
ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS
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Abstract. For 0 < γ ≤ 1 and graphs G and H, write G→γ H if any γ-proportion of
the edges of G span at least one copy of H in G. As customary, write Kr for the com-

plete graph on r vertices. We show that for every fixed real η > 0 there exists a con-
stant C = C(η) such that almost every random graph Gn,p with p = p(n) ≥ Cn−2/5

satisfies Gn,p →2/3+η K
4. The proof makes use of a variant of Szemerédi’s regu-

larity lemma for sparse graphs and is based on a certain superexponential estimate
for the number of pseudo-random tripartite graphs whose triangles are not too well

distributed. Related results and a general conjecture concerning H-free subgraphs of
random graphs in the spirit of the Erdős–Stone–Simonovits theorem are discussed.

§0. Introduction

A classical area of extremal graph theory investigates numerical and structural
problems concerning H-free graphs, namely graphs that do not contain a copy of
a given fixed graph H as a subgraph. Let ex(n,H) be the maximal number of
edges that an H-free graph on n vertices may have. A basic question is then to
determine or estimate ex(n,H) for any given H and large n. A solution to this
problem is given by the celebrated Erdős–Stone–Simonovits theorem, which states
that, as n→∞, we have

ex(n,H) =
(

1− 1
χ(H)− 1

+ o(1)
)(

n

2

)
, (1)

where as usual χ(H) is the chromatic number of H. Furthermore, as proved in-
dependently by Erdős and Simonovits, every H-free graph G = Gn that has as
many edges as in (1) is in fact ‘very close’ (in a certain precise sense) to the densest
n-vertex (χ(H)− 1)-partite graph. For these and related results, see, for instance,
Bollobás [2].

Here we are interested in a variant of the function ex(n,H). Let G and H be
graphs, and write ex(G,H) for the maximal number of edges that an H-free sub-
graph of G may have. Formally, ex(G,H) = max{e(J): H 6⊂ J ⊂ G}, where e(J)
stands for the size |E(J)| of J . Clearly ex(n,H) = ex(Kn,H). As an example of
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a problem involving ex(G,H) with G 6= Kn, let us recall that a well-known con-
jecture of Erdős states that ex(Qn, C4) = (1/2 + o(1))e(Qn), where Qn stands for
the n-dimensional hypercube and C4 is the 4-cycle. (For several results concerning
this conjecture, see Chung [4].)

Our aim here is to study ex(G,H) when G is a ‘typical’ graph, by which we mean
a random graph. Let 0 < p = p(n) ≤ 1 and 0 < M = M(n) ≤ N =

(
n
2

)
be given.

The standard binomial random graph Gp = Gn,p has as vertex set a fixed set V (Gp)
of cardinality n and two such vertices are adjacent in Gp with probability p, with all
such adjacencies independent. The random graph GM = Gn,M is simply a graph on
a fixed n-element vertex set V (GM ) chosen uniformly at random from all the

(
N
M

)
possible candidates. (For concepts and results concerning random graphs not given
in detail below, see e.g. Bollobás [3].) Here we wish to investigate the random
variables ex(Gn,p,H) and ex(Gn,M ,H).

Let H be a graph of order |H| = |V (H)| ≥ 3. Let us write d2(H) for the 2-density
of H, that is

d2(H) = max
{
e(J)− 1
|J | − 2

: J ⊂ H, |J | ≥ 3
}
.

Given a real 0 ≤ ε ≤ 1 and an integer r ≥ 2, let us say that a graph J is ε-quasi
r-partite if J may be made r-partite by the deletion of at most εe(J) of its edges.
A general conjecture concerning ex(Gn,p,H) is as follows. For simplicity, below we
restrict our attention to the binomial random graph Gn,p. Much of what follows
may be restated in terms of Gn,M . As is usual in the theory of random graphs, we
say that a property P holds almost surely or that almost every random graph Gn,p
or Gn,M satisfies P if P holds with probability tending to 1 as n→∞.

Conjecture 1. Let H be a non-empty graph of order at least 3, and let 0 < p =
p(n) ≤ 1 be such that pn1/d2(H) → ∞ as n → ∞. Then the following assertions
hold.

(i) Almost every Gn,p satisfies

ex(Gn,p,H) =
(

1− 1
χ(H)− 1

+ o(1)
)
e(Gn,p). (2)

(ii) Suppose χ(H) ≥ 3. Then for any ε > 0 there is a δ = δ(ε) > 0 such
that almost every Gn,p has the property that any H-free subgraph J ⊂ Gn,p
of Gn,p with e(J) ≥ (1− δ) ex(Gn,p,H) is ε-quasi (χ(H)− 1)-partite.

Recall that any graph G contains an r-partite subgraph J ⊂ G with e(J) ≥
(1 − 1/r)e(G). Thus the content of Conjecture 1(i) is that ex(Gn,p,H) is at most
as large as the right-hand side of (2), or, in other words, that Gn,p →γ H holds
almost surely for any fixed γ > 1−1/(χ(H)−1). There are a few results in support
of Conjecture 1(i).

Any result concerning the tree-universality of expanding graphs or else a simple
application of Szemerédi’s regularity lemma for sparse graphs (see Lemma 4 below)
give Conjecture 1(i) for forests. The cases in which H = K3 and H = C4 are essen-
tially proved in Frankl and Rödl [5] and Füredi [6], respectively, in connection with
problems concerning the existence of some graphs with certain extremal properties.
The case in which H is a general cycle was settled by Haxell, Kohayakawa, and
 Luczak [8, 9] (see also Kohayakawa, Kreuter, and Steger [11]). Conjecture 1(ii)
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in the case in which 0 < p < 1 is a constant follows easily from Szemerédi’s regu-
larity lemma [15]. A variant of this lemma for sparse graphs (cf. Lemma 4 below)
and a lemma from Kohayakawa,  Luczak, and Rödl [12] concerning induced sub-
graphs of bipartite graphs may be used to verify Conjecture 1 for H = K3 in full.
(See comments following Conjecture 23 for further details.) Still in the case in
which H = K3, for 0 < p < 1 sufficiently close to 1/2, a much stronger result than
Conjecture 1(ii) was proved by Babai, Simonovits, and Spencer [1]. Finally, let us
note that a result concerning Ramsey properties of random graphs in the spirit of
Conjecture 1 was proved by Rödl and Ruciński [13, 14].

Here we prove Conjecture 1(i) for H = K4. Our results are as follows.

Theorem 2. For any constant 0 < η ≤ 1/3, there is a constant C = C(η) for
which the following holds. If 0 ≤ p = p(n) ≤ 1 is such that p ≥ Cn−2/5 for all large
enough n, then almost every Gp = Gn,p is such that Gp →2/3+η K

4.

Corollary 3. For any constant 0 < η ≤ 1/3, there is a constant C = C(η) for
which the following holds. If 0 ≤M = M(n) ≤

(
n
2

)
is such that M ≥ Cn8/5 for all

large enough n, then almost every GM = Gn,M is such that GM →2/3+η K
4.

In §6 below, we formulate an auxiliary conjecture (Conjecture 23) that, if proved,
would imply Conjecture 1 in full for all graphs H.

Finally, let us mention that Conjecture 1, if true, would immediately imply
the existence of very ‘sparse’ graphs G satisfying the property that G →γ H for
any γ > 1− 1/(χ(H)− 1). A simple corollary of Theorem 2 is that, for any η > 0,
there is a graph G = Gη that contains no K5 but we have G →2/3+η K

4 (see §5).
Erdős and Nešetřil have asked whether such graphs exist.

This note is organised as follows. In Section 1.1 we give a short outline of the
proof of our main result, Theorem 2, and in Section 1.2, some preliminary results
are given. In §2 the distribution of triangles in random and pseudo-random graphs
is studied. In §3 we prove a key lemma in the proof of our main result, Lemma 16.
Theorem 2 is proved in §4. In §5 we discuss a deterministic corollary to Theorem 2
concerning the Erdős–Nešetřil problem. Our last paragraph contains Conjecture 23.

§1. Outline of Proof and Preliminaries

1.1. Outline of the proof of Theorem 2. The proof of our main result is
somewhat long and hence, for convenience, in this section we describe its main
steps. Here we try to avoid being too technical.

The proof of Theorem 2 naturally splits into two parts. Suppose p = p(n) ≥
Cn−2/5, where C is some large constant, and let H be a spanning subgraph of Gp =
Gn,p with ‘relative density’ e(H)/e(Gp) ≥ λ. Let us say that two vertices x,
y ∈ Gp are K4

−-connected by H if there are two other vertices z1, z2 ∈ H such
that both {x, z1, z2} and {z1, z2, y} induce triangles in H. Sometimes we also say
that such a pair xy is a pivotal pair .

In the first part of our proof, we show that the number of pairs of vertices x,
y ∈ Gp that are K4

−-connected by H is roughly at least (2λ− 1)
(
n
2

)
, as long as C is

a large enough constant. The precise statement of this result is given in Section 3.2,
Lemma 16. The second part of the proof consists of deducing our Theorem 2 from
Lemma 16. This part is less technical than the first, and is also considerably shorter.
The method used here was inspired by an argument in Rödl and Ruciński [14], and
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a version of this technique was used in Haxell, Kohayakawa, and  Luczak [8]. Let
us give a brief description of this method.

Thus let Gp = Gn,p be the binomial random graph with p = p(n) ≥ Cn−2/5,
where C is some large constant, and let a constant 0 < η ≤ 1/3 be fixed. For
simplicity, let us also assume that p = p(n) → 0 as n → ∞. We may write Gp
as the union of k independent random graphs G(j)

p1 (1 ≤ j ≤ k), where k is some
large constant to be carefully chosen later. Since p = o(1), below we may ignore
the edges of Gp = G

(1)
p1 ∪· · ·∪G

(k)
p1 that belong to more than one of the G(j)

p1 . Let us
now ask an ‘adversary’ to choose a subgraph H ⊂ Gp of Gp of size at least λe(Gp),
where λ = 2/3 + η, or, equivalently, let us ask our adversary to choose a set of
edges F ⊂ E(Gp) with |F | ≥ λe(Gp). Our aim is to show that such a set F must
span a K4.

Instead of asking our adversary to pick F directly, we ask him to pick F ∩
E(G(j)

p1 ) for all j. For some j0, we must have |F ∩ E(G(j0)
p1 ))| ≥ λe(G(j0)

p1 ). We
may in fact ask our adversary to pick first j0 and Fj0 = F ∩ E(G(j0)

p1 ), and leave
the choice of F ∩ E(G(j)

p1 ) (j 6= j0) for later. By Lemma 16, we know that at
least ∼ (2λ − 1)

(
n
2

)
= (1/3 + 2η)

(
n
2

)
edges of Kn join pairs of vertices that are

K4
−-connected by Fj0 . We now show G′ =

⋃
j 6=j0 G

(j)
p1 to our adversary, and ask

him to pick F ∩E(G′). Note that, with very high probability, at least 1/3+η of the
edges of G′ will be formed by K4

−-connected pairs, and if our adversary puts any
of these edges into F ∩ E(G′), then F will span a copy of K4. However, since G′

contains an extremely large proportion of the edges of Gp (we choose k very large),
our adversary is forced to pick at least 2/3 of the edges of G′, and hence he is forced
to ‘close’ a K4 by picking a K4

−-connected pair xy for an edge of H.
Let us close this section with a few words on the proof of Lemma 16. Recall

that in that lemma we are concerned with estimating the number of K4
−-connected

pairs induced by subgraphs of random graphs. A very simple lower bound for the
number of such pairs induced by an arbitrary graph H∗ is given in assertion (*)
in Section 3.1. This estimate is far too weak to be of any use when dealing with
subgraphs of random graphs, but a weighted version of this estimate, Lemma 15, is
important in the proof of Lemma 16. Another important and a much deeper ingre-
dient in the proof of Lemma 16 is a version of Szemerédi’s regularity lemma [15]
for sparse graphs; see Lemma 4 in Section 1.2 below. A simple application of Lem-
mas 4 and 15 allows us to focus our attention on certain ε-regular quadruples. The
key lemma concerning such quadruples is Lemma 17 in Section 3.2. The proof of
Lemma 17 is based on certain results concerning the number and the distribution
of triangles in random and pseudo-random graphs. Paragraph 2 is entirely devoted
to those results. The main lemmas in §2 are Lemmas 7 and 10.

1.2. Preliminaries. Let a graph H = Hn of order |H| = n be fixed. For U ,
W ⊂ V = V (H) with U ∩W = ∅, we write E(U,W ) = EH(U,W ) for the set of
edges of H that have one endvertex in U and the other in W . We set e(U,W ) =
eH(U,W ) = |E(U,W )|.

The following notion will be needed in what follows. Suppose 0 < η ≤ 1 and 0 <
p ≤ 1. We say that H is η-upper-uniform with density p if, for all U , W ⊂
V with U ∩ W = ∅ and |U |, |W | ≥ ηn, we have eH(U,W ) ≤ (1 + η)p|U ||W |.
Clearly, if H is η-upper-uniform with density p, then it is also η′-upper-uniform
with density p′ for any η ≤ η′ ≤ 1 and any p ≤ p′ ≤ 1. In the sequel, for any two
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disjoint non-empty sets U , W ⊂ V , let

dH,p(U,W ) = eH(U,W )/p|U ||W |

be the p-relative density or, for short, the p-density of H between U and W . Now
suppose ε > 0, U , W ⊂ V , and U ∩ W = ∅. We say that the pair (U,W ) is
(ε,H, p)-regular if for all U ′ ⊂ U , W ′ ⊂ W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W | we
have

|dH,p(U ′,W ′)− dH,p(U,W )| ≤ ε.
We say that a partition P = (Vi)k0 of V = V (H) is (ε, k)-equitable if |V0| ≤ εn,
and |V1| = . . . = |Vk|. Also, we say that V0 is the exceptional class of P . When the
value of ε is not relevant, we refer to an (ε, k)-equitable partition as a k-equitable
partition. Similarly, P is an equitable partition of V if it is a k-equitable partition
for some k. Finally, we say that an (ε, k)-equitable partition P = (Vi)k0 of V is
(ε,H, p)-regular if at most ε

(
k
2

)
pairs (Vi, Vj) with 1 ≤ i < j ≤ k are not (ε, p)-

regular. We may now state an extension of Szemerédi’s lemma [15] to subgraphs
of η-upper-uniform graphs.

Lemma 4. For any given ε > 0 and k0 ≥ 1, there are constants η = η(ε, k0) > 0
and K0 = K0(ε, k0) ≥ k0 that depend only on ε and k0 such that any η-upper-
uniform graph H with density 0 < p ≤ 1 admits an (ε,H, p)-regular (ε, k)-equitable
partition of its vertex set with k0 ≤ k ≤ K0. �

Using standard estimates for tails of the binomial distribution, it is easy to check
that a.e. Gn,p is η-upper-uniform with density p for any constant 0 < η ≤ 1 if d = pn
is larger than some constant d0 = d0(η).

