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Abstract

In this paper, we show the equivalence of some quasi-random proper-
ties for sparse graphs, that is, graphsG with edge density p = |E(G)|/

(
n
2

)
=

o(1), where o(1) → 0 as n = |V (G)| → ∞. In particular, we prove the
following embedding result. For a graph J , write NJ(x) for the neigh-
borhood of the vertex x in J , and let δ(J) and ∆(J) be the minimum
and the maximum degree in J . Let H be a triangle-free graph and set
dH = max{δ(J) : J ⊂ H}. Moreover, put DH = min{2dH ,∆(H)}. Let
C > 1 be a fixed constant and suppose p = p(n) � n−1/DH . We show
that if G is such that

(i) degG(x) ≤ Cpn for all x ∈ V (G),

(ii) for all 2 ≤ r ≤ DH and for all distinct vertices x1, . . . , xr ∈ V (G),

|NG(x1) ∩ · · · ∩NG(xr)| ≤ Cnpr,

(iii) for all but at most o(n2) pairs {x1, x2} ⊂ V (G),∣∣|NG(x1) ∩NG(x2)| − np2
∣∣ = o(np2),

then G contains H as a subgraph. We discuss a setting under which an
arbitrary graph H (not necessarily triangle-free) can be embedded in G.
We also present an embedding result for directed graphs.
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1 Introduction

Let H be a fixed graph with k vertices and e edges. In what follows, o(1) terms
denote functions of n such that o(1)→ 0 as n→∞. It is well known that, for
any constant p, asymptotically almost surely the random graph G(n, p) contains
(1 + o(1))nkpe labeled (not necessarily induced) copies of H. Throughout this
paper, we think of a labeled copy of a graph H in a graph G as an injective
function from V (H) to V (G) that preserves edges.

Let k ≥ 4 be a fixed integer and p ∈ (0, 1). Suppose we have a sequence
of graphs {Gn}∞n=1, where Gn has n vertices and (1 + o(1))p

(
n
2

)
edges. We say

that {Gn}∞n=1 is (k, p)-quasi-random, or simply quasi-random for short, if Gn
contains (1 + o(1))nkpe labeled (not necessarily induced) copies of H for any
graph H with k vertices, where e is the number of edges in H. It turns out that,
for constant p, this notion of quasi-randomness can be equivalently described
in terms of some other properties involving parameters other than the number
of subgraphs (see [8, 20] and also [5, Chapter 9]). When p = o(1) (i.e., p → 0
as n → ∞), some of these properties fail to describe quasi-randomness in the
above sense.

In this paper, we investigate quasi-random sparse graphs. We consider both
directed and undirected graphs. In Section 1, we outline some well-known results
about quasi-random graphs, when p is constant, as well as a few new results
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when p = o(1). In Sections 2 and 3, we state and prove our main results. We
present the proofs of our results for undirected graphs in Sections 3.2 and 3.3
and sketch the proof of our result for directed graphs in Section 3.4. In Section 4,
we present some auxiliary facts and related work. In the last section, Section 5,
we summarize a few open questions.

Terminology and notation. Our terminology and notation are fairly stan-
dard. Our o(1) terms refer to functions that tend to 0 as n → ∞. More
generally, o(f(n)) denotes a function g(n) such that g(n)/f(n)→ 0 as n→∞.
We also write g(n) � f(n) if g(n) = o(f(n)). Moreover, for A, B, and δ > 0,
we write A ∼δ B to mean (1− δ)B < A < (1 + δ)B. Similarly, we write A 6∼δ B
if A ≤ (1 − δ)B, or A ≥ (1 + δ)B. Also, if f(n) and g(n) are functions, we
write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.

For any integer n, let [n] = {1, . . . , n}. For any set X, we denote the set of
all r-elements subsets of X by [X]r and we denote the set of all ordered r-tuples
of X by Xr = X×· · ·×X. The cardinality of X will be denoted by |X|. We use
the following non-standard notation. If U = (u1, . . . , uk) is an ordered k-tuple,
we let U set = {u1, . . . , uk} be the set of the elements occurring in the vector U .

Let G = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G).
We write N(x) = NG(x) for the neighborhood of a vertex x in G, and if X ⊂ V ,
we let N(X) = NG(X) be the joint, or common, neighborhood⋂

x∈X
N(x)

of the vertices in X. We denote the degree of x ∈ V by deg(x) = degG(x) =
|N(x)|. We denote the number of edges in G by e(G). If X ⊂ V , we sometimes
write e(X) = eG(X) for the number of edges induced by X in G. The maximum
and the minimum degree in G are denoted by ∆(G) and δ(G). For X ⊂ V , we
let G[X] be the graph induced by X in G. Usually, Gn denotes a graph on n
vertices. Finally, we call a subset U ⊂ V stable (or independent) if there is no
edge induced in U .

1.1 The constant density case

The subject of quasi-random graphs was introduced in the eighties by Thoma-
son [20] and Chung, Graham and Wilson [8]. They realized the surprising fact
that several important properties shared by almost all graphs are asymptoti-
cally equivalent in a deterministic sense. See also [1, 3, 10, 17] for related initial
work in this area and [19] for a recent development.

These equivalent properties are satisfied almost surely by a random graph in
which every edge is chosen independently with probability p = 1/2. In general
one may consider a random graph G(n, p) on n vertices in which every edge
is chosen independently with a constant probability p ∈ (0, 1). Then one can
show that the following properties hold for Gn ∈ G(n, p) asymptotically almost
surely, that is, with probability tending to 1 as n→∞.
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NSUB(k): For any graphH on k vertices, the number of labeled (not necessarily
induced) copies of H in Gn is

N(H,Gn) = (1 + o(1))nkpe,

where e is the number of edges in H.

DISC: For all X, Y ⊂ V (Gn) with X ∩ Y = ∅, if e(X,Y ) denotes the number
of edges between X and Y then∣∣e(X,Y )− p|X||Y |

∣∣ = o(pn2).

