj) is the distance between xi and xj , there are necessarily at least f(n)
distinct numbers among the d(xi, xj) (1 ≤ i < j ≤ n). I conjectured [26] in 1946
that

f(n) > cn/(log n)1/2. (19)

The lattice points show that if (19) if true then it is best possible. I offer 500 dollars
for a proof or disproof of (19).

Denote by g(n) the maximum number of times the same distance can occur, i.e.,
g(n) is the maximum number of pairs for which d(xi, xj) = 1, where the maximum
is taken over all configurations x1, . . . , xn. I conjectured in my 1946 paper that

g(n) < n1+c/ log log n, (20)

for some c > 0. The lattice points show that (20) if true is best possible. I offer
500 dollars for a proof or disproof of (20). The best results so far are f(n) > n3/4

and g(n) < n5/4+ε for any ε > 0 and n > n0(ε).
Let x1, . . . , xn be n points in the plane. Let f(n) be the largest integer for

which for every xi there are ≥ f(n) points equidistant from xi. Is it true that
for n > n0(ε) we have f(n) = o(nε)? I offer 500 dollars for a proof but only
100 dollars for a counterexample. Some more unsolved problems: Let x1, . . . , xn

be n points in the plane. Denote by f(xi) the number of distinct distances from xi,
and say f(x1) ≤ f(x2) ≤ · · · ≤ f(xn). I conjectured long ago that

f(xn) > cn/(log n)1/2 (21)

and that in fact
n
∑

i=1

f(xi) > cn2/(log n)1/2. (22)

Inequalities (21) and (22) are of course stronger than (19). Trivially f(x1) = 1 is
possible. It is also easy to see that f(x2) > cn1/2 and in fact N. Saldanha and I
observed that f(x1)f(x2) ≥ (n− 2)/2 and this is best possible. So far we have no
good result for f(x3). For instance, f(x3) > n1/2+ε? Determine or estimate the
smallest k = k(n) for which f(xk) > n1−o(1) (it is not known if f(xn) > n1−o(1), but
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I am sure that this is true). Probably much more is true but I have no conjecture.
Clearly there are many further open problems. What, for example, is the maximum
number of distinct sequences f(x1), . . . , f(xn) which are possible? Perhaps it is
more interesting to ask how many distinct numbers there can be among the f(xi)
(1 ≤ i ≤ n). By our result with Saldanha it is less than n− cn1/2 for some c > 0. I
think that n−o(n) will surely be possible, but perhaps n−n(1−ε) for arbitrary ε > 0
is not possible. For many nice questions for higher dimensions see, e.g., Avis, Erdős
and Pach [6] and Erdős and Pach [39].

For related problems and results see the excellent book of Croft, Falconer and
Guy, Unsolved Problems in Geometry , Springer-Verlag.

2. Let x1, . . . , xn be a convex polygon. I conjectured that the number of distinct
distances among the n points is ≥ bn/2c. We clearly have equality for the regular
polygon. Altman [4, 5] proved this conjecture. Fishburn determined all cases of
equality.

I conjectured that for at least one xi there are at least bn/2c distinct distances
from xi. This conjecture is still open.

Szemerédi conjectured that if x1, . . . , xn are n points in the plane with no three
on a line then there are at least bn/2c distinct distances among the xi, but he only
proved it with n/3 (see [30]). Many related questions can be asked, e.g., what
happens with the number of distinct distances determined by the vertices of convex
polyhedra? I have not even a reasonable conjecture. The difficulty of course is that
there are no regular polyhedra for n > 20.

3. Let x1, . . . , xn be a convex polygon in the plane. Consider the
(

n
2

)

distances
d(xi, xj) and assume that the distance ui occurs si times. Clearly

∑

i

si =

(

n

2

)

.

I conjectured and Fishburn proved that

∑

i

s2i < cn3. (23)

I also conjectured that
∑

i s
2
i is maximal for the regular n-gon for n > n0.

If convexity is not assumed I conjectured

∑

i

s2i < n3+ε (24)

for any ε > 0 and n > n0(ε). I offer 500 dollars for a proof or disproof of (24).

4. Is it true that every polygon has a vertex which has no four other vertices
equidistant from it? I first thought that every convex polygon had a vertex which
has no three vertices equidistant from it but Danzer (cf. [32]) found a polygon of
9 points every vertex of which has three vertices equidistant from it, and Fishburn
and Reeds found a convex polygon of 20 sides whose every vertex has three other
vertices at distance 1.