Let us introduce a piece of notation before we proceed. If U1, . . . , U` ⊂ V (J)
are pairwise disjoint sets of vertices of a given graph J , we write J [U1, . . . , U`]
for the `-partite subgraph of J naturally defined by the Ui (1 ≤ i ≤ `). Thus,
J [U1, . . . , U`] has vertex set

⋃`
1 Ui and two of its vertices are adjacent if and only

if they are adjacent in J and, moreover, they belong to distinct Ui.
Now suppose we have real numbers 0 < p ≤ 1, 0 < ε ≤ 1, 0 < γ0 ≤ 1 and

an integer m ≥ 1. Suppose the above Ui (1 ≤ i ≤ `) all have cardinality m, and
write γij for the p-density dJ,p(Ui, Uj) for all distinct i and j. Suppose L is a
graph on [`] = {1, . . . , `} such that, for any 1 ≤ i < j ≤ `, the pair (Ui, Uj) is
(ε, J, p)-regular and γij ≥ γ0 whenever ij ∈ E(L).

We may now state our next lemma. In what follows, we write O1(x) for any
term y satisfying |y| ≤ x. Also, as usual, we write ∆ = ∆(L) for the maximal
degree of L and we write ΓJ(x) for the J-neighbourhood of a vertex x ∈ V (J).

Lemma 5. Let J , L, and the sets Ui (1 ≤ i ≤ `) be as above and let ∆ = ∆(L).
Suppose 0 < ε ≤ 1/(2∆ + 1) and put ρ = (2∆ + 1/γ0)ε and µ = 2∆ε. Then there
are sets Ūi ⊂ Ui with |Ūi| ≥ (1 − µ)m for all 1 ≤ i ≤ ` such that, for all x ∈ Ūi
and any 1 ≤ i ≤ `, we have

dij(x) = |ΓJ(x) ∩ Ūj | = (1 +O1(ρ))γijpm (3)

for any j with ij ∈ E(L). �

Lemma 5 above is very similar to Lemma 2 in [7], and hence its rather elementary
proof is omitted. We close this section with a very simple large deviation inequality
for the hypergeometric distribution. This inequality will be used in Section 2.1
below.
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Lemma 6. Let 1 ≤ a ≤ n and 1 ≤ t ≤ r ≤ n be integers, and suppose R ⊂ [n] is
an r-element subset of [n] = {1, . . . , n} chosen uniformly at random. Then

P

(
|R ∩ [a]| ≥ t

)
≤
(

a

n− r + 1

)t(
r

t

)
. �

§2. Triangles in Pseudo-Random and Random Graphs

2.1. The counting lemma. Let m ≥ 1 be an integer. In this section we shall
consider a fixed triple V = (V̄1, V̄2, V̄3) of pairwise disjoint sets with m/2 ≤ mi =
|V̄i| ≤ m for all i ∈ {1, 2, 3}. We shall also suppose that 0 < p = p(m) ≤ 1
satisfies pm ≥ m1/2+1/ log log logm for all large enough m and, moreover, that p =
o(1) as m → ∞. In this section, all the asymptotic notation refers to m → ∞.
Our aim is to estimate from above the number of certain pseudo-random tripartite
graphs F with tripartition V (F ) = V̄1 ∪ V̄2 ∪ V̄3 that contain unexpectedly few
triangles given the number of edges that they have, or else whose triangles are not
too regularly distributed.

Before we may describe precisely which graphs F are of interest to us, we need
to introduce a few definitions. In what follows, indices will be tacitly taken mod-
ulo 3 when convenient. Let 0 < δ ≤ 1 be given. Suppose e ∈ EF (V̄i−1, V̄i+1) =
E(F [V̄i−1, V̄i+1]) (i ∈ {1, 2, 3}) and let k3(e) = kF3 (e) be the number of triangles
of F that contain e. We shall say that e is (δ,K3)-poor if

k3(e) < (1− δ)dF,p(V̄i, V̄i−1)dF,p(V̄i, V̄i+1)p2mi.

The graph F is (δ,K3)-unbalanced if, for some i ∈ {1, 2, 3}, the number of (δ,K3)-
poor edges in EF (V̄i−1, V̄i+1) is at least δeF (V̄i−1, V̄i+1) = δ|EF (V̄i−1, V̄i+1)|. For
simplicity, below we write γi = dF,p(V̄i−1, V̄i+1) (i ∈ {1, 2, 3}) and, if x ∈ V̄i and i 6=
j ∈ {1, 2, 3}, we let dij(x) = |ΓF (x) ∩ V̄j |.

Now suppose integers m and T and real constants 0 < ε̄ ≤ 1, 0 < γ̄0 ≤ 1,
and 0 < ρ̄ ≤ 1 are given, and let V = (V̄1, V̄2, V̄3) and m = (m1,m2,m3) be
as above. Let us write Fp(ε̄, γ̄0, ρ̄, T ) = Fp(ε̄, γ̄0, ρ̄; V, T ) for the set of tripartite
graphs F with tripartition V (F ) = V̄1∪ V̄2∪ V̄3 that satisfy the following properties:

(i) (V̄1, V̄2, V̄3) is an (ε̄, F, p)-regular triple,
(ii) γ̄0 ≤ γi = dF,p(V̄i−1, V̄i+1) ≤ 2 for all i ∈ {1, 2, 3},

(iii) dij(x) = |ΓF (x)∩ V̄j | = (1 +O1(ρ̄))γkpmj for all x ∈ V̄i and any choice of i,
j, and k such that {i, j, k} = [3],

(iv) F has size e(F ) = |E(F )| = T .

Moreover, for any given 0 < δ ≤ 1, let Fδp (ε̄, γ̄0, ρ̄, T ) = Fδp (ε̄, γ̄0, ρ̄; V, T ) be the set
of (δ,K3)-unbalanced graphs F in Fp(ε̄, γ̄0, ρ̄, T ). Put

fδp (ε̄, γ̄0, ρ̄; m, T ) = |Fδp (ε̄, γ̄0, ρ̄; V, T )|.

Sometimes the labelling of the vertices of the graphs in Fp(ε̄, γ̄0, ρ̄; V, T ) or in
Fδp (ε̄, γ̄0, ρ̄; V, T ) is not relevant, and in that case we may replace V by m in our
notation.

Our crucial counting lemma is as follows.
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Lemma 7. Let 0 < α ≤ 1, 0 < γ̄0 ≤ 1, and 0 < δ ≤ 1 be given. Then there is
a constant ε0 = ε0(α, γ̄0, δ) > 0 that depends only on α, γ̄0, and δ for which the
following holds. Suppose 0 < p = p(m) ≤ 1 is such that p ≥ m−1/2+1/ log log logm for
all large enough m and, moreover, p = o(1) as m → ∞. Then, if ρ̄ ≤ ρ̄0 = δ/27,
ε̄ ≤ ε0, and m is sufficiently large, we have

fδp (ε̄, γ̄0, ρ̄; m, T ) = |Fδp (ε̄, γ̄0, ρ̄; m, T )| ≤ αT
(

3m2

T

)
for all T and all m = (m1,m2,m3) with m/2 ≤ mi ≤ m (i ∈ {1, 2, 3}).

Most of the rest of Section 2.1 is dedicated to the proof of Lemma 7 above.
Our general strategy in this proof is as follows. We randomly generate a tripartite
graph F with tripartition V (F ) = V̄1∪V̄2∪V̄3 and size e(F ) = |E(F )| = T , and show
that the probability that the graph we obtain will be a member of Fδp (ε̄, γ̄0, ρ̄, T )
is suitably small. We generate F in steps: we first generate F [V̄2, V̄3]. We then
generate F [V̄1, V̄3] and analyse the structure of the graph F [V̄1, V̄3]∪F [V̄2, V̄3]. We
then finally generate F [V̄1, V̄2] and show that the appropriate probability is indeed
small.

Let us now make precise the process by which we generate F . We first of all
fix a partition T = T1 + T2 + T3 of T such that, putting γi = Ti/pmi−1mi+1,
we have γ̄0 ≤ γi ≤ 2 for all i ∈ {1, 2, 3}. Note that, because of condition (ii)
above for F , we may disregard the T for which such a partition does not exist.
Let us suppose that the bipartite graph F23 = F [V̄2, V̄3] has been fixed, and that
the following properties hold (cf. (i)–(iv) above): (a) the pair (V̄2, V̄3) is (ε̄, F23, p)-
regular, (b) dij(x) = |ΓF23(x)∩V̄j | = (1+O1(ρ̄))γ1pmj for all x ∈ V̄i, where {i, j} =
{2, 3}, and (c) e(F23) = T1.

We now fix the degree sequence for the vertices x ∈ V̄1 in the bipartite graph
F [V̄1, V̄3], and generate this graph respecting this sequence. Thus let (d13(x))x∈V̄1

with
∑
x∈V̄1

d13(x) = T2 and d13(x) = (1 + O1(ρ̄))γ2pm3 for all x ∈ V̄1 be fixed,
and generate the bipartite graph F13 = F [V̄1, V̄3] by selecting the neighbourhoods
ΓF13(x) ⊂ V̄3 (x ∈ V̄1) randomly and independently for all x ∈ V̄1. Thus, for
every x ∈ V̄1, all the d13(x)-element subsets of V̄3 are equally likely to be chosen as
the neighbourhood of x within V̄3. We now analyse the structure of F13 ∪ F23 =
F [V̄1, V̄3] ∪ F [V̄2, V̄3].

For convenience, let us put dij = Avex∈V̄i dij(x) = Tk/mi = γkpmj for all i, j,
and k with {i, j, k} = [3] and k 6= 3. Put also d13 = γ2pm3 and d23 = γ1pm3.
Thus d13(x) = (1 + O1(ρ̄))d13 for all x ∈ V̄1, and d23(y) = (1 + O1(ρ̄))d23 for
all y ∈ V̄2.

Let 0 < β1 ≤ 1 be given. For all x ∈ V̄1, put

Ṽ2 = Ṽ2(x, β1) = {y ∈ V̄2: σ(x, y) ≤ −β1d13d23/m3},

where σ(x, y) = d(x, y)− d13d23/m3 = |ΓF13(x) ∩ ΓF23(y)| − d13d23/m3. Note that
the set Ṽ2(x, β1) is defined in such a way that the following fact holds: if e = xy
(x ∈ V̄1, y ∈ V̄2) is an edge of F , then e is a (β1,K

3)-poor edge if and only
if y ∈ Ṽ2(x, β1).

Now let 0 < β2 ≤ 1 be given. Below we say that x ∈ V̄1 is (β1, β2)-faulty
if |Ṽ2(x, β1)| ≥ β2m2. Note that, clearly, since we are conditioning on F23 =
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F [V̄2, V̄3], the event that a vertex x ∈ V̄1 should be (β1, β2)-faulty depends only on
the random set ΓF13(x) ⊂ V̄3 that is chosen as the neighbourhood of x within V̄3.

Our next lemma is the key technical result in the proof of the main lemma in
this section, Lemma 7.

Lemma 8. Suppose the constants 0 < β1 ≤ 1, 0 < β2 ≤ 1, 0 < γ̄0 ≤ 1, 0 < ε̄ ≤ 1,
and 0 < ρ̄ ≤ 1 are such β1β2 ≥ 27ε̄, β2ρ̄ ≤ ε̄, and β2 ≤ γ̄0. Then, for all
sufficiently large m, the probability that a given vertex x ∈ V̄1 is (β1, β2)-faulty is
at most

(
5ε̄ε̄/β2

)d13 .

Proof. Let us fix x ∈ V̄1, and assume that |Ṽ2| = |Ṽ2(x, β1)| ≥ β2m2. Let Ṽ 0
2 ⊂ Ṽ2

be such that m̃2 = |Ṽ 0
2 | = dβ2m2e. The following assertion, whose proof we omit,

is very similar to Lemma 5.

Assertion 1. There exist sets V̄ ′2 ⊂ Ṽ 0
2 and V̄ ′3 ⊂ V̄3 for which we have m′2 = |V̄ ′2 | ≥

(1− 2ε̄/β2)m̃2 and m′3 = |V̄ ′3 | ≥ (1− 2ε̄)m3, and furthermore

d′23(y) = |ΓF23(y) ∩ V̄ ′3 | =
(

1 +O1

(
3ε̄
β2

))
d23 (4)

for all y ∈ V̄ ′2 , and

d′32(z) = |ΓF23(z) ∩ V̄ ′2 | =
(

1 +O1

(
3ε̄
β2

))
β2d32 (5)

for all z ∈ V̄ ′3 .

Using Assertion 1, we prove next that there exists a small set Y of vertices
from Ṽ2 whose F23-neighbourhood uniformly cover essentially all of V̄3. We need
to introduce some notation. Let us set ω = ω(m) = m1/ log logm, and let dY (z) =
|ΓF23(z) ∩ Y | for all Y ⊂ V̄2 and all z ∈ V̄3. Put also

V̄ ′′3 = V̄ ′′3 (Y ) =
{
z ∈ V̄3: dY (z) =

(
1 +O1

(
4ε̄
β2

))
ω

}
for all Y ⊂ V̄2.
Assertion 2. There is a set Y ⊂ Ṽ2 of cardinality q = |Y | = (1+O1(3ε̄/β2))ωm2/d32

such that |V̄ ′′3 | = |V̄ ′′3 (Y )| ≥ (1− 2ε̄)m3, and such that

d′′23(y) = |ΓF23(y) ∩ V̄ ′′3 | ≥
(

1− 3ε̄
β2

)
d23 (6)

for all y ∈ Y .

Let V̄ ′2 and V̄ ′3 be as in Assertion 1. To prove Assertion 2, we construct Y by
randomly selecting its elements from the set V̄ ′2 ⊂ Ṽ2. Let pY = pY (m) = ω/β2d32.
Note that 0 < pY < 1 for all large enough m. Put the vertices of V̄ ′2 into Y
randomly, each with probability pY , and with all these events independent. The
expected cardinality of Y is then

E(|Y |) =
(

1 +O1

(
2ε̄
β2

))
ωm2

d32
,
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and the expected degree of a vertex z ∈ V̄ ′3 into Y is

E(dY (z)) =
(

1 +O1

(
3ε̄
β2

))
ω.