EIG: Let A =
(
ax,y

)
x,y∈V (Gn)

denote the 0–1 adjacency matrix of Gn, with 1
denoting edges. Let λi (1 ≤ i ≤ n) be the eigenvalues of A and adjust the
notation so that λ1 ≥ |λ2| ≥ · · · ≥ |λn|. Then

λ1 = (1 + o(1))pn and |λ2| = o(pn).

CYCLE(4): If C4 denotes the 4-cycle, i.e., the cycle of length 4, then

N(C4, Gn) = (1 + o(1))(pn)4.

TUPLE(s): For all r ∈ [s] = {1, . . . , s}, we have∣∣|N(x1) ∩ · · · ∩N(xr)| − npr
∣∣ = o(prn),

for all but at most o(nr) r-element sets {x1, . . . , xr} ⊂ V (Gn).

Above, s and k are arbitrary fixed constants. The following theorem holds
(see [8] and [20]).

Theorem 1. Let k ≥ 4 be a fixed integer. Let Gn be a graph on n vertices
and (1 + o(1))p

(
n
2

)
edges for some fixed p ∈ (0, 1). If Gn satisfies any of the

properties NSUB(k), DISC, EIG, CYCLE(4), and TUPLE(2), then it satisfies
all of them.

Remark 2. Note that the property NSUB(k) depends on a parameter k. It
is not hard to show that, for any k, property NSUB(k + 1) implies property
NSUB(k) (see Fact 45). Perhaps quite surprisingly, it follows from Theorem 1
that property NSUB(k) implies property NSUB(k+1) as well, as long as k ≥ 4.

To make our assertions more precise, we may substitute the o(1) terms that
appear in the definitions of NSUB(k), DISC, EIG, CYCLE(4), and TUPLE(s)
by a parameter ε > 0. We then obtain the properties for n-vertex graphs Gn
given below. In what follows, unless explicitly stated otherwise, we let

p = p(n) = |E(Gn)|
(
n

2

)−1

.
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NSUBε(k): For any graph H on k vertices, the number of labeled (not neces-
sarily induced) copies of H in Gn satisfies

(1− ε)nkpe < N(H,Gn) < (1 + ε)nkpe,

where e is the number of edges in H.

DISCε: For all X, Y ⊂ V (Gn) with X ∩ Y = ∅, if e(X,Y ) denotes the number
of edges between X and Y then∣∣e(X,Y )− p|X||Y |

∣∣ ≤ εpn2.

EIGε: Let A =
(
ax,y

)
x,y∈V (Gn)

denote the 0–1 adjacency matrix of Gn, with 1
denoting edges. Let λi (1 ≤ i ≤ n) be the eigenvalues of A and adjust the
notation so that λ1 ≥ |λ2| ≥ · · · ≥ |λn|. Then

(1− ε)pn < λ1 < (1 + ε)pn and |λ2| ≤ εpn.

CYCLEε(4): We have

(1− ε)(pn)4 < N(C4, Gn) < (1 + ε)(pn)4.

TUPLEε(s): For all r ∈ [s] = {1, . . . , s}, we have∣∣|N(x1) ∩ · · · ∩N(xr)| − npr
∣∣ < εprn,

for all but at most ε
(
n
r

)
r-element sets {x1, . . . , xr} ⊂ V (Gn).

Remark 3.

(a) The equivalence between two properties in Theorem 1, say P and Q,
should be understood in the following way. Property P implies property Q
for a sequence of graphs {Gn}∞n=1 (we write P ⇒ Q for {Gn}∞n=1) if the
following holds:

(*) For all ε > 0, there exist δ > 0 and n0 such that any graph Gn
with n ≥ n0 vertices satisfying Pδ satisfies Qε as well. Here, Pδ and Qε
stand for P and Q with o(1) replaced by δ and ε respectively.

(b) We will write “P ⇒ Q” to mean “P ⇒ Q for {Gn}∞n=1” when the implicit
reference to {Gn}∞n=1 is clear from the context.

(c) Suppose we have a sequence of graphs {Gn}∞n=1. We may then define
the ‘density function’ p = p(n) of this sequence by putting p = p(n) =
|E(Gn)|

(
n
2

)−1 for all n. On the other hand, sometimes we prefer to
think that we have a given function p = p(n), and that our graph se-
quence {Gn}∞n=1 is such that

|E(Gn)| = (1 + o(1))p
(
n

2

)
.
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Although the relationship between {Gn}∞n=1 and p = p(n) in these two
approaches are different, we may clearly ignore this small difference when
considering implications of the form P ⇒ Q with P and Q as above.

The investigation of quasi-randomness, for constant p ∈ (0, 1), turned out
to be a fruitful area with several applications in questions regarding random
graphs and algorithms (see, e.g., [4], [9], [13], [15], [18], and [21]). Some of the
open questions in this area deal with the problem of generalizing Theorem 1 to
the case in which p = o(1).

Before we proceed, we mention that in 1985 Thomason [20, 21] already
considered the case in which p = o(1). Our approach in this paper is different
from the one taken by Thomason, who investigated pseudorandom properties
with error terms that vanish together with p. Our approach is closer in spirit
to the one in the recent paper by Chung and Graham [6].

1.2 The vanishing density case

In this section, we turn our attention to the study of quasi-randomness when
p = o(1). The first efforts towards this direction suggest that a generaliza-
tion of Theorem 1 (which is valid when p ∈ (0, 1) is constant) will not be
straightforward. Indeed the quasi-random properties listed above are no longer
equivalent when p = o(1). For instance, property TUPLE(2) does not imply
property NSUB(3), as we shall see in Proposition 6 below. However, some of
these quasi-random properties are equivalent under more restrictive conditions.

Let TFSUB(k) be the property NSUB(k) restricted to triangle-free graphsH,
that is, under TFSUB(k) we require the number of occurrences of triangle-free
graphs H to be ‘correct’ in Gn (see Definition 12). For suitable values of p
(see Theorems 10 and 18), the following diagram holds for “special families of
graphs” such as the family BDD(C, t) and the family CG(C, t) (see Definitions 4
and 8).