Is the following conjecture true? Let x1, . . . , xn be n points in the plane with the
minimum distance among the xi equal to 1. Let the diameter be minimal under this
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condition. The points x1, . . . , xn are then asymptotically similar to the triangular
lattice, but probably for n > n0 it will never be a subset of the triangular lattice.
I do not think this has ever been proved.

Now, I had the following conjecture which seemed obvious to me though I could
not prove it. If the diameter of x1, . . . , xn is minimal then there are three of our
points xi, xj , xk which form an equilateral triangle of size 1. To my great surprise,
Simonovits, Vesztergombi and Sendov all expressed doubts. I now offer 100 dollars
for a proof or disproof. In fact I am sure that our set must have a very large
intersection with the triangular lattice.

Let x1, . . . , xn be n distinct points in the plane. Assume that if two distances
d(xi, xj) and d(xk, x`) differ then they differ by at least 1. Is it then true that
the diameter D(x1, . . . , xn) is greater than cn? Perhaps if n > n0 the diameter
is in fact ≥ n − 1. Lothar Piepmeyer has a nice example of 9 points for which

the diameter is < 5. Here it is: let first x = (1 +
√
2)
√

2−
√
3. Then take

2 equilateral triangles, one of them with side length x, and the second ‘around’
the first, containing it, with parallel sides, and distances x between corresponding
vertices. The 3 remaining points are the centres of the 3 circles determined by the 4
endpoints of the three pairs of parallel sides of the two equilateral triangles.

It is perhaps not uninteresting to try to determine the smallest diameter for
each n, but this will alredy be difficult for n = 9.

5. An old conjecture of mine states that if x1, . . . , xn are n points with no five
on a line then the number of lines containing four of our points is o(n2). I offer
100 dollars for a proof or disproof. An example of Grünbaum shows that the number
of these lines can be > cn3/2 for some constant c > 0 and perhaps n3/2 is the correct
upper bound. Sylvester observed that one can give n points in the plane so that the
number of lines passing through exactly three of our points is as large as n2/6− cn
for some constant c > 0. This is the so-called Orchard Configuration, named after
the Orchard Problem (see Burr, Grünbaum and Sloane [12]).

George Purdy and I considered the following related problem. If we no longer
insist that no five of the xi can be on a line then the lattice points in the plane show
that we can get cn2 distinct lines each containing at least four of our points and
in fact c′n2 containing exactly four of our points. Denote by f(n) the maximum
number of distinct lines which pass through at least 4 of our points. Determine
or estimate f(n) as well as you can. Perhaps if there are cn2 distinct lines each
containing more than three points, then there is an h(n) → ∞ such that there is
a line containing h(n) distinct points. We cannot prove that h(n) ≥ 5 but suspect
that h(n) → ∞, and perhaps h(n) > εn1/2 for some ε > 0. It is easy to see
that h(n) < cn1/2 for some c > 0. Clearly several related questions can be asked.

In 1933, while reading the book of Hilbert and Cohn-Vossen, Anschauliche Ge-

ometrie (Geometry and Imagination was the translation), the following problem
occurred to me: Let x1, . . . , xn be n points in the plane, not all on a line. Then
is there always a line which goes through exactly two of our points? To my dis-
appointment, I could not prove this; a few days later Gallai found a simple proof.
L.M. Kelly later informed me that in fact Sylvester conjectured this already in 1893,
but the first proof was due to Gallai. Later L.M. Kelly found the simplest known
proof. It has been conjectured that for n > n0 there are at least n/2 Gallai lines
(i.e., lines which go through exactly two of our points). This is still open; the best
bound at present, due to Csima and Sawyer [18], is 6n/13.
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Suppose that the line with the most points contains only o(n) of our xi. Denote
by f(n) the maximum number of pairs covered by lines containing at least four
points. Could it be that the maximum occurs for the lattice? It is not clear to us
whether the triangular or the square lattice would be best. This could be decided
by a rather messy computation, but trial by computer might help.

Is it true that if the line with most points contains only o(n) of our xi then the
number of lines is n2/6+O(n)? The Orchard Configuration shows that if true this
is best possible.