From standard bounds for the tail of the binomial distribution, we may deduce that
there is a set Y ⊂ V̄ ′2 ⊂ Ṽ2 such that q = |Y | is as required in Assertion 2, and such
that every z ∈ V̄ ′3 satisfies dY (z) = (1 +O1(4ε̄/β2))ω. Note that, for such a set Y ,
we have V̄ ′3 ⊂ V̄ ′′3 = V̄ ′′3 (Y ), and hence |V̄ ′′3 | ≥ |V̄ ′3 | ≥ (1− 2ε̄)m3. It now suffices to
notice that every y ∈ Y is such that

d′′23(y) = |ΓF23(y) ∩ V̄ ′′3 | ≥ |ΓF23(y) ∩ V̄ ′3 | ≥
(

1− 3ε̄
β2

)
d23,

since y ∈ Y ⊂ V̄ ′2 and relation (4) in Assertion 1 holds. This completes the proof
of Assertion 2.
Assertion 3. The probability that our fixed vertex x ∈ V̄1 admits a set Y as in

Assertion 2 is at most
(
4ε̄ε̄/β2

)d13
.

Let us first sketch the idea in the proof of Assertion 3. Roughly speaking, the set Y
is such that the neighbourhoods ΓF23(y) ∩ V̄ ′′3 of the vertices y ∈ Y within V̄ ′′3 are
about of the same size, and the vertices in V̄ ′′3 are, by definition, covered by those
sets quite uniformly. Now, since the vertices in Y are all in Ṽ2, we have that the
neighbourhood ΓF13(x) of x within V̄3 intersects all the neighbourhoods ΓF23(y)
(y ∈ Y ) too little. Thus it intersects the sets ΓF23(y) ∩ V̄ ′′3 too little as well, and
this is possible only if it in fact intersects V̄ ′′3 in an unexpectedly small set. It then
suffices to estimate the probability that ΓF13(x) ∩ V̄ ′′3 should be as small. Let us
now formalise the argument above.

Assume that a set Y as in Assertion 2 exists. We consider the vectors g = gx =
(gz)z∈V̄ ′′3 and fy = (fyz )z∈V̄ ′′3 (y ∈ Y ) with entries

gz =
{

1 if z ∈ ΓF13(x)
−d13/m3 otherwise,

and

fyz =
{

1 if z ∈ ΓF23(y)
−d23/m3 otherwise.

We first estimate ξz =
∑
y∈Y f

y
z for z ∈ V̄ ′′3 . For any fixed z ∈ V̄ ′′3 , we have

ξz =
∑
y∈Y

fyz = dY (z)− d23

m3

{
q − dY (z)

}
=
(

1 +
d23

m3

)
dY (z)− d23q

m3

=
(

1 +
d23

m3

)(
1 +O1

(
4ε̄
β2

))
ω − d23q

m3
.

We have d23 = γ1pm3 = o(m3), and, since d23/m3 = T1/m2m3 = d32/m2, we
have d23q/m3 = (1 +O1(3ε̄/β2))ω. Therefore

ξz ≤ (1 + o(1))
(

1 +
4ε̄
β2

)
ω −

(
1− 3ε̄

β2

)
ω ≤ 8ε̄

β2
ω
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for large enough m, and similarly ξz ≥ −(8ε̄/β2)ω if m is sufficiently large. Given
two vectors a = (az)z∈V̄ ′′3 and b = (bz)z∈V̄ ′′3 , let 〈a,b〉 =

∑
z∈V̄ ′′3

azbz. We now
estimate

∑
y∈Y 〈fy,g〉. We have∑
y∈Y
〈fy,g〉 =

〈∑
y∈Y

fy,g

〉
=
〈

(ξz)z∈V̄ ′′3 ,g
〉

=
∑
z∈V̄ ′′3

ξzgz.

Therefore ∣∣∣∣∣∑
y∈Y
〈fy,g〉

∣∣∣∣∣ ≤ ∑
z∈V̄ ′′3

|ξzgz| ≤
8ε̄
β2
ω
∑
z∈V̄ ′′3

|gz|.

We have from our assumptions on our constants that ρ̄ ≤ ε̄/β2 ≤ β1/27 ≤ 1/27.
Hence ∑

z∈V̄ ′′3

|gz| ≤
∑
z∈V̄3

|gz| ≤ (1 + ρ̄)d13 + d13 ≤
9
4
d13,

with plenty to spare. Thus ∣∣∣∣∣∑
y∈Y
〈fy,g〉

∣∣∣∣∣ ≤ 18ε̄
β2

ωd13. (7)

We now give a lower estimate for the left-hand side of (7) in terms of the σ(x, y)
(y ∈ Y ). Let d′′13(x) = |ΓF13(x)∩ V̄ ′′3 | and recall that we let d′′23(y) = |ΓF23(y)∩ V̄ ′′3 |
for all y ∈ Y . Put m′′3 = |V̄ ′′3 | and d′′(x, y) = |ΓF13(x)∩ΓF23(y)∩ V̄ ′′3 | for all y ∈ Y .
Fix y ∈ Y . Clearly d′′(x, y) ≤ d(x, y) = |ΓF13(x) ∩ ΓF23(y)|. Thus

〈fy,g〉 = d′′(x, y)− d13

m3

{
d′′23(y)− d′′(x, y)

}
− d23

m3

{
d′′13(x)− d′′(x, y)

}
+
d13d23

m2
3

(
m′′3 −

{
d′′13(x) + d′′23(y)− d′′(x, y)

})
.

Write d′′13(x) = (1− τ)d13. Recalling (6), we see that

〈fy,g〉 ≤ d(x, y)− 2
d13d23

m3
+
d13d23m

′′
3

m2
3

+
3ε̄d13d23

β2m3
+ τ

d13d23

m3
+
d13d

′′(x, y)
m3

+
d23d

′′(x, y)
m3

− d13d23d
′′
13(x)

m2
3

− d13d23d
′′
23(y)

m2
3

+
d13d23d

′′(x, y)
m2

3

≤ σ(x, y) +
3ε̄d13d23

β2m3
+ τ

d13d23

m3
+
d13 + d23

m3
d′′(x, y) + o

(
d13d23

m3

)
,

where we used that, trivially, m′′3 ≤ m3, and that d13(x), d23(y), and d′′(x, y) are
all o(m3), since by assumption p = p(m)→ 0 as m→∞. However,

d13 + d23

m3

∑
y∈Y

d′′(x, y) =
d13 + d23

m3

∑
y∈Y
|ΓF13(x) ∩ ΓF23(y) ∩ V̄ ′′3 |

≤ d13 + d23

m3

∑{
dY (z): z ∈ ΓF13(x) ∩ V̄ ′′3

}
≤ d13 + d23

m3
(1 + ρ̄)

(
1 +

4ε̄
β2

)
ωd13,
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which is o(d13d23q/m3). Therefore

∑
y∈Y
〈fy,g〉 ≤ −

(
β1 −

4ε̄
β2
− τ
)
d13d23q

m3
. (8)

Using that q = (1 + O1(3ε̄/β2))ωm2/d32 and that d23/m3 = d32/m2, we deduce
from inequality (8) above that

∑
y∈Y
〈fy,g〉 ≤ −

(
β1 −

4ε̄
β2
− τ
)(

1 +O1

(
3ε̄
β2

))
ωd13

≤ −
(
β1 −

4ε̄
β2
− τ +O1

(
3ε̄
β2

))
ωd13. (9)

We now claim that τ ≥ 2ε̄/β2. Indeed, otherwise we would have that β1 − 4ε̄/β2 −
τ + O1(3ε̄/β2) ≥ 0, and hence, comparing inequalities (7) and (9), we would have
that β1−4ε̄/β2−τ +O1(3ε̄/β2) ≤ 18ε̄/β2, and consequently that τ ≥ 2ε̄/β2, which
is a contradiction.

Recall that d′′13(x) = |ΓF13(x) ∩ V̄ ′′3 | = (1− τ)d13 and that d13(x) = |ΓF13(x)| =
(1 +O1(ρ̄))d13. Also, |V̄3 \ V̄ ′′3 | ≤ 2ε̄|V̄3|. Thus we deduce from the existence of the
set Y that at least (τ − ρ̄)d13 ≥ τd13/2 elements of ΓF13(x) ⊂ V̄3 are confined to a
subset of V̄3 of cardinality at most 2ε̄|V̄3|. Thus, by Lemma 6, the probability that
such a set Y exists is at most 2(1+ρ̄)d13(3ε̄)τd13/2 ≤ 23d13/2(3ε̄)ε̄d13/β2 ≤

(
4ε̄ε̄/β2

)d13 ,
completing the proof of Assertion 3.

We may now finish the proof of Lemma 8 combining Assertions 2 and 3 above.
Indeed, writing

∑′
q for the sum over all q satisfying q = (1 +O1(3ε̄/β2))ωm2/d32,

we have from the above two assertions that probability that the vertex x should be
(β1, β2)-faulty is, for large enough m, at most

(
4ε̄ε̄/β2

)d13
∑′

q

(
m2

q

)
≤ 6ε̄ωm2

β2d32

(
m2

2ωm2/d32

)(
4ε̄ε̄/β2

)d13

≤ 6ε̄ωm2

β2d32

(
ed32

2ω

)2ωm2/d32 (
4ε̄ε̄/β2

)d13 ≤
(
5ε̄ε̄/β2

)d13
,

where in the last inequality we used that ωm2(logm)/d32 = o(d13), which follows
easily from our assumption that pm ≥ m1/2+1/ log log logm for all sufficiently large m.
Thus Lemma 8 is proved. �

We are now in position to finish the proof of Lemma 7.

Proof of Lemma 7. Let us first state a simple fact concerning the Ti.
Assertion 1. For all i ∈ {1, 2, 3} we have Ti ≥ (γ̄0/24)T .

Indeed, T ≤
∑
i∈{1,2,3} γipmi−1mi+1 ≤ 6pm2, and therefore, for any i ∈ {1, 2, 3},

we have
Ti = γipmi−1mi+1 ≥

γ̄0

4
pm2 ≥ γ̄0

24
T,

as required.
Our next observation is an immediate consequence of Lemma 8 and Assertion 1.
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Assertion 2. Let 0 < β3 ≤ 1 be given. The probability that at least β3m1 vertices

in V̄1 are (β1, β2)-faulty is at most
(
6ε̄ε̄/β2

)β3γ̄0T/24
.

Indeed, by Lemma 8 and Assertion 1 above, the probability in question is at most

2m1
(
(5ε̄ε̄/β2)d13

)β3m1 = 2m1
(
5ε̄ε̄/β2

)β3T1 ≤
(
6ε̄ε̄/β2

)β3γ̄0T/24
,

completing the proof of Assertion 2.

We now describe the last step in the generation of F . Recall that we have
generated F13 ∪ F23 = F [V̄1, V̄3] ∪ F [V̄2, V̄3] so far. Let K[V̄1, V̄2] be the complete
bipartite graph with bipartition V̄1∪ V̄2. To generate F12 = F [V̄1, V̄2], we randomly
pick for E(F [V̄1, V̄2]) a T3-element subset of E(K[V̄1, V̄2]), uniformly chosen from
all such sets.

Assertion 3. Suppose that fewer than β3m1 vertices in V̄1 are (β1, β2)-faulty. Then
the probability that at least δT3 edges in F12 = F [V̄1, V̄2] are (β1,K

3)-poor is no

larger than
{

4(β2 + β3)δγ̄0/24
}T

.

Recall that an edge xy ∈ E(F [V̄1, V̄2]) (x ∈ V̄1, y ∈ V̄2) is (β1,K
3)-poor if and only

if y ∈ Ṽ2(x, β1). The probability in question P0 is the probability that at least δT3

edges xy ∈ E(K[V̄1, V̄2]) (x ∈ V̄1, y ∈ V̄2) with y ∈ Ṽ2(x, β1) are selected to be
elements of F12. The number of such ‘potentially poor’ edges xy in K[V̄1, V̄2] is at
most β3m1m2 + (1 − β3)β2m1m2 ≤ (β2 + β3)m1m2, and hence, by Lemma 6 and
Assertion 1, we have

P0 ≤ 2T3
{

2(β2 + β3)
}δT3 ≤

{
4(β2 + β3)δ

}γ̄0T/24 ≤
{

4(β2 + β3)δγ̄0/24
}T
,

proving Assertion 3.

We may now finish the proof of Lemma 7. Let the constants α, γ̄0, and δ as
in the statement of our lemma be given. We then let ε0 = ε0(α, γ̄0, δ) be such
that 0 < ε0 ≤ δγ̄0/27 and, moreover,

(
6ε̄δ/27

)γ̄0/24 log log(1/ε̄) ≤ 1
6
α

and

4
(

27ε̄
δ

+
1

log log(1/ε̄)

)δγ̄0/24

≤ 1
6
α

for all 0 < ε̄ ≤ ε0.
We now apply Assertions 2 and 3 above with suitably chosen β1, β2, β3, ε̄, and ρ̄.

Let β1 = δ and fix any 0 < ε̄ ≤ ε0. Let β2 = 27ε̄/δ ≤ γ̄0 and β3 = 1/ log log(1/ε̄).
Recall that ρ̄0 = δ/27. To complete the proof, we proceed as follows: we suppose
that ρ̄ ≤ ρ̄0 is given and that m is sufficiently large for the inequalities below to
hold. Fix the partition T = T1 + T2 + T3 of T , the bipartite graph F23 = F [V̄2, V̄3],
and the degree sequence (d13(x))x∈V̄1

as above. Then generate F13 = F [V̄1, V̄3]. The
probability that at least β3m1 vertices in V̄1 are (β1, β2)-faulty is, by Assertion 2,
at most (

6ε̄ε̄/β2
)β3γ̄0T/24 =

(
6ε̄δ/27

)β3γ̄0T/24 ≤
(α

6

)T
≤ 1

6
αT .
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Let us now assume that fewer than β3m1 vertices in V̄1 are (β1, β2)-faulty, and let
us generate F12 = F [V̄1, V̄2]. Then the probability that δT3 edges in F12 = F [V̄1, V̄2]
are (δ,K3)-poor is, by Assertion 3, at most

{
4(β2 + β3)δγ̄0/24

}T ≤ {4
(

27ε̄
δ

+
1

log log(1/ε̄)

)δγ̄0/24
}T
≤
(α

6

)T
≤ 1

6
αT .

We now note that the argument above is symmetric with respect to the indices i ∈
{1, 2, 3} (note the factor ‘3’ below), and thus we may conclude that

|Fδp (ε̄, γ̄0, ρ̄; V, T )| ≤ 3× 2
6
αT
(

3m2

T

)
≤ αT

(
3m2

T

)
,

completing the proof of Lemma 7. �

Recall thatm and T are integers, 0 < ε̄ ≤ 1, 0 < γ̄0 ≤ 1, 0 < δ ≤ 1, and 0 < ρ̄ ≤ 1
are fixed reals, 0 < p = p(m) ≤ 1 is such that pm → ∞ and p = o(1) as m → ∞,
and V = (V̄1, V̄2, V̄3) and m = (m1,m2,m3), where the V̄i (i ∈ {1, 2, 3}) are
pairwise disjoint sets with cardinality |V̄i| = mi (i ∈ {1, 2, 3}). Our next lemma
concerns a property of graphs F ∈ Fp(ε̄, γ̄0, ρ̄, T )\Fδp (ε̄, γ̄0, ρ̄, T ), namely, graphs F
in Fp(ε̄, γ̄0, ρ̄, T ) that are (δ,K3)-balanced . For a vertex x ∈ V (F ), let k3(x) =
kF3 (x) denote the number of triangles of F that contain x.