TFSUB(k) =⇒ CYCLE(4)

m Theorem 18 ⇓ Chung–Graham

TUPLE(2) =⇒ DISC
Chung–Graham⇐⇒ EIG

Note that the “missing” link in the above diagram is the implication DISC⇒
TUPLE(2). Although this implication does not hold in general (see [6] and [13]),
it is possible that it holds under some natural conditions (such as BDD(C, t)
and CG(C, t)). If this implication does hold under some special conditions,
then the properties CYCLE(4), DISC, EIG, TFSUB(k) and TUPLE(2) would
all be equivalent for sequences of graphs satisfying these conditions and BDD
(we make this precise in Remark 21 below). For p = o(1), the only known
counterexamples to the implication DISC ⇒ TUPLE(2) are graphs in which
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the joint neighborhood of a few vertices is very large, that is, graphs for which
the property BDD(C, t) defined below fails.

Definition 4. Let constants C > 1 and t ≥ 1 be given. We define BDD(C, t) to
be the family of all graphs G such that, if we let n = |V (G)| and p = |E(G)|/

(
n
2

)
,

then

(i) degG(x) ≤ Cpn for all x ∈ V (G),

(ii) for all 2 ≤ r ≤ t and for all distinct vertices x1, . . . , xr ∈ V (G),

|NG(x1) ∩ · · · ∩NG(xr)| ≤ Cnpr.

Remark 5. Note that BDD(C, t+ 1) ⊂ BDD(C, t).

Since the property TFSUB(k) is restricted to the counting of triangle-free
graphs only, it is natural to ask whether this counting extends to graphs with
triangles. The following proposition, Proposition 6, shows that there is no hope
for such an extension for graphs out of the family BDD when p = o(1) and even
for graphs in BDD when p = p(n) is of order n−1/3.

Proposition 6.

(A) For any p = p(n) = o(1), there exists a graph sequence {Gi}∞i=1, with
|V (Gi)| = ni →∞ as i→∞ and |E(Gi)| ≥ p(ni)

(
ni
2

)
for all i, for which

the following holds:

(i) Gi is triangle-free for all i ≥ 1,

(ii) {Gi}∞i=1 satisfies properties DISC, EIG, and TUPLE(2).

(B) There exists a graph sequence {Gi}∞i=1, with |V (Gi)| = ni →∞ as i→∞
and |E(Gi)| = (1/8 + o(1))n5/3

i , for which (i) and (ii) above hold and,
furthermore,

(iii) Gi ∈ BDD(128, 2) for all i ≥ 1.

The proof of Proposition 6 will be discussed in Section 4.2.

Remark 7. It would be interesting to know if one can extend Proposition 6 to
the existence of graphs Gi with |V (Gi)| = ni →∞ and p(ni) = |E(Gi)|/

(
ni
2

)
�

n
−1/3
i such that Gi satisfies (i) and (ii) in Proposition 6 and Gi ∈ BDD(C, 2)

for all i for some fixed constant C.

Among other problems, the question of the equivalence of the properties EIG,
DISC, and CYCLE(4), in the sparse setting, was considered in [6] by Chung
and Graham. Before we discuss their results, we introduce some terminology.

For any integer t and any two vertices u and v in a graph G, let et(u, v)
denote the number of paths of length t between u and v. Thus, we always have
e1(u, v) ≤ 1 and e2(u, v) = |N(u) ∩N(v)|.
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Definition 8. Let t ≥ 2 be an integer and let C > 1 be a fixed constant.
Let CG(C, t) denote the family of graphs G such that, putting n = |V (G)| and
p = |E(G)|/

(
n
2

)
, we have

(i) degG(u) ≤ Cpn for all u ∈ V (G),

(ii) et(u, v) ≤ Cptnt−1 for all u, v ∈ V (G).

Remark 9. One can observe that

CG(C, t) ⊂ CG(C2, t+ 1) and CG(C, 2) = BDD(C, 2).

The next theorem follows from the results of Chung and Graham [6].

Theorem 10. The implications

CYCLE(4)⇒ EIG⇒ DISC (1)

hold for any sequence {Gn}∞n=1 with |V (Gn)| = n and |E(Gn)| = (1+o(1))p
(
n
2

)
,

as long as p = p(n)� n−1/2.

Remark 11. Chung and Graham have in fact proved that the implication

DISC⇒ EIG

holds even for fast decreasing functions p = p(n), but assuming an extra hy-
pothesis that can be expressed in terms of the classes CG(C, t). We refer the
interested reader to [6]. In the case in which p is constant, all the three proper-
ties in (1) are equivalent (see also Conjecture 20).

The study of quasi-random properties in a random setting was considered
in [13]. We will discuss this approach in Section 4.3.

2 Statements of the main results

Now we turn our attention to the main goal of this paper. Complementing
the work of Chung and Graham [6, 7], we will address the question as to
how the property NSUB(k) relates to the properties CYCLE(4), DISC, EIG,
and TUPLE(2) in the sparse setting. We shall consider both undirected and
directed graphs.

For the digraph case, we focus on the embedding of triangle-free digraphs
into sparse pseudorandom digraphs satisfying certain extra conditions. We will
only present the proofs of our main results in the undirected case, as they can
be naturally extended to the directed case.

2.1 The undirected case

By Proposition 6 the implication “TUPLE(2) ⇒ NSUB(k)” fails to be true
for sequences of graphs with vanishing density. Thus, additional conditions are
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needed in order to obtain any new relation between NSUB(k) and the other
properties. One such condition is to restrict the family of graphs G for which
such a relation could exist. Another possibility is to weaken property NSUB(k).
This leads us to the following two adjustments:

(i) As in the work of Chung and Graham [6] (see Theorem 10 and Remark 11
above), we restrict the domain to a special family of graphs G, namely,
the family BDD(C, t) introduced in Definition 4.

(ii) We will also weaken the property NSUB(k) and focus on counting the
triangle-free subgraphs only.