6. A little more than 10 years ago I asked the following question: Let x1, . . . , xn

be n distinct points in the plane. Denote by f(n) the maximum number of distinct
unit circles which contain at least three of our points. Trivially f(n) ≤ n(n − 1)
and f(n) > cn. I conjectured

f(n)/n → ∞ (25)

and
f(n)/n2 → 0. (26)

As far as I know (26) is still open but Elekes [21] found a very clever proof of f(n) >
cn3/2. Here is his proof: Let e1, . . . , en be unit vectors in general position, i.e., all
subsums

∑n
i=1 δiei (δi = 0 or 1) are distinct. Our points are the

(

k
2

)

points ei + ej
(1 ≤ i < j ≤ n). The centres of our unit circles are the

(

k
3

)

points ei + ej + ek
(1 ≤ i < j < k ≤ n). The circle with centre ei + ej + ek contains the three
points ei + ej , ei + ek, ej + ek.

The proof of course easily generalizes for r dimensions. You get n points in
r-dimensional space with cn1+1/r distinct unit spheres each containing r+1 of our
points. Perhaps the construction of Elekes is asymptotically best possible.

7. Let x1, x2, . . . be an infinite sequence of points in the plane, or more generally in
n-dimensional space. Assume that all the distances d(xi, xj) are integers. Anning
and I proved that this is possible only if all the points are one a line. Our first
proof was rather complicated but later I found a very simple proof [25].

Ulam conjectured that if x1, x2, . . . form a dense set then not all distances can
be rational. Can one find for every n a set of n points in general position, i.e., no
three on a line and no four on a circle, with all distances integers? The general
problem is unsolved. Perhaps Harborth has the strongest results.

8. Let x1, . . . , xn be n points in the plane, not all on a line. Let L1, . . . , Lm be
the set of all the lines containing at least two of our points. I proved long ago
that m ≥ n with equality only if n − 1 of our points are on a line. This easily
follows by induction from Gallai–Sylvester (i.e., that there always exists a Gallai

line, a line that contains exactly two of our points.)
In a forthcoming paper with Purdy, we investigate the following question. Let

f(n) be the smallest integer r for which there is a configuration x1, . . . , xn that
admits points y1, . . . , yr, with all the yi different from the xj , and so that all the
lines L1, . . . , Lm go through at least one yi. It is easy to see that f(n) ≤ n− 1. To
see this just take n−2 points on a line and two points off this line as the x1, . . . , xn.
In this configuration one can easily find n − 1 points yj as required. At first we
thought that f(n) = n− 1, but Dean Hickerson found a nice example which shows
that f(n) ≤ n− 2. A result of Beck, Szemerédi and Trotter gives f(n) > cn for an
absolute constant c > 0. Now, a conjecture of Dirac states as follows: Let x1, . . . , xn
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be n points not all on a line and join every two of them. Then for at least one xi there
are n/2−c distinct lines through xi (c > 0 an absolute constant). If this conjecture
of Dirac holds then f(n) ≥ n/2 − c, but perhaps even f(n) = n − 2. The only
motivation for our conjecture is that we cannot improve Hickerson’s construction
which gives f(n) ≤ n− 2. I give 50 dollars for a proof or disproof of the conjecture
that f(n) = n− 2.

9. Here is a problem of mine which is more than 60 years old and has been perhaps
undeservedly forgotten. Let S be a unit square. Inscribe n squares with no common
interior point. Denote by e1, . . . , en the side lengths of these squares. Put

f(n) = max

n
∑

i=1

ei.

From Cauchy–Schwarz we trivially get that f(k2) = k. Is it true that f(k2+1) = k?
It is not hard to see that f(2) = 1, and perhaps f(5) = 2 has been proved. As far
as I know the general case is open. It is easy to see that f(n+ 2) > f(n) for all n.
For which n is f(n+ 1) = f(n)?

10. Finally I should state the Erdős–Klein–Szekeres problem: Let f(n) be the
smallest integer r such that if r points are in the plane with no three on a line then
one can find n of them which form the vertices of a convex n-gon. One has f(4) = 5
(Klein), f(5) = 9 (Turán and Makai), and Szekeres conjectured f(n) = 2n−2 + 1.
It is known that f(n) > 2n−2 and that f(n) ≤

(

2n−4
n−2

)

. For more details see

Erdős–Szekeres [43] and also The Art of Counting , in particular the introduction
by Szekeres.
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torial Math. and Combinatorial Computing 13 (1993), 23–31.
47. Gallagher, P.X., Primes and powers of 2, Invent. Math. 29 (1975), 125–142.

48. Goodman, A.W., On sets of acquaintances and strangers at any party, Amer. Math. Monthly

66 (1959), 778–783.
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