Lemma 9. Suppose F is a (δ,K3)-balanced graph in Fp(ε̄, γ̄0, ρ̄; V, T ). Put δ′ =
(2δ)1/2. Then, for any i ∈ {1, 2, 3}, there are at most δ′mi vertices x in V̄i such
that

k3(x) = kF3 (x) < (1− ρ̄− δ′)γ1γ2γ3p
3mi−1mi+1.

Proof. By symmetry, it suffices to prove the statement for i = 1. In the sequel
we freely use the notation introduced before Lemma 7. Also, let us put dij =
Avex∈V̄i dij(x) = γkpmj for all i, j, and k with {i, j, k} = [3]. Below we say
that a vertex x ∈ V̄1 is bad if at least δd12/δ

′ = δ′d12/2 edges in E(F [V̄1, V̄2])
incident to x are (δ,K3)-poor edges. The number of such bad vertices x ∈ V̄1 is
at most δ′m1, as otherwise the number of (δ,K3)-poor edges in E(F [V̄1, V̄2]) would
be more than δm1d12 = δe(F [V̄1, V̄2]), contradicting the fact that F is (δ,K3)-
balanced.

Note that an edge e = x1x2 ∈ E(F [V̄1, V̄2]) (xi ∈ V̄i, i ∈ {1, 2}) that is
not (δ,K3)-poor ‘contributes’ with at least k3(e) ≥ (1 − δ)γ1γ2p

2m3 triangles
to k3(x1). Supposing that x1 ∈ V̄1 is not a bad vertex, summing over all x2 ∈ V̄2

for which x1x2 ∈ E(F [V̄1, V̄2]) is not a (δ,K3)-poor edge, we obtain that

k3(x1) ≥
(

(1− ρ̄)d12 −
δ′

2
d12

)
(1− δ)γ1γ2p

2m3

≥
(

1− ρ̄− δ − δ′

2

)
γ1γ2γ3p

3m2m3 ≥ (1− ρ̄− δ′)γ1γ2γ3p
3m2m3.

Since, as we saw above, at most δ′m1 vertices x1 ∈ V̄1 are bad, the proof is com-
plete. �



14 Y. KOHAYAKAWA, T.  LUCZAK, AND V. RÖDL

2.2. Distribution of triangles in random graphs. In this section we look at
the random graph Gp = Gn,p and study the distribution of the triangles it contains.
The aim will be to prove that the triangles of Gn,p do not unduly concentrate on
any fixed set of edges and vertices. To be precise, let x be any given vertex of Gp
and let E be a set of edges of Gp taken from the subgraph Gp[ΓGp(x)] induced by
the neighbourhood ΓGp(x) of x in Gp. Also, let W be a subset of vertices of Gp
disjoint from {x}∪V (E), where we write V (E) for the set V (Gp[E]) of vertices of Gp
that are incident to at least one edge from E. Our aim is to find an upper bound
for the number of triangles k3(E,W ) = k

Gp
3 (E,W ) of Gp that are determined by

an edge from E and a vertex in W . Note that the expected value of this number
is p2|E||W |. We shall show that this is an upper bound in probability up to 1 + θ
for any fixed θ > 0 as long as E and W are reasonably large and p = p(n) does not
tend to 0 too fast.

Lemma 10. Let c1, c2 > 0 and 0 < θ ≤ 1 be given. Then there is a con-
stant C0 = C0(c1, c2, θ) that depends only on c1, c2, and θ for which the following
holds. Suppose p = p(n) = ωn−2/5 where C0 ≤ ω = ω(n) = o(n1/190). Then
almost every Gp = Gn,p is such that, if E ⊂ E(Gp[ΓGp(x)]) and W ⊂ W̃ =
V (Gp) \ ({x} ∪ V (E)) for some x ∈ V (Gp), then

k3(E,W ) = k
Gp
3 (E,W ) ≤ (1 + θ)p2|E||W | (10)

as long as |E| ≥ c1p3n2 and |W | ≥ c2n.

Most of the remainder of this section is devoted to the proof of Lemma 10.
Unfortunately, our proof below is a little indirect and is based on a few auxiliary
lemmas; moreover, this proof makes use of a technical condition that ω should
not be too large. The obvious direct approaches based on simple large deviation
inequalities seem to fail to give Lemma 10. To see why this might be expected,
note that (i) for the sets E and W of interest, the expected value E(k3(E,W )) =
p2|E||W | of k3(E,W ) is of order O(n) only, while the number of sets W that we
have to handle is exp{Ω(n)}, and (ii) k3(E,W ) is a sum of positively correlated
indicator variables and the most common large deviation inequalities for such sums
do not seem to be strong enough for our purposes.

Let us turn to the proof of Lemma 10. For the rest of this section we assume
that p = p(n) = ωn−2/5, where C0 ≤ ω = ω(n) = o(n1/190) and C0 is some large
constant. (The main result for Gp with larger p will be deduced from the small p
case; cf. Lemma 19.)

Let P 3 be the path of length 2 and Ek the k-vertex graph with no edges (k ≥ 1).
We write Hk for P 3 ∨ Ek (k ≥ 1), the graph on k + 3 vertices we obtain from the
disjoint union of P 3 and Ek by adding all the 3k edges between V (P 3) and V (Ek).
A little piece of arithmetic shows that almost no Gn,p contains a copy of H12. Thus
for the rest of this section we may and shall assume that our Gn,p is H12-free.

We may clearly assume that the degree of any vertex of Gp = Gn,p is (1 +
o(1))pn, and also that any vertex of Gp is contained in at most p3n2 triangles.
Furthermore, the expected number of common neighbours of any two fixed vertices
of Gp is p2(n−2) ≤ ω2n1/5. Thus, we may and shall condition on our Gp being such
that dGp(x, y) = |ΓGp(x) ∩ ΓGp(y)| ≤ 2ω2n1/5 for any pair of distinct vertices x,
y ∈ V (Gp). Finally, we may assume that Gp is o(1)-upper-uniform.
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Suppose x ∈ V (Gp) and E ⊂ E(Gp[ΓGp(x)]). For a vertex y ∈ W̃ = V (Gp) \
({x} ∪ V (E)), let Ey be the set E ∩ E(Gp[ΓGp(y)]) of edges of E that the neigh-
bourhood of y in Gp induces in Gp. Clearly, k3(E, y) = k3(E, {y}) = |Ey|. We shall
say that a vertex y ∈ W̃ is (x,E)-bad , or simply E-bad , if Ey is not an independent
set of edges.

Lemma 11. Almost every Gp is such that, for any x ∈ V (Gp) and any E ⊂
E(Gp[ΓGp(x)]), at most 10eω8n4/5 vertices are E-bad.

Proof. Fix a vertex x ∈ V (Gp). Let us generate Gp as follows: we first choose the
neighbourhood ΓGp(x) of x in Gp, and once this set is fixed, we decide which edges
within ΓGp(x) should be in Gp. Put E(0) = E(Gp[ΓGp(x)]), and let V (E(0)) ⊂
ΓGp(x) be the set of vertices in ΓGp(x) that are incident to at least one edge
in E(Gp[ΓGp(x)]). For the rest of the proof, we assume that the edges generated
so far are fixed.

Let us now consider a vertex y ∈ Y = V (Gp) \ ({x} ∪ ΓGp(x)), and let us
decide which edges between y and V (E(0)) should be in our Gp. Notice that
whether or not y is E(0)-bad depends solely on these y–V (E(0)) edges. In par-
ticular, the events ‘y is E(0)-bad’ (y ∈ Y ) are all independent. Let us estimate
the probability that a given vertex y ∈ Y turns out to be E(0)-bad. We first
observe that with probability 1 − o(1/n) we have |V (E(0))| ≤ |ΓGp(x)| ≤ 2pn
and |∆(E(0))| = |∆(Gp[E(0)])| ≤ 2p2n = 2ω2n1/5. In the sequel, we assume that
these two inequalities hold. In particular, the number of copies of P 3 spanned
by E(0) is, crudely, at most |V (E(0))|∆(E(0))2 ≤ 8ω5n. Thus the probability that y
is E(0)-bad is

P(∆(E(0)
y ) ≥ 2) = P(Gp[E(0)

y ] contains a P 3)

≤ E(#{P 3 ⊂ Gp[E(0)
y ]}) ≤ 8ω5np3 = 8ω8n−1/5,

where #{P 3 ⊂ Gp[E
(0)
y ]} denotes the number of copies of P 3 in Gp[E

(0)
y ]. Now,

from the independence of the events ‘y is E(0)-bad’ (y ∈ Y ), we have that the
probability Pk that at least k such vertices y are E(0)-bad satisfies

Pk ≤
(
n

k

){
8ω8n−1/5

}k ≤ (8eω8n4/5

k

)k
. (11)

Thus, if k = b9eω8n4/5c, we have Pk = o(1/n) with plenty to spare.
The above argument proves our lemma with ‘E ⊂ E(Gp[ΓGp(x)])’ replaced

by ‘E = E(Gp[ΓGp(x)])’. To complete the proof, we make the following simple
observation. Suppose x ∈ V (Gp) is fixed, E ⊂ E(0) = E(Gp[ΓGp(x)]), and y ∈
Y = V (Gp) \ ({x}∪ΓGp(x)). Then, y is necessarily E(0)-bad whenever it is E-bad.
Thus, an E-bad vertex y ∈ W̃ = V (Gp)\(V (E)∪{x}) is either contained in ΓGp(x)
or else it is E(0)-bad. Since we may assume that ∆(Gp) ≤ 2pn = 2ωn3/5 ≤ ω8n4/5,
our lemma follows. �

Lemma 11 above tells us that, for any x and any E, we have ∆(Ey) = ∆(Gp[Ey]) ≤
1 for most y ∈ W̃ = V (Gp) \ ({x} ∪ V (E)). Of course, since Gp is supposed not to
contain H12, we have ∆(Ey) ≤ 11 for any vertex y ∈ W̃ .
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For each vertex y ∈ W̃ , let Xy = |Ey| = k3(E, y) and let X ′y be the cardinal-
ity ν(Ey) = ν(Gp[Ey]) of a maximum matching in Gp[Ey]. Since ∆(Ey) ≤ 11, we
have X ′y ≥ Xy/2∆(Ey) ≥ Xy/22 for any y ∈ W̃ . Moreover, for any y ∈ W̃ that is
not E-bad, we clearly have X ′y = Xy.

Let us now fix W ⊂ W̃ . Put

X = XW =
∑
w∈W

Xw =
∑
w∈W

k3(E,w) = k3(E,W ),

and similarly X ′ = X ′W =
∑
w∈W X ′w. Let us write

∑
b for sum over all w ∈ W

that are E-bad and
∑

g for sum over all w ∈W that are not E-bad. Then

k3(E,W ) = XW =
∑

g
Xw +

∑
b
Xw

=
∑

g
X ′w +

∑
b
Xw ≤ X ′W +

∑
b
Xw. (12)

Now our aim is to bound the last two summands in (12).
For any two distinct vertices x and y ∈ V (Gp), let Yxy be the number of edges in-

duced by the set ΓGp(x, y) = ΓGp(x)∩ΓGp(y) inGp. Thus Yxy = |E(Gp[ΓGp(x, y)])|,
and E(Yxy) =

(
n−2

2

)
p5 = (1/2 + o(1))ω5.

Lemma 12. For almost every Gp we have Yxy ≤ 22e2 max{log n, ω5} for any pair
of distinct vertices x, y ∈ V (Gp).

Proof. Let Y ′xy be the maximum cardinality ν(Gp[ΓGp(x, y)]) of a matching in
Gp[ΓGp(x, y)]. We claim that

P

{
Y ′xy ≥ e2 max{log n, ω5}

}
≤ n−e2

= o(n−2). (13)

For convenience, put µ = E(Yxy) ≤ ω5. By Lemma 2 in Janson [10], for any a ≥ e2,
we have

P(Y ′xy ≥ aµ) ≤ exp{−µ(a log a+ 1− a)} ≤ exp
{
−1

2
a(log a)µ

}
. (14)

We now check that (13) follows from (14). Suppose µ = E(Yxy) ≤ log n. Then we
take a = e2µ−1 log n ≥ e2 in (14) and note that then

P(Y ′xy ≥ e2 log n) = P(Y ′xy ≥ aµ) ≤ exp{−e2 log n} = n−e2
.

Suppose now that µ = E(Yxy) > log n. Then we take a = e2 in (14) to obtain

P(Y ′xy ≥ e2ω5) ≤ P(Y ′xy ≥ e2µ) ≤ exp{−e2 log n} = n−e2
.

Thus the claimed inequality (13) does hold. In particular, almost surely Y ′xy ≤
e2 max{log n, ω5} for any distinct x, y ∈ V (Gp). Our lemma now follows, since
∆(Gp[ΓGp(x, y)]) ≤ 11, and hence Y ′xy ≥ Yxy/22. �

By Lemmas 11 and 12 above, an almost sure upper bound for the last summand
in (12) is 220e3 max{log n, ω5}ω8n4/5. Our aim now is to estimate X ′W . Fortu-
nately, the method of proof of Lemma 2 in Janson [10] gives the following result
immediately.
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Lemma 13. Suppose 0 ≤ ε ≤ 1/2. Then for any W ⊂ W̃ = V (Gp) \ ({x}∪V (E))
we have

P(X ′W ≥ (1 + ε)p2|E||W |) ≤ exp
{
−1

3
ε2p2|E||W |

}
.

Proof. We follow an argument of Janson [10] (cf. the proof of Lemma 2 in [10]).
Fix W ⊂ W̃ = V (Gp) \ ({x} ∪ V (E)) and let w ∈ W . Let F be the family of all
copies J of P 3 with middle vertex w and endvertices coinciding with endvertices of
edges in E in the complete graph on V (Gp). Thus each such J corresponds to a
triangle determined by w and one edge from E. Let Fm (m ≥ 0) be the collection
of all m-tuples (J1, . . . , Jm) of pairwise edge-disjoint elements from F . Let IJ be
the indicator variable of the event that a fixed J ∈ F should be present in Gp.
Thus k3(E,w) = Xw =

∑
J∈F IJ . We have

E(etX
′
w) = E

{∑
m≥0

(
X ′w
m

)
(et − 1)m

}
≤ E

{∑
m≥0

1
m!