Definition 12. Fix an integer k ≥ 4. We say that a sequence of graphs {Gn}∞n=1

with |V (Gn)| = n has the property TFSUB(k) if it satisfies the following condi-
tion:
(‡) For any triangle-free graph H on k vertices, the number of labeled (not
necessarily induced) copies of H in Gn is

N(H,G) = (1 + o(1))nkpe,

where e is the number of edges in H, and p = e(Gn)
(
n
2

)−1
.

Note that the only difference between the properties TFSUB(k) and NSUB(k)
is the triangle-freeness condition. We need the following definitions before we
may state our first main theorem.

Definition 13. For any graph H, we let

dH = max{δ(J) : J ⊂ H}.

Remark 14. If a k-vertex graph H is triangle-free, then dH ≤ k/2.

Definition 15. For any graph H, we let

DH = min{2dH ,∆(H)}.

We may now state our key result.

Theorem 16 (Embedding Lemma). Suppose H is a triangle-free graph on k
vertices and e edges. Let {Gn}∞n=1 be a sequence of graphs with |V (Gn)| = n for
all n and with p = p(n) = |E(Gn)|

(
n
2

)−1 satisfying p� n−1/DH . Let C > 1 be a
fixed constant and suppose that Gn ∈ BDD(C,DH) and Gn satisfies TUPLE(2)
for all n. More explicitly, for all n, we have

(i) degGn(x) ≤ Cpn for all x ∈ V (Gn),

(ii) for all 2 ≤ r ≤ DH and for all distinct vertices x1, . . . , xr ∈ V (Gn),

|NGn(x1) ∩ · · · ∩NGn(xr)| ≤ Cnpr,
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(iii) for all but at most o(n2) pairs {x1, x2} ⊂ V (Gn),∣∣|NGn(x1) ∩NGn(x2)| − np2
∣∣ = o(np2).

Then Gn contains (1 + o(1))nkpe labeled copies of H.

Theorem 16 follows from Lemmas 29 and 30 (see Section 3). Roughly speak-
ing, Theorem 16 states that property TUPLE(2) implies property TFSUB(k)
as long as we restrict ourselves to graphs G in an appropriate class BDD(C, s),
and the density of G is large enough. We propose the following conjecture.

Conjecture 17. The parameter DH occurring in Theorem 16 may be replaced
by dH .

With Theorem 16 in hand, we may deduce the equivalence of some of the
properties introduced in Section 1.1 for sparse graphs. For convenience, from
now on {Gn}∞n=1 denotes a sequence of graphs with |V (Gn)| = n.

Theorem 18. Let a real number C > 1 and an integer k ≥ 4 be fixed. Let
p = p(n) be a function of n with

npb2k/3c � 1. (2)

Then properties TFSUB(k), CYCLE(4), and TUPLE(2) are equivalent for any
sequence of graphs {Gn}∞n=1 with

Gn ∈ BDD(C, b2k/3c) (3)

for all n and |E(Gn)| = (1 + o(1))p
(
n
2

)
.

The parameter b2k/3c in conditions (2) and (3) in Theorem 18 comes from
the fact that if we let

D(k) = max
H

DH , (4)

where the maximum is taken over all triangle-free graphs on k vertices, then (as
proved in Fact 31) we have D(k) = b2k/3c for all k ≥ 4.

Remark 19. Note that if Conjecture 17 holds then the condition npb2k/3c � 1
in Theorem 18 may be replaced by the weaker condition npbk/2c � 1.

We also propose the following conjecture.

Conjecture 20. Let C > 1 be an arbitrary constant, and let p = p(n)� n−1/2

be a function of n. Then the implication

DISC⇒ TUPLE(2)

holds for any sequence of graphs {Gn}∞n=1 with |E(Gn)| = (1+o(1))p
(
n
2

)
as long

as Gn ∈ BDD(C, 2) for all large enough n.
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Remark 21. If Conjecture 20 holds, then we may add properties DISC and EIG
to the collection of equivalent properties in Theorem 18. Indeed, this follows
from the result of Chung and Graham, Theorem 10, stated above.

To embed general graphs (i.e., graphs that are not necessarily triangle-free)
we need a stronger property, INDTUP(s) (s ≥ 1), defined as follows.

INDTUP(s): For all 1 ≤ r ≤ s and all 0 ≤ t ≤
(
r
2

)
,∣∣{X ∈ [V (Gn)]r : e(X) = t, |N(X)| 6∼ npr
}∣∣ = o(nrpt).

Remark 22. In the definition of INDTUP above, the expression o(nrpt) that
appears on the right-hand side of the equation would perhaps more appropri-
ately be o

(
nrpt(1 − p)(

r
2)−t

)
. However, since we are interested in the case in

which p = o(1) and s = O(1), we may drop the (1 − p)(
r
2)−t factor, which is

roughly equal to 1 for such values of p and s.

We may now state our result concerning the embedding of general, not nec-
essarily triangle-free graphs.

Theorem 23. Let k ≥ 3 be an integer and let C > 1 be a fixed constant.
Let p = p(n) � n−1/(k−1) be a function of n. Then, for any sequence of
graphs {Gn}∞n=1 with Gn ∈ BDD(C, k−1) for all n and |E(Gn)| = (1+o(1))p

(
n
2

)
,

we have

(i) NSUB(k + 1)⇒ INDTUP(k − 1),

(ii) INDTUP(k − 1)⇒ NSUB(k).

Perhaps Theorem 23 may be strengthened to the following.

Conjecture 24. Let k ≥ 3 be an integer and let C > 1 be a fixed constant.
Let p = p(n) � n−1/(k−1) be a function of n. Then the properties NSUB(k)
and INDTUP(k − 1) are equivalent for any sequence of graphs {Gn}∞n=1 with
Gn ∈ BDD(C, k − 1) for all n and |E(Gn)| = (1 + o(1))p

(
n
2

)
.

2.2 The directed case

In this section, we state our main result for directed graphs, Theorem 25. The
proof of this result is discussed in Section 3.4. Let ~G be a directed graph with set
of vertices V and set of arcs ~E. Thus ~G = (V, ~E), where ~E ⊂ V ×V \{(v, v) : v ∈
V }, and if (u, v) ∈ ~E, then (v, u) /∈ ~E. We denote the out-degree (resp. in-
degree) of a vertex u ∈ V by d+(u) (resp. d−(u)). We define

d++(u, v) = {w ∈ V : (u,w) ∈ ~E and (v, w) ∈ ~E},

and
N~G(u) = {v ∈ V : (u, v) ∈ ~E or (v, u) ∈ ~E}.
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For any directed graph ~G we let G be the undirected graph obtained from ~G
by transforming its arcs to “edges” (ignoring their orientation). With this con-
vention, clearly N~G(u) = NG(u).

We let
−−−→
BDD(C, t) be the family of all directed graphs ~G such that G ∈

BDD(C, t). Moreover, below, given a digraph ~H, we shall consider the parame-
ters dH and DH of the associated undirected graph H.

Let ~G = (V, ~E) be as above. We introduce the property
−−−−−−−→
TUPLE(2) which is

analogous to the property TUPLE(2) for undirected graphs.
−−−−−−−→
TUPLE(2): ~G satisfies the property

−−−−−−−→
TUPLE(2) if the following holds

(a) for all but o(n) vertices u ∈ V ,

d+(u) =
1
2
pn(1 + o(1)),

(b) ∑
(u,v)∈V×V

(
d++(u, v)

)2 = n2

(
p2n

4

)2

(1 + o(1)).

Our embedding result for directed graphs is as follows.

Theorem 25. Suppose that ~H is a directed graph on k vertices and e arcs
with H triangle-free. Let {~Gn}∞n=1 be a sequence of directed graphs with
|V (~Gn)| = n for all n and with p = p(n) = |E(~Gn)|

(
n
2

)−1 satisfying p �
n−1/DH . Suppose ~Gn ∈

−−−→
BDD(C,DH) and ~Gn satisfies

−−−−−−−→
TUPLE(2) for all n.

Then ~Gn contains

N( ~H, ~G) =
1
2e
nkpe(1 + o(1))

labeled copies of ~H.

3 Proofs of the main results

3.1 Preliminaries

The following well-known result will be used often.

Lemma 26. For all η > 0, there exists ε0 = ε0(η) > 0 such that, for any family
of real numbers {ai ≥ 0: 1 ≤ i ≤ n} satisfying the conditions

(i)
∑n
i=1 ai ≥ (1− ε0)na,

(ii)
∑n
i=1 a

2
i ≤ (1 + ε0)na2,

we have ∣∣{i : ai ∼η a}∣∣ > (1− η)n.
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Proof. Let η > 0 be given. We claim that ε0 = η3/3 will do. Let ai (1 ≤ i ≤ n)
be as in the statement of our lemma. Set B =

{
i : |ai − a| ≥ ηa

}
. To prove the

lemma, we have to show that |B| < ηn.
From the definition of B, it follows that

n∑
i=1

(ai − a)2 > |B|(ηa)2. (5)

By hypothesis,

n∑
i=1

(ai − a)2 =
n∑
i=1

a2
i − 2a

n∑
i=1

ai +
n∑
i=1

a2

≤ (1 + ε0)na2 − 2a(1− ε0)na+ na2 = 3ε0na
2. (6)

Combining (5) and (6), we obtain |B|(ηa)2 < 3ε0na
2, which implies that |B| <

(3ε0/η
2)n = ηn, and our lemma is proved.

3.2 Proof of Theorems 16 and 18

In this section, we shall prove Theorems 16 and 18. The proof of Theorem 18
is broken down into a few steps, and two of these steps will basically form the
proof of Theorem 16 (see Section 3.2.4).

The proof of Theorem 18 involves the following components. Let k ≥ 4
and C > 1 be given. Suppose

npd(k) � 1, (7)

where
d(k) = max

H
dH ,

and the maximum is taken over all triangle-free graphs H on k vertices. It is
easy to see that, in fact, d(k) = bk/2c. However, in what follows, we often prefer
to write d(k) instead of its explicit value.

Suppose Gn ∈ BDD(C,D(k)) for all n, where D(k) is as defined in (4).
Recall that D(k) = b2k/3c.
Remark 27. The reader may have noticed that our hypothesis on p = p(n)
above, namely (7), is weaker than the hypothesis in Theorem 18. It turns out
that (7) is the natural hypothesis for the proof we shall present. However, as a
simple argument shows, the condition that BDD(C,D(k)) should hold for Gn
implies that, in fact, we have pnD(k) = pnb2k/3c � 1 (see (2)).

The proof of Theorem 18 is broken down as follows.

(a) Let NSUB(C4) be the property NSUB(k) applied to H = C4. Note that

CYCLE(4) = NSUB(C4).
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Since C4 is a triangle-free graph and TFSUB(k) ⇒ TFSUB(k − 1) (see
Fact 46), the implication

TFSUB(k)⇒ NSUB(C4) = CYCLE(4)

is immediate for any any sequence of graphs {Gn}∞n=1 (recall k ≥ 4).

(b) Fact 28 below, which may be proved by standard arguments, asserts that

CYCLE(4) = NSUB(C4)⇒ TUPLE(2),

for any sequence of dense enough graphs {Gn}∞n=1.

(c) Lemma 29 (see below) tells us that

TUPLE(2)⇒ TUPLE(d(k)).

(d) The major piece in the proof of Theorem 18 is the implication

TUPLE(d(k))⇒ TFSUB(k).

This implication is stated in an equivalent form in Lemma 30 and its proof
constitutes the main task of this paper (Section 3.2.3).

(e) Finally the fact that D(k) = b2k/3c is proved in Fact 31.

Steps (c) and (d) above basically constitute the proof of Theorem 16 (see
Section 3.2.4).

Fact 28. Let C > 1 be a constant and suppose p = p(n) is such that np2 � 1.
Then the implication

CYCLE(4)⇒ TUPLE(2)

holds for any sequence of graphs {Gn}∞n=1 with |E(Gn)| = (1 + o(1))p
(
n
2

)
.