∑
Fm

IJ1 . . . IJm
(
et − 1

)m}

=
∑
m≥0

1
m!

∑
Fm

p2m
(
et − 1

)m ≤∑
m≥0

1
m!

{∑
F
p2
(
et − 1

)}m
= eλ(et−1),

where λ = E(Xw). Now, the X ′w (w ∈W ) are independent and therefore

E(etX
′
W ) = E(et

∑
w∈W X′w) =

∏
w∈W

E(etX
′
w) ≤ eλ|W |(e

t−1).

Let a ≥ 1. Note that then, by Markov’s inequality, we have

P(X ′W ≥ aλ|W |) = P(etX
′
W ≥ etaλ|W |)

≤ E(etX
′
W )e−taλ|W | ≤ eλ|W |(e

t−1)e−taλ|W | = eλ|W |(e
t−1−at).

Taking t = log a, we have

P(X ′W ≥ aλ|W |) ≤ eλ|W |(a−1−a log a) = e−λ|W |(a log a−a+1).

Our lemma follows by setting a = 1 + ε in this last inequality. �

We are finally ready to prove Lemma 10.

Proof of Lemma 10. Take C0 = C0(c1, c2, θ) = {12/(θ2c1c2)}1/5. We proceed to
show that this choice for C0 will do. Thus let x, E, and W as in the statement of
our lemma be given. To prove (10), it suffices to put together (12) and Lemmas 11,
12, and 13. Indeed, with the notation as above, by Lemma 13 we have

P

(
X ′W ≥

(
1 +

θ

2

)
p2|E||W |

)
≤ exp

{
−1

3

(
θ

2

)2

p2|E||W |

}
≤ e−n,

where in the last inequality we used that |E| ≥ c1p
3n2, |W | ≥ c2n, and C0 =

{12/(θ2c1c2)}1/5.
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The number of choices for the triple (x,E,W ) is at most n exp{2ω3n4/5 log n}2n.
Indeed, it suffices to notice that we may assume that |E| ≤ u0 = bp3n2c = bω3n4/5c,
and hence the number of choices for E is at most∑

u≤u0

(
n2

u

)
≤ 2
(
n2

u0

)
≤ exp{2ω3n4/5 log n}.

Thus almost every Gp is such that X ′W ≤ (1 + θ/2)p2|E||W |.
From (12) and Lemmas 11 and 12, we have, for almost every Gp,

k3(E,W ) ≤
(

1 +
θ

2

)
p2|E||W |+ 220e3 max{log n, ω5}ω8n4/5,

which is at most (1 + θ)p2|E||W |, as required. �

In our next lemma we give a set of conditions that ensures that kGp3 (E,W )
(E ⊂ E(Gp), W ⊂ V (Gp) \ V (E)) concentrates around its mean.

Lemma 14. Suppose ω = ω(n) → ∞ as n → ∞. Let 0 < p = p(n) ≤ 1 with p ≥
ωn−1/2 log n be given. Then almost every Gp = Gn,p is such that, for any E ⊂
E(Gp) and W ⊂ V (Gp) \ V (E) with |E| ≥ ωnp−1 log n and |W | ≥ n/ log n, we
have

k3(E,W ) = k
Gp
3 (E,W ) = (1 + o(1))p2|E||W |. (15)

Proof. Let θ > 0 be fixed. Let M ⊂ E(Kn) be a matching in the complete
graph Kn, and set ν = |M |. Suppose that νp2/ log n → ∞ as n → ∞. Let W ⊂
V (Gp) \ V (M) be such that w = |W | ≥ n/ log n. Let us write k′3(M,W ) =
k
Gp∪M
3 (M,W ) for the number of triangles in Gp ∪M that are determined by an

edge of M and a vertex of W . Note that k′3(M,W ) has binomial distribution with
parameters νw = |M ||W | and p2. Thus

k′3(M,W ) = (1 +O1(θ))p2|M ||W | (16)

with probability 1 − exp{−Ω(p2νw)}. The number of matchings M ⊂ E(Kn) of
cardinality ν is no larger than

((n2)
ν

)
≤ n2ν , and the number of sets W as above is

no larger than
(
n
w

)
≤ nw. Hence, we see that (16) holds a.s. for any matching M ⊂

E(Kn) with |M | ≥ ν0 = ω(log n)/4p2 and any W ⊂ V (Gp) \ V (M) with |W | ≥
n/ log n, since∑

ν≥ν0

∑
w≥n logn

n2ν+w exp{−p2νw} ≤
∑
ν≥ν0

n2ν
∑

w≥n logn

(
ne−Ω(p2ν)

)w
≤
∑
ν≥ν0

n2ν−Ω(p2νn/ logn)

= o(1).

Thus, let us assume that our Gp does have this property. Clearly, we may also as-
sume that ∆(Gp) ≤ 2pn. We claim that under these assumptions our Gp necessarily
satisfies (15) with ‘o(1)’ replaced by ‘O1(θ)’ for all E and W as in the statement of
our lemma. To see this, fix E ⊂ E(Gp) and W ⊂ V (Gp) \ V (E) as in the lemma.
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We shall now make use of the following simple fact that may be easily deduced from
Vizing’s theorem: if J is a graph of maximum degree ∆(J), then J admits a proper
edge-colouring with at most ∆(J) + 1 colours such that the cardinality of any two
colour classes differ by at most 1. Note that ∆(E) = ∆(Gp[E]) ≤ ∆(Gp) ≤ 2pn,
and hence, by the observation above, we may write E = E1 ∪ · · · ∪ Eq where
the Ei are matchings satisfying

∣∣|Ei| − |Ej |∣∣ ≤ 1 for all i and j, and more-
over q ≤ ∆(E) + 1 ≤ 3pn. In particular, |Ei| ≥ |E|/4pn ≥ ν0 for all i. There-
fore (16) applies with M = Ei and, since k3(E,W ) =

∑
1≤i≤q k3(Ei,W ), our claim

does hold. Lemma 14 follows by letting θ tend to 0. �

§3. Pivotal Pairs of Vertices

3.1. A weighted Turán type result. Let H∗ be a graph and r ≥ 3 an integer.
Let us write Kr

− for the graph with r vertices and
(
r
2

)
− 1 edges, and let us say

that its two vertices of degree r− 2 are the endvertices of Kr
−. Let us say that the

unordered pair xy = {x, y} of distinct vertices of H∗ is a Kr
−-connected pair if there

is a copy of Kr
− in H∗ with endvertices x and y. Hence, if xy is a Kr

−-connected
pair of non-adjacent vertices, then the addition of xy to H∗ creates a new copy
of Kr in H∗. Thus, we shall also say that a Kr

−-connected pair is Kr-pivotal , or
simply pivotal . For technical reasons, let us also say that the vertex x ∈ V (H∗) is
by itself a Kr

−-connected pair if x lies in a copy of Kr−1 in H∗. The following is an
asymptotic version of Turán’s theorem for Kr.
(*) Any graph H∗ with k vertices and e(H∗) edges contains at least

(r − 2)e(H∗)− (r − 3)
(
k + 1

2

)
Kr
−-connected pairs of vertices. �

To check that (*) is indeed an asymptotic form of Turan’s theorem, observe that
if λ = λ(H∗) = e(H∗)

(|H∗|
2

)−1
is the ‘density’ of H∗ = Hk

∗ , then the lower bound
in (*) for the number of Kr

−-connected pairs in H∗ is, for large k,

∼
(
(r − 2)λ− r + 3

)(k
2

)
. (17)

Note that (17) is bigger than (1/(r − 1))
(
k
2

)
for λ > 1 − 1/(r − 1). Therefore we

may deduce that any (large) H∗ with λ(H∗) > 1 − 1/(r − 1) necessarily contains
a Kr, which is, of course, a weak form of Turán’s theorem. Unfortunately, (*) does
not seem to imply Turán’s theorem for Kr in its precise form.

In the sequel we shall need, however, a weighted version of (*) for r = 4. To
describe this version we need some technical definitions. Also, to simplify the
notation we restrict ourselves to the case r = 4. (The general case does not present
any further difficulty.) We start with a graph H∗ = Hk

∗ of order k and assume γ =
(γe)e∈E(H∗) is an assignment of weights γe ≥ 0 to the edges e ∈ E(H∗) of H∗.
Suppose x = (x1, . . . , xk) is an ordering of the vertices of H∗. For any two not
necessarily distinct vertices x, y ∈ V (H∗) that form a K4

−-connected pair in H∗, we
let

wH∗,γ(x, y) = max{γ1γ2: ∃z1, z2 ∈ V (H∗) with γi = γziy (i ∈ {1, 2})
and xz1, xz2, z1z2, z1y, z2y ∈ E(H∗)}.
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For convenience, if x, y do not form a K4
−-connected pair, we put wH∗,γ(x, y) = 0.

Let
w(H∗, γ,x) =

∑
1≤i≤j≤k

wH∗,γ(xi, xj)

and γ(H∗) =
∑
e∈E(H∗)

γe. Our weighted version of (*) for r = 4 is given in
Lemma 15 below. We remark that to deduce the unweighted case (*) for r = 4
from this lemma, it suffices to take γ̄ = 1 and γe = 1 for all edges e ∈ E(H∗).

Lemma 15. Let H∗ = Hk
∗ be a graph of order k and edge weights γ = (γe)e∈E(H∗)

with 0 ≤ γe ≤ γ̄ for all e ∈ E(H∗), where γ̄ ≥ 1. Then there is an ordering x =
(x1, . . . , xk) of the vertices of H∗ for which we have

w(H∗, γ,x) ≥ 2γ(H∗)− γ̄
(
k + 1

2

)
. (18)

Proof. Our proof is by induction on k. Since the case k ≤ 3 is trivial, we assume
that k ≥ 4 and that our lemma holds for graphs H∗ with at most 3 vertices. Note
that if γ(H∗) ≤ γ̄k2/4, then (18) is trivially true, as in this case 2γ(H∗)− γ̄

(
k+1

2

)
≤

γ̄(k2/2 − k(k + 1)/2) = −γ̄k/2 ≤ 0. Thus we may assume that γ(H∗) > γ̄k2/4.
Since γe ≤ γ̄ for all e ∈ E(H∗), we have that H∗ has more than k2/4 edges.
Therefore, there are three vertices y1, y2, and y3 ∈ V (H∗) inducing a triangle in H∗.
For y ∈ V (H∗), let us write dγ(y) = dH∗,γ(y) =

∑
z∈ΓH∗ (y) γyz for the γ-degree of y.

We may assume that dγ(y1) ≤ dγ(y2) ≤ dγ(y3). Put x1 = y1, and by induction
let x′ = (x2, . . . , xk) be an ordering of the vertices of H ′∗ = H∗−x1 = H∗− y1 such
that

w(H ′∗, γ,x
′) ≥ 2γ(H ′∗)− γ̄

(
k

2

)
.

For simplicity, γ above stands for the restriction (γe)e∈E(H′∗)
of γ = (γe)E(H∗) to H ′∗.

Our aim now is to estimate
∑

1≤i≤k wH∗,γ(x1, xi) from below. For j ∈ {2, 3},
set γi(j) = γyjxi if yjxi ∈ E(H∗) and set γi(j) = 0 otherwise. Now observe that,
since γ̄ ≥ 1, for any reals 0 ≤ α ≤ γ̄ and 0 ≤ β ≤ γ̄ we have αβ ≥ α + β − γ̄.
Therefore∑

1≤i≤k

wH∗,γ(x1, xi) ≥
∑

1≤i≤k

γi(2)γi(3) ≥
∑

1≤i≤k

{
γi(2) + γi(3)− γ̄

}
= dγ(y2) + dγ(y3)− γ̄k ≥ 2dγ(y1)− γ̄k = 2dγ(x1)− γ̄k.

Hence, with x = (x1, x2, . . . , xk), we have

w(H∗, γ,x) ≥
∑

1≤i≤k

wH∗,γ(x1, xi) + wH′∗,γ(H ′∗, γ,x
′)

≥ 2dγ(x1)− γ̄k + 2γ(H ′∗)− γ̄
(
k

2

)
= 2γ(H∗)− γ̄

(
k + 1

2

)
,

as required. �
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3.2. Pivotal pairs in subgraphs of random graphs. In this section we turn
to the study of K4

−-connected pairs in subgraphs of random graphs. Recall that
given a graph H and two distinct vertices x, y ∈ V (H), we say that the unordered
pair xy = {x, y} is a K4

−-connected pair if they are the endvertices of a copy of K4
−

in H, and that a single vertex by itself forms a K4
−-connected pair if it belongs to

a triangle of H. Our main aim here is to prove Lemma 16 below, which roughly
says that, if a subgraph H ⊂ Gp = Gn,p of Gp is such that e(H) ≥ λe(Gp) for some
fixed λ > 0 and p = p(n) is not too small, then the number of K4

−-connected pairs
in H is, almost surely,

& (2λ− 1)
(
n

2

)
.

This result is similar in spirit to assertion (*) in Section 3.1, but note that (*)
applied to H ⊂ Gp above gives nothing if p = p(n) → 0 as n → ∞. Lemma 16
below remedies this situation and recovers essentially the same lower bound for the
number of K4

−-connected pairs.
In the sequel, for any given graph H, it will be convenient to define a graph Π =

ΠH on V (H) by letting two distinct vertices x, y ∈ V (H) = V (Π) be adjacent in Π
if and only if they form a K4

−-connected in H.

Lemma 16. Let a constant 0 < σ ≤ 1 be given. Then there is a constant C0 =
C0(σ) that depends only on σ for which the following holds. If p = p(n) = ωn−2/5

and C0 ≤ ω = ω(n) = o(n1/190), then almost every Gp = Gn,p is such that, for any
subgraph H ⊂ Gp of Gp, we have

e(ΠH) ≥ (2λ− 1− σ)
(
n

2

)
, (19)

where λ = e(H)
{
p
(
n
2

)}−1.

Before we proceed, let us remark that we shall apply Lemma 16 above with σ
much smaller than λ. In fact, we shall be interested in the case in which λ is a little
greater than 2/3 and σ is very small.