Proof. Let {Gn}∞n=1 be as in the statement of our result and suppose CYCLE(4)
holds. We have∑
{x,y}⊂V, x 6=y

|NGn(x) ∩NGn(y)| =
∑
v∈V

(
deg(v)

2

)

≥ n
(
n−1

∑
v∈V deg(v)

2

)
= n

(
(1 + o(1))pn

2

)
= (1 + o(1))

(
n

2

)
p2n. (8)

Observe that the number of labeled (not necessarily induced) copies of C4 in
Gn is

N(C4, Gn) = 4
∑

{x,y}⊂V, x 6=y

(
|NGn(x) ∩NGn(y)|

2

)
. (9)
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Since {Gn}∞n=1 satisfies property CYCLE(4), we have∑
{x,y}⊂V, x 6=y

(
|NGn(x) ∩NGn(y)|

2

)
=

1
4
N(C4, Gn) =

1
4

(1 + o(1))(pn)4. (10)

We now observe that the Cauchy–Schwarz inequality tells that

∑
{x,y}⊂V, x 6=y

|NGn(x)∩NGn(y)|2 ≥
(
n

2

)−1{ ∑
{x,y}⊂V, x 6=y

|NGn(x)∩NGn(y)|
}2

�
∑

{x,y}⊂V, x 6=y

|NGn(x) ∩NGn(y)|, (11)

where in the last inequality we used (8) and the fact that p2n→∞ as n→∞.
Now from (10) and (11), we obtain that∑

{x,y}⊂V, x 6=y

|NGn(x) ∩NGn(y)|2 =
1
2

(1 + o(1))(pn)4. (12)

Now Lemma 26 together with (8) and (12) imply that

|NGn(x) ∩NGn(y)| = (1 + o(1))p2n,

for all but at most o(n2) pairs {x, y} ⊂ V .

We will sketch the proof of Lemma 29 (stated below) in Section 3.4, by
deriving it as a corollary of Lemma 43. However, we mention that Lemma 29
was first proved in  Luczak et al. [16]; the proof of Lemma 43 is a simple extension
of the proof in [16] to the directed case.

Lemma 29. Let t ≥ 2 and C > 1 be fixed and suppose p = p(n) satisfies
npr � 1. Let {Gn}∞n=1 be a sequence of graphs with Gn ∈ BDD(C, 2) for all n
and |E(Gn)| = (1 + o(1))p

(
n
2

)
. Then the implication

TUPLE(2)⇒ TUPLE(r)

holds for {Gn}∞n=1.

To complete the proof of Theorem 18, we need to prove Lemma 30 and
Fact 31 below.

Let H be an arbitrary triangle-free graph on k vertices and e edges. Recall

dH = max
J⊂H

δ(J)

and
DH = min{2dH ,∆(H)}

(see Definitions 13 and 15).
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Lemma 30. Let δ > 0, C > 1, and k ≥ 4 be fixed. Let H be as above and
let p = p(n) = o(1) be a function of n satisfying npDH � 1. Then there exist
ε > 0 and an integer n2 for which the following holds. If a sequence of graphs
{Gn}∞n=1 with |V (Gn)| = n is such that, for all n,

(i) Gn ∈ BDD(C,DH),

(ii) p = p(n) = e(Gn)
(
n
2

)−1 ,

(iii) TUPLEε(dH) holds for Gn,

then
N(H,Gn) ∼δ nkpe

holds for all n ≥ n2.

The proof of Lemma 30 is somewhat involved and is delayed until Sec-
tion 3.2.3. We finish this section with the statement of Fact 31.

Fact 31. Let an integer k ≥ 1 be given and let D(k) = maxH DH , where the
maximum is taken over all triangle-free graphs H on k vertices. Then

D(k) =
⌊

2k
3

⌋
.

Fact 31 is proved in Section 3.2.1 below.

3.2.1 Degenerate orderings

The following simple definition will be important.

Definition 32. Let H be a graph. We say that H is d-degenerate if there is an
ordering v1, . . . , vk of the vertices of H such that degHi(vi) ≤ d for all 1 ≤ i ≤ k,
where Hi = H[{v1, . . . , vi}] is the graph induced by {v1, . . . , vi} in H. Moreover,
if H is d-degenerate and this is certified by a certain ordering of the vertices
of H, then we call this ordering a d-degenerate ordering of H.

Remark 33. Let d = dH = max{δ(J) : J ⊂ H}. Then H has a d-degenerate
ordering. Indeed we can find such an ordering in the following way. First select
a vertex v ∈ V (H) such that degH(v) = δ(H) ≤ dH (by the definition of dH)
and set vk = v. Let Hk−1 = H−vk, then we repeat the same procedure on Hk−1

and obtain a vertex vk−1 with degHk−1
(vk−1) ≤ δ(Hk−1) ≤ dH . Continuing in

this way, we obtain the desired ordering of V (H) after k = |V (H)| steps. In
fact, dH is the smallest integer d for which H admits a d-degenerate ordering.

We may now prove Fact 31.

Proof. Suppose k ≥ 1 is given, and let D(k) be as in the statement of the fact.
We may clearly suppose that k ≥ 2.

First we show that D(k) ≥ b2k/3c. It suffices to exhibit a triangle-free
graph H on k vertices for which DH ≥ b2k/3c. We show that the complete
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bipartite graph H = K(dk/3e, b2k/3c) with vertex classes of cardinality dk/3e
and b2k/3c will do. We have dH = maxJ⊂H δ(J) ≥ δ(H) = dk/3e. Therefore
2dH ≥ 2dk/3e ≥ 2k/3 ≥ b2k/3c. Since ∆(H) = b2k/3c, we have DH =
min{2dH ,∆(H)} ≥ b2k/3c.

Let us now show that D(k) ≤ b2k/3c. To that end, let H be a triangle-free
graph on k vertices. We show that DH ≤ 2k/3. Suppose ∆(H) > 2k/3. Let u
be a vertex of H with maximum degree, and suppose v1, . . . , vk is an ordering
of the vertices of H with the last ∆(H) vertices vk−∆(H)+1, . . . , vk forming the
neighborhood of u in H. We claim that this is a (dk/3e−1)-degenerate ordering
of the vertices of H.

To see this, let Hh = H[{v1, . . . , vh}] for all 1 ≤ h ≤ k. Since H is triangle-
free, every vertex vh with k−∆(H)+1 ≤ h has its neighborhood contained in the
set {v1, . . . , vk−∆(H)}. Thus degh(vh) ≤ k−∆(H) < k/3 for all k−∆(H)+1 ≤
h ≤ k, and hence for all 1 ≤ h ≤ k. Therefore degh(vh) ≤ dk/3e − 1 for all h
and we do indeed have a (dk/3e − 1)-degenerate ordering as claimed. Hence
2dH ≤ 2(dk/3e − 1) ≤ 2k/3, and hence DH = min{2dH ,∆(H)} ≤ 2k/3, as
required.

3.2.2 The extension lemma and a corollary

In this section, we shall establish a simple lemma, the Extension Lemma, and
a corollary, Corollary 36. They will be used in the proofs of Theorems 16, 18,
and 23.

Let H and G be graphs. In what follows, H will always have k vertices
and e edges and G will always have n vertices. In this section, H is an arbitrary
graph; in Sections 3.2.3 and 3.2.4, we shall consider triangle-free graphs H.

Let E(H,G) denote the set of all embeddings of H in G. Moreover, if l ∈ [k]
and F = (v1, . . . , vl) ∈ V (H)l and X = (x1, . . . , xl) ∈ V (G)l, let E(H,G,F,X)
denote the set of all embeddings f ∈ E(H,G) such that f(vi) = xi for all i ∈ [l].
Clearly, we may always assume that the vi (1 ≤ i ≤ l) and the xi (1 ≤ i ≤ l)
are all distinct. Recall that F set = {v1, . . . , vl} and Xset = {x1, . . . , xl}.

Below, for any graphH ′ and any l-tuple F of vertices ofH ′, we write w(H ′, F )
for the number of edges in H ′ that do not have both endpoints in F set. That
is,

w(H ′, F ) = |E(H ′)| − |E(H ′[F set])|.

We now prove the following simple lemma.

Lemma 34 (Extension Lemma). Let graphs G and H be given. Suppose 0 ≤
l ≤ max{2, dH}, and let F ∈ V (H)l and X ∈ V (G)l be fixed. Let C > 0 be a
constant and suppose G ∈ BDD(C,DH). Then

|E(H,G,F,X)| ≤ Ck−lnk−lpw(H,F ),

where k = |V (H)|, n = |V (G)|, and p = e(G)
(
n
2

)−1. In particular, if F set ⊂
V (H) is a stable set, then

|E(H,G,F,X)| ≤ Ck−lnk−lpe,
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where e = |E(H)|.

In Claim 35 below, we prove the Extension Lemma under a stronger hy-
pothesis. We then show that the hypothesis of this claim is satisfied even with
the weaker assumption of the Extension Lemma.

Claim 35. Let G, H, F and X be as in Lemma 34. Assume (in addition to the
hypotheses of Lemma 34) that there exists a DH-degenerate ordering v1, . . . , vk
of H such that F = {v1, . . . , v`}. Then

|E(H,G,F,X)| ≤ Ck−lnk−lpw(H,F ),

where k = |V (H)|, n = |V (G)|, and p = e(G)
(
n
2

)−1.

Proof. Consider aDH -degenerate ordering v1, . . . , vk ofH with F set = {v1, . . . , vl}.
We shall prove that

(*) for all l ≤ h ≤ k, we have

|E(Hh, G, F,X)| ≤ Ch−lnh−lpw(Hh,F ), (13)

where Hh = H[{v1, . . . , vh}].

We prove (*) by induction on h. The case in which h = l is clear. Now suppose
that l < h ≤ k and that (13) holds for smaller values of h. We wish to prove (13).
To that end, first observe that, by our choice of the ordering v1, . . . , vk of the
vertices of H, we have degHh(vh) ≤ DH . Therefore, as G ∈ BDD(C,DH),
if we let r = degHh(vh), then any embedding of Hh−1 can be extended in at
most Cnpr ways to an embedding of Hh. Using the induction hypothesis and
the fact that w(Hh, F ) = w(Hh−1, F ) + r, we have

|E(Hh, G, F,X)| ≤ Cnpr|E(Hh−1, G, F,X)|
≤ Cnpr × Ch−l−1nh−l−1pw(Hh−1,F ) = Ch−lnh−lpw(Hh,F ),

verifying (13). This completes the induction step and assertion (*) follows by
induction. Our lemma follows on setting h = k in (13).

Proof of Lemma 34. To prove Lemma 34, it suffices to show that there exists a
DH -degenerate ordering v1, . . . , vk of H such that F set = {v1, . . . , v`}. Indeed,
we may then simply apply Claim 35. In the remainder of this proof, we prove
the existence of such a DH -degenerate ordering.

We distinguish the following two cases.
Case 1: dH = 1

Fix a 1-degenerate ordering L = v1, . . . , vk of H. By hypothesis, |F | ≤
max{2, dH} = 2. If F set = ∅, then our fixed 1-degenerate ordering L will do.
If F set = {vi}, we consider the new ordering

L′ = vi, v1, . . . , v̂i, . . . , vik ,
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where x̂ means that the element x is omitted in the listing of L′. Since L is
a 1-degenerate ordering, it follows that L′ is a 2-degenerate ordering.

If F set = {vi, vj}, let Lvi and Lvj be the set of vertices in the ‘left neigh-
borhood’ of vi and vj in the ordering L, respectively. Clearly, |Lvi ∩ Lvj | ≤ 1
because L is a 1-degenerate ordering. This leads us to the following possibilities.