The proof of Lemma 16 is based on the results of the previous three sections and
on a further technical lemma, Lemma 17, which we now describe. The context in
which Lemma 17 applies is as follows. Suppose 0 < µ ≤ 1/2, 0 < κ ≤ 1, 0 < δ′ ≤ 1,
0 < γ̄0 ≤ 1, and 0 < ρ̄ ≤ 1/4 are constants, and let n and m ≥ κn be integers. Let
also 0 < p = p(n) ≤ 1 be given. Let V̄1, V̄2, Z̄1, and Z̄2 be pairwise disjoint sets of
cardinality (1−µ)m ≤ mj = |V̄j | ≤ m and (1−µ)m ≤ m′i = |Z̄i| ≤ m (i, j ∈ {1, 2}).
Suppose F = F1∪F2 is a graph with Fj a tripartite graph with tripartition V (Fj) =
V̄j ∪ Z̄1 ∪ Z̄2 (j ∈ {1, 2}) and such that E(F [Z̄1, Z̄2]) = E(Fj [Z̄1, Z̄2]) for both j ∈
{1, 2}. For simplicity, put γZ = dF,p(Z̄1, Z̄2) and let γij = dF,p(Z̄i, V̄j) for i,
j ∈ {1, 2}. Suppose further that the following conditions hold:

(i) We have γZ ≥ γ̄0 and γij ≥ γ̄0 for all i, j ∈ {1, 2}.
(ii) At least (1− δ′)m1 vertices x in V̄1 are such that

kF3 (x) ≥ (1− ρ̄− δ′)γ11γ21γZp
3m′1m

′
2,

where kF3 (x) is the number of triangles of F that contain x.
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(iii) At least (1− δ′)e(F [Z̄1, Z̄2]) edges e in F [Z̄1, Z̄2] are such that

kF3 (e, V̄2) ≥ (1− δ′)γ12γ22p
2m2, (20)

where kF3 (e, V̄2) denotes the number of triangles in F determined by the
edge e and some vertex in V̄2.

(iv) Let c = γ̄3
0κ

2/8. For any x ∈ V̄1, E ⊂ E(F [ΓF (x)]), and W ⊂ V̄2 with |E| ≥
cp3n2 and |W | ≥ cn, we have

kF3 (E,W ) ≤
(

1 +
δ′

4

)
p2|E||W |.

(v) For all E ⊂ E(F [Z̄1, Z̄2]) with |E| ≥ pn2/ log n and W ⊂ V̄1 with |W | ≥
n/ log n, we have kF3 (E,W ) ≤ 2p2|E||W |.

We may now state a key technical lemma in the proof of Lemma 16.

Lemma 17. Let constants 0 < γ̄0 ≤ 1 and 0 < σ ≤ 1 be given. Then, with
the notation above, if δ′ ≤ δ′0 = δ′0(γ̄0, σ) = σ2γ̄0/128 and µ ≤ µ0 = µ0(σ) =
σ/8, then the number of K4

−-connected pairs x1x2 with xj ∈ V̄j (j ∈ {1, 2}) is at
least (1− σ)γ12γ22m

2.

Proof. Let us put α = µ0 = σ/8 and note that then δ′0 = σ2γ̄0/128 = α2γ̄2
0/2.

Let 0 < δ′ ≤ δ0 and 0 < µ ≤ µ0 be given, and suppose that F is as described before
our lemma.

In the sequel, an edge e ∈ E(F [Z̄1, Z̄2]) will be said to be (δ′,K3;F2)-poor
if (20) fails. For x ∈ V̄1, let us write kp

3 (x) for the number of (δ′,K3;F2)-poor
edges e ∈ E(F [Z̄1, Z̄2]) induced by the neighbourhood of x in F . Let us say
that x ∈ V̄1 is unusable if kp

3 (x) ≥ αγ11γ21γZp
3m′1m

′
2. The proof is now split into

a few claims.
Assertion 1. At most αm1 vertices in V̄1 are unusable.

Suppose the contrary. Let us consider the number N of pairs (x, e) with x a vertex
in V̄1 and e a (δ′,K3;F2)-poor edge in E(F [Z̄1, Z̄2]) such that there is a triangle of F
containing both x and e. Since we are assuming that more than αm1 vertices x ∈ V̄1

are unusable, we have

N > α2γ11γ21γZp
3m′1m

′
2m1 ≥ α2γ̄2

0γZp
3m′1m

′
2m1. (21)

We now use condition (v) above to deduce that

N ≤ 2p2m1δ
′e(F [Z̄1, Z̄2]) = 2δ′γZp3m′1m

′
2m1 (22)

Comparing (21) and (22), we obtain that α2γ̄2
0 < 2δ′, contradicting the fact

that δ′ ≤ δ′0 = α2γ̄0/2. Thus Assertion 1 holds.
We now observe that condition (ii) above immediately implies the following.

Assertion 2. For at least (1 − 2α)m1 vertices x in V̄1, we have kF3 (x) − kp
3 (x) ≥

c1p
3n2, where c1 = (1− ρ̄− 2α)(1− µ)2κ2γ̄3

0 ≥ c.
Now let x ∈ V̄1 be given. Let Ex ⊂ E(F [Z̄1, Z̄2]) be the set of edges e induced by

the neighbourhood of x in F that are not (δ′,K3;F2)-poor. Thus |Ex| = kF3 (x)−
kp

3 (x). Let
Wx = {y ∈ V̄2: E(F [ΓF (x)]) ∩ E(F [ΓF (y)]) 6= ∅}

= {y ∈ V̄2: xy is a K4
−-connected pair}.
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Assertion 3. For at least (1 − 2α)m1 vertices x ∈ V̄1, we have |Wx| ≥ (1 −
σ/2)γ12γ22m2.

Let x ∈ V̄1 be such that |Ex| = kF3 (x)− kp
3 (x) ≥ c1p

3n2, and suppose that |Wx| <
(1− σ/2)γ12γ22m2. We now use (iv) above to deduce that

(1− δ′)γ12γ22p
2m2|Ex| ≤ kF3 (Ex,Wx) ≤

(
1 +

δ′

4

)
p2|Ex||Wx|

≤
(

1 +
δ′

4

)(
1− σ

2

)
γ12γ22p

2m2|Ex|,

which is a contradiction since 1 − δ′ > (1 + δ′/4)(1 − σ/2). Thus any x ∈ V̄1

with |Ex| = kF3 (x) − kp
3 (x) ≥ c1p

3n2 is such that |Wx| ≥ (1 − σ/2)γ12γ22m2, and
hence Assertion 3 follows from Assertion 2.

From Assertion 3, we deduce that at least

(1− 2α)
(

1− σ

2

)
γ12γ22m1m2

≥ (1− 2α)(1− µ)2
(

1− σ

2

)
γ12γ22m

2 ≥ (1− σ)γ12γ22m
2

pairs x1x2 (xj ∈ V̄j , j ∈ {1, 2}) are K4
−-connected with respect to F , thereby

proving Lemma 17. �

We are now ready to prove Lemma 16. Our proof will make use of several of our
previous lemmas.

Proof of Lemma 16. Let 0 < σ ≤ 1 be given. We now define the many constants
with which we shall apply Lemmas 4, 5, 7, 9, 10, 14, 15, and 17.

Let γ0 = σ/100, γ̄0 = γ0/2, α = γ0/24e and k0 = d100/σe. Let δ = (δ′)2/2,
where δ′ = σ3/2× 106 ≤ δ′0 = δ′0(γ̄0, σ/7) = σ2γ̄0/6272. Note that δ′0(γ̄0, σ/7) is as
given in Lemma 17. We now let

ε = min
{

10−16σ6γ0,
1
2
ε0(α, γ̄0, δ)

}
,

where ε0 = ε0(α, γ̄0, δ) is as defined in Lemma 7. Put ε̄ = 2ε, ρ = 2ε/γ0 and ρ̄ =
5ε/γ0. For later reference, note that

ρ̄ =
5ε
γ0
≤ 5× 10−16σ6 ≤ δ

27
, (23)

and if k ≥ k0, then, with plenty to spare, we have

2σ
7(k − 1)

+
6

k − 1
≤ σ

7
, (24)

and
3ε
γ0

+
1
k
≤ 2

7
σ. (25)

Set µ = 6ε ≤ µ0(σ/7), where µ0(σ/7) = σ/56 is as given in Lemma 17. Now
let K0 = K0(ε, k0) and η = η(ε, k0) be as given by Lemma 4. We may assume
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that η ≤ min{σ/7, ε/2K0}. Put κ = 1/2K0, and let c = γ̄3
0κ

2/8. Finally, let C0 =
C0(c, c, δ′/4), where C0(c, c, δ′/4) is as given by Lemma 10. We claim that this
choice of C0 = C0(σ) will do in Lemma 16, and proceed to prove this assertion.

Let p = p(n) = ωn−2/5, where C0 ≤ ω = ω(n) = o(n1/190). Let us consider the
following conditions for Gp = Gn,p.

(a) Gp is η-upper-uniform and has size e(Gp) = (1 + o(1))p
(
n
2

)
.

(b) Supposem ≥ κn. Then, for any T ≥ (3/4)γ̄0pm
2 and any m = (m1,m2,m3)

with m/2 ≤ mi ≤ m (i ∈ {1, 2, 3}), our Gp contains no copy of any
graph F ∈ Fδp (ε̄, γ̄0, ρ̄; m, T ) as a subgraph.

(c) Inequality (10) in Lemma 10 holds for all E and W as in the statement of
that lemma with c1 = c2 = c and θ = δ′/4.

(d) Relation (15) in Lemma 14 holds for all E ⊂ E(Gp) and W ⊂ V (Gp)\V (E)
with |E| ≥ pn2/ log n and |W | ≥ n/ log n.

Claim. Conditions (a)–(d) hold for almost every Gp.

Proof of the Claim. Condition (a) clearly holds almost surely. We use Lemma 7
to prove that (b) holds almost surely as well. Let m, m, and T be as in (b). Note
that the number of choices for m and m is trivially at most n4. The number of
copies of a fixed graph F ∈ Fδp (ε̄, γ̄0, ρ̄; m, T ) that the complete graph Kn on n
vertices contains is clearly at most nn. Thus, since ρ̄ ≤ δ/27 (see (23)) and ε̄ =
2ε ≤ ε0(α, γ̄0, δ), Lemma 7 applies to give that the expected number of copies of
elements from Fδp (ε̄, γ̄0, ρ̄; m, T ) that Gp contains is, for sufficiently large n, at most

n4+n
∣∣Fδp (ε̄, γ̄0, ρ̄; m, T )

∣∣pT ≤ n4+nαT
(

3m2

T

)
pT ≤ n4+n

(
3eαpm2

T

)T
,

which, since T ≥ (3/4)γ̄0pm
2, is at most

n4+n

(
8eα
γ0

)T
≤ n4+n3−T ≤ 2−T .

Summing over all T ≥ (3/4)γ̄0pm
2, we obtain that (b) holds almost always. Con-

dition (c) holds almost surely for Gp by Lemma 10 and the choice of C0. To check
that (d) holds for a.e. Gp, by Lemma 14 it suffices to see that pn1/2/ log n → ∞
and that (pn2/ log n)

/
np−1 log n→∞ as n→∞. This completes the proof of our

claim.
In the remainder of the proof, we show that (19) holds for any subgraph H ⊂ Gp

whenever Gp satisfies conditions (a)–(d) above. This clearly proves our lemma.
Thus let us assume that H ⊂ Gp is given and that Gp satisfies (a)–(d). We may
clearly assume that H is a spanning subgraph of Gp.

Let us apply Lemma 4 to the η-upper-uniform graph H, with parameters ε
and k0. Let V (H) = V0 ∪ · · · ∪ Vk be the (ε,H, p)-regular (ε, k)-equitable partition
we obtain in this way. Let H ′ be the subgraph of H on

⋃
1≤i≤k Vi with e ∈ E(H)

an edge of H ′ if and only if e joins two vertices that belong to distinct classes of
our regular partition, say, Vi and Vj (1 ≤ i < j ≤ k), with (Vi, Vj) an (ε,H, p)-
regular pair and dH,p(Vi, Vj) ≥ γ0. In the sequel, we let m stand for the common
cardinality of the sets Vi (1 ≤ i ≤ k). Recall that λ = e(H)

{
p
(
n
2

)}−1. We now
check the following simple fact.
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Assertion 1. We have e(H ′) ≥ (λ− σ/7)p
(
n
2

)
provided n is sufficiently large.

From the η-upper-uniformity of H it follows that if W ⊂ V = V (H), |W | ≥ 2ηn
then e(H[W ]) ≤ (1 + η)p

(|W |
2

)
. Hence e(H[V0]) ≤ (3/5)ε2pn2. Also, eH(V0, V \ V0)

is at most (1 + η)p|V0||V \ V0| ≤ (6/5)εpn2. Thus the number of edges of H
incident to V0 is at most 4εp

(
n
2

)
for large enough n. Now note that

∑
eH(Vi, Vj)

with the sum over all 1 ≤ i < j ≤ k such that (Vi, Vj) is not (ε,H, p)-regular
is at most ε

(
k
2

)
(1 + η)pm2 ≤ 2εp

(
n
2

)
. Also,

∑
eH(Vi, Vj) with the sum extended

over all 1 ≤ i < j ≤ k such that dH,p(Vi, Vj) ≤ γ0 is at most (1 + η)γ0

(
k
2

)
pm2 ≤

2γ0p
(
n
2

)
. Finally, we have that

∑
1≤i≤k e(H[Vi]) ≤ k(1 + η)p

(
m
2

)
≤ (2p/k)

(
n
2

)
.

Therefore |E(H) \ E(H ′)| ≤ (6ε + 2/k + 2/γ0)p
(
n
2

)
≤ (σ/7)p

(
n
2

)
if n is sufficiently

large, as required.
We now define a graph H∗ on [k] = {1, . . . , k} by letting ij (1 ≤ i < j ≤ k) be an

edge of H∗ if and only if (Vi, Vj) is an (ε,H, p)-regular pair and dH,p(Vi, Vj) ≥ γ0.
We write γij for dH,p(Vi, Vj) for all ij ∈ E(H∗), and put γ = (γe)e∈E(H∗). Now
put γ̄ = 1 + σ/7, and notice that then the definition of η and (a) above gives
that γe ≤ 1 + η ≤ γ̄ for all e ∈ E(H∗).

Lemma 15 now tells us that, suitably adjusting the notation, the ordering x =
(1, . . . , k) of the vertices of H∗ is such that

w(H∗, γ,x) =
∑

1≤i≤j≤k

wH∗,γ(i, j) ≥ 2γ(H∗)− γ̄
(
k + 1

2

)
. (26)

In our next assertion we bound γ(H∗).

Assertion 2. We have γ(H∗) =
∑
e∈E(H∗)

γe ≥ (λ− σ/7)
(
k
2

)
.

Indeed, we have e(H ′) =
∑
e∈E(H∗)

γepm
2 = γ(H∗)pm2, and hence, by Assertion 1,

γ(H∗) ≥
1
m2

(
λ− σ

7

)(n
2

)
≥
(
λ− σ

7

)(n
2

)/
k2

n2
≥
(
λ− σ

7

)(k
2

)
.

Our next step relates the number of K4
−-connected pairs meeting two fixed

classes Vi and Vj (1 ≤ i < j ≤ k) with the summand wH∗,γ(i, j) appearing in (26).
Assertion 3. Suppose ι1, ι2 ∈ [k] are two distinct vertices of H∗. Then the number
of K4

−-connected pairs x1x2 with xj ∈ Vιj (j ∈ {1, 2}) is at least

(1− σ/7− 2ε/γ0)wH∗,γ(ι1, ι2)m2.

The above assertion is an easy consequence of Lemma 17, although we shall have
to work a little to check that that lemma does apply here.

Let us start by observing that, trivially, if ι1 and ι2 are not K4
−-connected in H∗,

then by definition wH∗,γ(ι1, ι2) = 0, and hence there is nothing to prove. Thus let
us assume that this is not the case, and let ι3, ι4 ∈ [k] be two vertices of H∗ such
that ι1ι3, ι1ι4, ι3ι4, ι2ι3, ι2ι4 ∈ E(H∗). Choosing ι3 and ι4 suitably, we may further
assume that wH∗,γ(ι1, ι2) = γι2ι3γι2ι4 . We may now restrict our attention to the
4-partite subgraph of H induced by the Vιa (1 ≤ a ≤ 4).

Let J = H[Vι1 , Vι2 , Vι3 , Vι4 ] and write L for the graph on [4] = {1, 2, 3, 4} iso-
morphic to K4

−, with 1 and 2 as the endvertices. We first apply Lemma 5 to J to
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obtain Ūιa ⊂ Vιa (1 ≤ a ≤ 4) such that the following holds. Putting ma = |Ūιa |,
we have (1 − µ)m ≤ ma ≤ m for all 1 ≤ a ≤ 4 and, furthermore, if ab ∈ E(L)
and x ∈ Ūιa , then

dab(x) = |ΓJ(x) ∩ Ūιb | = (1 +O1(ρ))dJ,p(Vιa , Vιb)pm. (27)

Let F = J [Ūι1 , Ūι2 , Ūι3 , Ūι4 ]. Since dJ,p(Vιa , Vιb) = dF,p(Ūιa , Ūιb) + O1(ε) and
dF,p(Ūιa , Ūιb) ≥ γ0 − ε ≥ γ̄0 = γ0/2, we have

dJ,p(Vιa , Vιb) = (1 +O1(2ε/γ0))dF,p(Ūιa , Ūιb).

Moreover, as (1−µ)m ≤ mb ≤ m, we have m = (1+O1(2µ))mb. Thus, relation (27)
gives that, for any x ∈ Ūιa ,

dab(x) = (1 +O1(ρ̄))dF,p(Ūιa , Ūιb)pmb,

where, as defined above, ρ̄ = 5ε/γ0. Note also that γ̄0 ≤ dF,p(Ūιa , Ūιb) ≤ γ̄ =
1 + σ/7 (cf. condition (a) above).

Our immediate aim now is to apply Lemma 17. To make our current notation the
same as the one used in that lemma, let us put V̄j = Ūιj and Z̄j = Ū2+j for j ∈ {1, 2}
and Fj = J [V̄j , Z̄1, Z̄2] (j ∈ {1, 2}). Clearly, F = J [V̄1, V̄2, Z̄1, Z̄2] = F1 ∪ F2

and F [Z̄1, Z̄2] = F1[Z̄1, Z̄2] = F2[Z̄1, Z̄2]. Also, let mj = |V̄j | and m′i = |Z̄i| (i,
j ∈ {1, 2}).

Let mj = (mj ,m
′
1,m

′
2) and Tj = e(Fj) ≥ (3/4)γ̄0pm

2 (j ∈ {1, 2}). Observe that
by (b) above we may conclude that

Fj = H[V̄j , Z̄1, Z̄2] ∈ Fp(ε̄, γ̄0, ρ̄; mj , Tj) \ Fδp (ε̄, γ̄0, ρ̄; mj , Tj)

for both j ∈ {1, 2}. We shall now invoke Lemma 17, but to see that that lemma
does apply we verify the following claim.
Claim. Conditions (i)–(v) given before the statement of Lemma 17 hold.

Proof of the Claim. Condition (i) has already been seen to hold. To see that (ii)
holds, we simply apply Lemma 9 to the (δ,K3)-balanced graph F1. Now, condi-
tion (iii) clearly holds as F2 is (δ,K3)-balanced. Finally, condition (iv) is equivalent
to (c), while condition (v) follows from (d). This finishes the proof of our claim.

In view of the above claim and the definitions of δ′0 = δ′0(γ̄0, σ/7) and µ0 =
µ0(σ/7), we see that we may indeed apply Lemma 17 to deduce that the number
of K4

−-connected pairs x1x2 with xj ∈ Vιj (j ∈ {1, 2}) is at least(
1− σ

7

)
dF,p(Z̄1, V̄2)dF,p(Z̄2, V̄2)m2. (28)

We now use that, for i ∈ {1, 2}, we have

dF,p(Z̄i, V̄2) ≥ dH,p(Vι2 , Vιi+2)− ε ≥
(

1− ε

γ0

)
dH,p(Vι2 , Vιi+2),

since dH,p(Vι2 , Vιi+2) ≥ γ0. Thus the quantity in (28) is at least(
1− σ

7

)(
1− ε

γ0

)2

dH,p(Vι2 , Vι3)dH,p(Vι2 , Vι4)m2

≥
(

1− σ

7
− 2ε
γ0

)
γι2ι3γι2ι4m

2,
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which concludes the proof Assertion 3, since ι3 and ι4 were chosen so as to have
wH∗,γ(ι1, ι2) = γι2ι3γι2ι4 .

The proof of our lemma is completed in the next assertion. Recall that ΠH

stands for the graph on V (H) with two vertices of H adjacent in ΠH if and only if
they are K4

−-connected in H.

Assertion 4. We have e(ΠH) ≥ (2λ− 1− σ)
(
n
2

)
.

By Assertion 3 we have that

e(ΠH) ≥
∑

1≤i<j≤k

e(ΠH [Vi, Vj ]) ≥
∑

1≤i<j≤k

(
1− σ

7
− 2ε
γ0

)
wH∗,γ(i, j)m2. (29)

Now, clearly, we have∑
1≤i<j≤k

wH∗,γ(i, j) = w(H∗, γ,x)−
∑

1≤i≤k

wH∗,γ(i, i)

≥ w(H∗, γ,x)− γ̄2k ≥ w(H∗, γ,x)− 2k,

since γ̄2 = (1 + σ/7)2 ≤ 2. Thus, recalling (26) and using that m ≥ (1− ε)n/k, we
have from (29) that e(ΠH) is at least(

1− σ

7
− 2ε
γ0

)
(1− ε)2n

2

k2

(
w(H∗, γ,x)− 2k

)
≥
(

1− σ

7
− 3ε
γ0

)
n2

k2

(
2γ(H∗)− γ̄

(
k + 1

2

)
− 2k

)
,

which, by Assertion 2, is at least(
1− σ

7
− 3ε
γ0

)(
1− 1

k

)(
2
(
λ− σ

7

)
−
(

1 +
σ

7

)(k + 1
2

)(
k

2

)−1

−2k
(
k

2

)−1)(
n

2

)
,

which is, as one may check using (24) and (25), at least(
1− σ

7
− 3ε
γ0
− 1
k

)(
2λ− 1− 4σ

7

)(
n

2

)
≥ (2λ− 1− σ)

(
n

2

)
,

proving Assertion 4.
The proof of Lemma 16 is complete. �

§4. Proof of the Main Result

We first prove Theorem 2 under the extra hypothesis that p = p(n) should
not be too large. More precisely, we prove the following result. Recall that we
write G→γ H if any subgraph J of G with e(J) ≥ γe(G) contains a copy of H.

Lemma 18. Let a constant η > 0 be given. Then there is a constant C =
C(η) that depends only on η for which the following holds. If 0 ≤ p = p(n) =
ωn−2/5 ≤ 1 and C ≤ ω = ω(n) = o(n1/190), then almost every Gp = Gn,p is such
that Gp →2/3+η K

4.

Proof. Let ε = σ = η/10 and k = d1+24(log 2)η−2e. Let C = kC0(σ), where C0(σ)
is as given in Lemma 16. We shall show that this choice of C = C(η) will do in our
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result. Thus let p = p(n) be as in the statement of Theorem 2, and consider the
space G(n, p) of the random graphs Gn,p = Gp. In this proof, we shall write Gp as
a union of sparser, independent random graphs.

Let p1 be such that 1−p = (1−p1)k, and note that then p/k ≤ p1 = (1+o(1))p/k.
Put Ω =

∏
1≤j≤k G(n, p1). We shall write G = (G(1)

p1 , . . . , G
(k)
p1 ) for a general random

element of Ω. Thus theG(j)
p1 (1 ≤ j ≤ k) are independent random graphs, each taken

from G(n, p1). For any given G = (G(1)
p1 , . . . , G

(k)
p1 ) ∈ Ω, let us put Gp = Gp(G) =

G
(1)
p1 ∪· · ·∪G

(k)
p1 , and note that then the map G = (G(j)

p1 )1≤j≤k ∈ Ω 7→ Gp = Gp(G) ∈
G(n, p) is measure-preserving. We may thus study G(n, p) investigating the random
elements G ∈ Ω. Let us define Ω′ ⊂ Ω by letting G = (G(j)

p1 )1≤j≤k ∈ Ω belong to Ω′

if and only if (i) e(Gp) = (1 + O1(ε))p
(
n
2

)
, (ii) e(G(j)

p1 ) = (1 + O1(ε))(p/k)
(
n
2

)
for

all 1 ≤ j ≤ k and, finally, (iii) for all 1 ≤ j ≤ k, the graph G
(j)
p1 has the property

that if E ⊂ E(G(j)
p1 ) and λ = |E|

{
p1

(
n
2

)}−1, then

e(ΠE) ≥ (2λ− 1− σ)
(
n

2

)
. (30)

For simplicity, ΠE above stands for ΠH , where H = H(E) is the graph on V (Gp)
with edge set E.

Elementary facts concerning random graphs and Lemma 16 gives that P(Ω′) =
1− o(1). In the sequel, we shall often condition on Ω′ and we shall write P′(A) for
the conditional probability P(A

∣∣Ω′) for any event A ⊂ Ω.

Let B ⊂ Ω be the set of G = (G(1)
p1 , . . . , G

(k)
p1 ) that admit a set F ⊂ E(Gp)

with |F | ≥ (2/3 + η)e(Gp) but Gp[F ] 6⊃ K4. We need to show that P(B) = o(1),
or, equivalently, that P′(B) = o(1). Let us put B′ = B ∩ Ω′. For each G ∈ B, let
us fix once and for all a set F = F (G) ⊂ E(Gp) as required in the definition of B.
Let us also put F (j) = F (j)(G) = F ∩E(G(j)

p1 ) (1 ≤ j ≤ k) and set f = f(G) = |F |
and f (j) = f (j)(G) = |F (j)| (1 ≤ j ≤ k).

Now let γ(j) = γ(j)(G) = f (j)/p1

(
n
2

)
, and note that then we have f ≤ f (1) +

· · ·+ f (k), and hence that

2
3

+ η ≤ γ(1) p1

(
n
2

)
e(Gp)

+ · · ·+ γ(k) p1

(
n
2

)
e(Gp)

≤ 1
k

(
1 + ε

1− ε

)(
γ(1) + · · ·+ γ(k)

)
,

from which we conclude that

γ∗ = γ∗(G) = max
1≤j≤k

γ(j) ≥ Ave
1≤j≤k

γ(j) ≥ 1− ε
1 + ε

(
2
3

+ η

)
≥ 2

3
(1 + η), (31)

where the last inequality follows from the choice of ε. Let us also note that

γ∗ ≤ 1 + ε, (32)

since we are assuming that (ii) above holds. For each 1 ≤ j ≤ k, let

B′j = {G ∈ B′: γ(j)(G) = γ∗(G)}.
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Clearly B′ =
⋃

1≤j≤k B′j , and hence it suffices to show that P′(B′j) = o(1) for all j.
Thus we now fix j ∈ [k] and proceed to show that B′j almost surely does not hold.
We have

P
′(B′j) =

∑
G0

P
′(B′j ∩ {G ∈ Ω : G(j)

p1
= G0})

=
∑
G0

P
′(B′j

∣∣G(j)
p1

= G0)P′(G(j)
p1

= G0)

≤ max
G0

P
′(B′j

∣∣G(j)
p1

= G0), (33)

where G0 ranges over all graphs on V (Gp) with e(G0) = (1 + O1(ε))(p/k)
(
n
2

)
and

such that (30) holds for all E ⊂ E(G0) with λ = |E|/p1

(
n
2

)
. We now fix one such G0

and proceed to show an upper bound for (33). For each F0 ⊂ E(G0), let

P ′(j,G0, F0) = P
′(G ∈ B′j , F (j) = F0

∣∣G(j)
p1

= G0). (34)

Then

P
′(B′j

∣∣G(j)
p1

= G0) =
∑

F0⊂E(G0)

P ′(j,G0, F0) ≤ 2(1+ε) pk (n2) max
F0⊂E(G0)

P ′(j,G0, F0).

(35)
We now fix F0 and estimate the last term in (35) from above. We may of course
assume that P ′(j,G0, F0) > 0 for the fixed triple (j,G0, F0) under considera-
tion, as otherwise there is nothing to prove. Thus we may in particular assume
that |F0|/p1

(
n
2

)
≥ (2/3)(1 + η). Let us write B′(j,G0, F0) for the set of G ∈ B′j

such that G(j)
p1 = G0 and F (j) = F0. To show that P ′(j,G0, F0) is small, we argue

that if G = (G(i)
p1 )1≤i≤k ∈ B′(j,G0, F0), then the edges of the graphs G(i)

p1 (i 6= j,
1 ≤ i ≤ k) are distributed in a rather unlikely way.

Let p2 be such that 1 − p2 = (1 − p1)k−1, and note that then p2/(k − 1) ≤
p1 = (1 + o(1))p2/(k − 1). For any given G = (G(i)

p1 )1≤i≤k ∈ Ω, we write G(¬j)
p2

for
⋃
iG

(i)
p1 , where the union is taken over all i 6= j (1 ≤ i ≤ k). Thus G(¬j)

p2 is a
random element from G(n, p2), and Gp = G

(j)
p1 ∪ G

(¬j)
p2 . Note also that if G ∈ Ω′,

then e(G(¬j)
p2 ) ≤ (1 + 2ε)p2

(
n
2

)
.

For any G = (G(i)
p1 )1≤i≤k ∈ Ω, let F ′ = F ′(G) = E(G(¬j)

p2 ) ∩ E(ΠF0). Also,
let f ′ = f ′(G) = |F ′| for any G ∈ Ω. Clearly, f ′ = f ′(G) (G ∈ Ω) is binomially
distributed with parameters e(ΠF0) and p2. In fact, it is clear that f ′ = f ′(G)
has this distribution even if we condition on G being such that G(j)

p1 = G0. We
now verify the following claim, from which we shall deduce an exponential upper
estimate for P ′(j,G0, F0). In the sequel, we write EG0 for the expectation in the
space Ω ∩ {G: G(j)

p1 = G0}.
Claim. If G ∈ B′(j,G0, F0) then f ′ ≤ (1− η)EG0(f ′).

Proof of the Claim. Let us fix G = (G(j)
p1 )1≤j≤k ∈ B′(j,G0, F0). Let F (¬j) =

F (¬j)(G) = F ∩ E(G(¬j)
p2 ), and put f (¬j) = f (¬j)(G) = |F (¬j)|. Clearly F (¬j) ∪

F ′ ⊂ E(G(¬j)
p2 ) and, since F spans no K4, we have F (¬j) ∩ F ′ = ∅. Thus we

have f (¬j) + f ′ ≤ e(G(¬j)
p2 ) ≤ (1 + 2ε)p2

(
n
2

)
, and hence

f ′ ≤ (1 + 2ε− γ(¬j))p2

(
n

2

)
, (36)
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where γ(¬j) = γ(¬j)(G) = f (¬j)/p2

(
n
2

)
. We now show that γ(¬j) is suitably large.

We have f = |F | ≤ f (j) + f (¬j), and hence

2
3

+ η ≤ γ(j) p1

(
n
2

)
e(Gp)

+ γ(¬j) p2

(
n
2

)
e(Gp)

≤ 1
k

(
1 + ε

1− ε

)(
γ(j) + (k − 1)γ(¬j)

)
.

Therefore

2
3

(1 + η) ≤ 1
k
γ(j) +

k − 1
k

γ(¬j) ≤ 1
k
γ∗ +

k − 1
k

γ(¬j) ≤ 1
k

(1 + ε) + γ(¬j),

where the last inequality follows from (32). Thus we conclude that γ(¬j) ≥ 2/3.
We now note that µ = EG0(f ′) = p2e(ΠF0) ≥ (2γ∗ − 1 − σ)p2

(
n
2

)
. Note that, in

particular, by (31) and the choice of σ, we have (1/3)p2

(
n
2

)
≤ µ ≤ p2

(
n
2

)
. Let b

denote the right-hand side of (36). Then

µ− b ≥
(

2γ∗ − 1− σ − 1− 2ε+ γ(¬j)
)
p2

(
n

2

)
≥
(

4η
3
− 2ε− σ

)
p2

(
n

2

)
≥ ηp2

(
n

2

)
≥ ηµ,

and therefore f ′ ≤ b ≤ (1− η)µ, as claimed.

We now use our claim to bound P ′(j,G0, F0), which, we recall, is defined in (34)
above. Recall also that f ′ ∼ Bi(e(ΠF0), p2). We have

P ′(j,G0, F0) ≤ P
{
f ′ ≤ (1− η)EG0(f ′)

∣∣∣∣G(j)
p1

= G0

}
≤ exp

{
−1

2
η2µ

}
,

where, as remarked before, µ = EG0(f ′) = e(ΠF0)p2 ≥ (1/3)p2

(
n
2

)
. Thus, from (35)

we deduce that

P
′(B′j

∣∣G(j)
p1

= G0) ≤ 2(1+ε) pk (n2) exp
{
−1

6
η2

(
1− 1

k

)
p

(
n

2

)}
= exp

{(
(1 + ε)(log 2)− k − 1

6
η2

)
p

k

(
n

2

)}
≤ exp

{
− 1

12

(
1− 1

k

)
η2p

(
n

2

)}
≤ exp

{
− 1

30
η2pn2

}
.

We now recall (33) to deduce that P′(B′j) ≤ exp{η2pn2/30} = o(1), completing the
proof of Lemma 18. �

We next show that, loosely speaking, the quantity ex(Gn,p,H)
{
p
(
n
2

)}−1 is non-
increasing in probability for any fixed graph H. In particular, this shows that
Lemma 18 implies Theorem 2.
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Lemma 19. Suppose 0 ≤ p = p(n) ≤ 1, 0 < γ = γ(n) ≤ 1, and 0 < ε = ε(n) ≤ 1
are such that ε2γpn2 →∞ as n→∞. Suppose also that Gn,p →γ H holds almost
surely for some graph H. Then, if 0 ≤ p′ = p′(n) ≤ 1 is such that p′ ≥ p for all
large enough n, we almost surely have Gn,p′ →γ(1+ε) H.

Proof. Write γ′ = γ′(n) = γ(1 + ε). Let p′ = p′(n) be as in the statement of
our lemma. Suppose for a contradiction that Gn,p′ →γ′ H fails with probability
at least θ > 0 for arbitrarily large values of n, where θ is some positive absolute
constant. Put λ = λ(n) = p(n)/p′(n) ≤ 1. Note that we may generate Gn,p by
first generating Gn,p′ and then randomly removing its edges, each with probabil-
ity 1 − λ, and with all these deletions independent. Looking at this method for
generating Gn,p, we shall deduce below that the probability that (*) Gn,p →γ H
fails is at least θ/3 for arbitrarily large n, which is a contradiction.

Let δ = ε/4. For arbitrarily large n, with probability at least 2θ/3 we have
that (†) Gn,p′ →γ′ H fails and e(Gn,p′) = (1 + O1(δ))p′

(
n
2

)
. Suppose that, when

generating Gn,p by the above method, we first generated a Gn,p′ satisfying (†)
above. Let J = J(Gn,p′) ⊂ Gn,p′ be an H-free subgraph of Gn,p′ with e(J) ≥
γ′e(Gn,p′). Clearly, the H-free subgraph Jλ = J ∩ Gn,p of J is a subgraph of
our Gn,p. We have e(Jλ) = (1 + O1(δ))λe(J) and e(Gn,p) = (1 + O1(δ))λe(Gn,p′)
with probability 1−o(1), and hence we have e(Jλ) ≥ γe(Gn,p) with probability 1−
o(1). Therefore, given thatGn,p′ satisfies (†) above, the probability that we generate
a Gn,p for which (*) fails is 1 − o(1). Since the probability that we generate Gn,p
satisfying (†) is at least 2θ/3 for arbitrarily large n, we conclude that our Gn,p will
fail to satisfy (*) with probability at least θ/3 for arbitrarily large n, which is the
contradiction we were after. �

Proof of Theorem 2. Theorem 2 follows at once from Lemmas 18 and 19. �

A simple variant of the method used in the proof of Lemma 19 gives the following
‘equivalence result’ between the binomial and the uniform models of random graphs
with respect to the property G→γ H.

Lemma 20. Let H be a graph. Consider the following two assertions.
Sbin(γ, p): Gn,p →γ H holds almost surely,
Sunif(γ,M): Gn,M →γ H holds almost surely,

where 0 < γ = γ(n) ≤ 1, 0 < p = p(n) ≤ 1, and 0 < M = M(n) ≤
(
n
2

)
are arbitrary

functions. Suppose ω = ω(n)→∞ as n→∞. Then the following holds.

(i) Suppose pn2 → ∞, ω = o(np1/2), and h = h(n) = ωnp1/2. Let γ′ =
γ′(n) = γ + 2h/M ′ and M ′ = M ′(n) = dp

(
n
2

)
+ he. Then Sbin(γ, p) im-

plies Sunif(γ′,M ′).
(ii) Suppose M = M(n)→∞, ω = o(M1/2), and h = h(n) = ωM1/2. Let γ′ =

γ′(n) = γ + 2h/M , and p′ = p′(n) = (M + h)
(
n
2

)−1. Then Sunif(γ,M)
implies Sbin(γ′, p′).

Proof. Let us prove (i). Assume Sbin(γ, p) holds. We may generate Gn,M ′ by first
generating Gn,p conditioned on the event E = {e(Gn,p) ≤M ′}, and then randomly
adding M ′ − e(Gn,p) edges to it so as to have a graph with M ′ edges. For clarity,
let us write GEn,p for our binomial random graph Gn,p conditioned on E. Note
that P(E) = 1 − o(1), and hence the effect of conditioning on E is, so to speak,
negligible. We now claim that Gn,M ′ →γ′ H holds with probability 1− o(1).
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Suppose our claim fails, and hence, for arbitrarily large n, there exists with
probability at least θ > 0 an H-free subgraph J ⊂ Gn,M ′ of Gn,M ′ with e(J) ≥
γ′e(Gn,M ′), where θ is some positive absolute constant. Observe that if J ⊂ Gn,M ′
is an H-free subgraph of Gn,M ′ , then, obviously, J ′ = J ∩ GEn,p ⊂ GEn,p is an H-
free subgraph of GEn,p. Now note that almost surely we have M ′ − e(GEn,p) ≤ 2h,
and hence almost surely ex(GEn,p,H) ≥ ex(Gn,M ′ ,H)− 2h. Since we are assuming
that ex(Gn,M ′ ,H) ≥ γ′e(Gn,M ′) with probability θ > 0 for arbitrarily large n, we
have

ex(GEn,p,H) ≥ γ′e(Gn,M ′)− 2h ≥ γ′M ′ − 2h ≥ γe(GEn,p)
with probability θ/2 for arbitrarily large n. Since GEn,p is the binomial random
graph Gn,p conditioned on the almost sure event E, we deduce that ex(Gn,p,H) ≥
γe(Gn,p) with probability at least θ/3 for arbitrarily large n, contradicting Sbin(γ, p).
Thus Sunif(γ′,M ′) follows. The proof of (ii) is similar. �

Proof of Corollary 3. Corollary 3 follows easily from Theorem 2 and Lemma 20. �

§5. Deterministic Consequences

In this section we give a few results concerning the existence of very sparse
graphs G = Gη that satisfy G→2/3+η K

4 for any fixed η > 0.
If H is a graph of order |H| ≥ 3 and size e(H) ≥ 1, recall that its 2-density

is d2(H) = (e(H)− 1)/(|H| − 2). For an integer k ≥ 3, let Hk be the family of all
graphs H with 3 ≤ |H| ≤ k, e(H) ≥ 1, and d2(H) > d2(K4). Also, let Forb(Hk) be
the collection of all graphs G that are H-free for all H ∈ Hk. The following result
may be proved by the so called ‘deletion method’. (For details, see [8, 9].)

Theorem 21. Let 0 < η ≤ 1/3 and k ≥ 3 be fixed. Then there exists a graph G =
Gη,k ∈ Forb(Hk) such that G→2/3+η K

4. �

We now single out a corollary to Theorem 21. In Corollary 22 below, the property
that G belongs to Forb(Hk) in Theorem 21 is replaced by a collection of simpler and
more concrete conditions. For instance, one of these conditions is that G should
not contain a copy of K5. To state another condition that appears in Corollary 22,
we need to introduce a definition.

Let G be a graph. Suppose K1, . . . ,Kh (h ≥ 2) are distinct copies of K4 in G,
and e1 ∈ E(K1), . . . , eh−1 ∈ E(Kh−1) are h − 1 edges of G such that E(Ki) ∩⋃

1≤j<iE(Kj) = {ei−1} and V (Ki)∩
⋃

1≤j<i V (Kj) = V (ei) for all 2 ≤ i ≤ h. Then
we say that (K1, . . . ,Kh) is an (h,K4)-path in G. Now assume that (K1, . . . ,Kh)
is an (h,K4)-path in G and that the edge e ∈ E(G) joins a vertex in V (K1) \⋃

1<j≤h V (Kj) to a vertex in V (Kh) \
⋃

1≤i<h V (Ki). Then, (K1, . . . ,Kh; e) is said
to be an (h,K4)-quasi-cycle in G.

It is immediate to check that if (K1, . . . ,Kh) is an (h,K4)-path, then H =⋃
1≤j≤hKj has 2-density d2(H) = d2(K4). Also, if (K1, . . . ,Kh; e) is an (h,K4)-

quasi-cycle, then H ′ = H + e has 2-density d2(H ′) > d2(K4).

Corollary 22. For any 0 < η ≤ 1/3 and k ≥ 1, there is a graph G = Gη,k
such that (i) G contains no K5, (ii) any two copies of K4 in G share at most
two vertices, (iii) G contains no (h,K4)-quasi-cycles for any 2 ≤ h ≤ k, and
(iv) G→2/3+η K

4. �

We remark that Erdős and Nešetřil have raised the question as to whether the
graphs Gη,k as in Corollary 22 exist.
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§6. A Conjecture

In this short paragraph we state a conjecture from which, if true, one may deduce
Conjecture 1. Let H = Hh be a graph of order |H| = h ≥ 3 and suppose H has
vertices v1, . . . , vh. Let 0 < p = p(m) ≤ 1 be given. Let also V = (Vi)hi=1 be a
family of h pairwise disjoint sets, each of cardinality m. Suppose reals 0 < ε ≤ 1
and 0 < γ ≤ 1 and an integer T are given. We say that an h-partite graph F with
h-partition V (F ) = V1 ∪ · · · ∪ Vh and size e(F ) = |F | = T is an (ε, γ,H; V, T )-
graph if the pair (Vi, Vj) is (ε, F, p)-regular and has p-density γ ≤ dF,p(Vi, Vj) ≤ 2
whenever vivj ∈ E(H).

Conjecture 23. Let constants 0 < α ≤ 1 and 0 < γ ≤ 1 be given. Then there are
constants ε = ε(α, γ) > 0 and C = C(α, γ) such that, if p = p(m) ≥ Cm−1/d23(H),
the number of H-free (ε, γ,H; V, T )-graphs is at most

αT
((h

2

)
m2

T

)
for all T and all sufficiently large m.

If H above is a forest, Conjecture 23 holds trivially, since, in this case, all
(ε, γ,H; V, T )-graphs contain a copy of H. A lemma in Kohayakawa,  Luczak,
and Rödl [12] may be used to show that Conjecture 23 holds for the case in
which H = K3. In fact, this lemma from [12] is similar in spirit to Lemma 8
above, although much simpler.
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6. Füredi, Z., Random Ramsey graphs for the four-cycle, Discrete Math. 126 (1994), 407–410.
7. Haxell, P.E., Kohayakawa, Y.,  Luczak, T., The induced size-Ramsey number of cycles, Com-

binatorics, Probability, and Computing (to appear).
8. , Turán’s extremal problem in random graphs: forbidding odd cycles, Combinatorica

(to appear).

9. , Turán’s extremal problem in random graphs: forbidding even cycles, J. Combinatorial
Theory, Series B 64 (1995), 273–287.

10. Janson, S., Poisson approximation for large deviations, Random Structures and Algorithms
1 (1990), 221–230.

11. Kohayakawa, Y., Kreuter, B., Steger, A., An extremal problem for random graphs and the

number of graphs with large even-girth (1995), submitted.
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