(i) Lvi ∩ Lvj = ∅
Consider the ordering

L′ = vi, vj , v1, . . . , v̂i, . . . , v̂j , . . . , vk.

Since L = v1, . . . , vk is a 1-degenerate ordering and Lvi ∩ Lvj = ∅, it is
clear that L′ is a 2-degenerate ordering as required.

(ii) Lvi ∩ Lvj 6= ∅
Suppose Lvi ∩ Lvj = {vs}. Clearly, s < i, j. Consider the ordering

L′ = vi, vj , vs, v1, . . . , v̂s, . . . , v̂i, . . . , v̂j , . . . , vk.

The vertex vs has 2 left neighbors (vi and vj) in the ordering L′. Further-
more, since H is a forest (because dH = 1), any vertex u /∈ {vi, vj , vs} is
joined to at most one vertex in {vi, vj , vs}. Therefore the left degree of any
vertex u in the ordering L′ is at most 2. Consequently L′ is a 2-degenerate
ordering as required.

Case 2: dH ≥ 2
By Remark 33, our graph H has a dH -degenerate ordering L. We now

observe that if relocate the vertices in F at the beginning of that ordering,
then we obtain a DH -degenerate ordering of the vertices of H. To see this, let
L′ = v1, . . . , vk be this ordering. If DH = ∆(H), then clearly any ordering
of V (H) is a DH -ordering. Thus suppose that DH = 2dH . As in Definition 32,
let Hh = H[{v1, . . . , vh}] (0 ≤ h ≤ k). Owing to the assumption that l ≤
max{2, dH} = dH , we have

degHh(vh) ≤ l + dH ≤ 2dH = DH .

This proves that there exist a DH -degenerate ordering L′ = v1, . . . , vk of H such
that F = {v1, . . . , v`}, as required.

The following notation will be used in the next corollary. Set

Eni(H,G) =
{
f ∈ E(H,G) : f is a non-induced embedding

}
.

Corollary 36. Let C > 1, k ≥ 1, and η > 0 be fixed and let p = p(n) = o(1)
be a function of n. Then there exists an integer n1 such that, for any graph H
with k vertices and any graph G ∈ BDD(C,DH) with |E(G)| ≤ pn2 and n =
|V (G)| ≥ n1, we have

|Eni(H,G)| < ηnkpe, (14)

where and e = |E(H)|.
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Proof. Let η, p, H and G be as in the statement of the corollary. The case
in which k = 1 is clear, and hence we suppose k ≥ 2. To count non-induced
embeddings of H in G, we select an edge {x, y} ∈ E(G) and a pair u, v of
distinct, non-adjacent vertices of H. By Lemma 34 applied to F = (u, v) and
X = (x, y), the number of embeddings f : V (H) → V (G) such that f(u) = x
and f(v) = y is at most Ck−2nk−2pe.

Since {x, y} ∈ E(G) can be selected in at most pn2 ways, the ordered pair X
can be selected in ≤ 2pn2 ways. Similarly, F can be selected in ≤ 2

(
k
2

)
ways.

Therefore

|Eni(H,G)| ≤ 4pn2

(
k

2

)
Ck−2nk−2pe < 2k2Ck−2nkpe+1.

Since p = o(1) and C, k, and η > 0 are constants, there exists an integer n1

such that (14) holds for all n ≥ n1, as required.

3.2.3 Proof of Lemma 30

This section is devoted to the proof of Lemma 30. We start by introducing some
notation and terminology. Let Gn be an n-vertex graph with p = e(Gn)

(
n
2

)−1.
For every integer r ≥ 1 and real ε > 0, we let

B(ε, r) =
{
X ∈ [V (Gn)]r : |NGn(X)− npr| ≥ εnpr

}
,

and

Bstb(ε, r) =
{
X ∈ B(ε, r) : X is a stable set in Gn

}
.

A set B ⊂ V (Gn) will be said to be ε-bad if B ∈ Bstb(ε, r) for some r with 1 ≤
r ≤ dH .

If Gn satisfies TUPLEε(dH), we have

|Bstb(ε, r)| ≤ |B(ε, r)| < ε

(
n

r

)
for all r ≤ dH .

Let us fix a triangle-free graph H as in the statement of Lemma 30. We shall
also fix a dH -degenerate ordering v1, . . . , vk of the vertices of H. As before, we
let Hh = H[{v1, . . . , vh}] (1 ≤ h ≤ k). The next definition introduces several
important terms for our proof.

Definition 37. For (i)–(iii) below, we suppose that 1 < h ≤ k.

(i) An embedding f : V (Hh−1) → V (Gn) is clean if the set f
(
NHh(vh)

)
is

not ε-bad; i.e., f
(
NHh(vh)

)
/∈ Bstb(ε, r) for any r with 1 ≤ r ≤ dH .

Otherwise f is polluted. When we use the terms ‘clean’ and ‘polluted’,
the value of ε will be clear from the context.

(ii) Set
Epoll(Hh−1, Gn) = {f ∈ E(Hh−1, Gn) : f is polluted}.
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(iii) Finally, set

E ind
clean(Hh−1, Gn) = {f ∈ E(Hh−1, Gn) : f is clean and induced}.

Now we are ready to state another corollary of the Extension Lemma, Corol-
lary 38 below. This corollary, along with Corollary 36, will be the key ingredients
in the proof of Lemma 30.

Corollary 38. Let ε > 0, C > 1, and k ≥ 4 be fixed. Suppose 1 < h ≤ k and
set r = degHh(vh). If Gn ∈ BDD(C,DH) satisfies TUPLEε(dH), then

|Epoll(Hh−1, Gn)| ≤ εCh−r−1nh−1pe(Hh−1),

where p = e(Gn)
(
n
2

)−1. In particular, for any η > 0, C > 1, and k, there is
an ε > 0 that guarantees that |Epoll(Hh−1, Gn)| ≤ ηnh−1pe(Hh−1).

Proof. By definition, an embedding f of Hh−1 in Gn is polluted if f
(
NHh(vh)

)
∈

Bstb(ε, r). Fix an r-tuple F such that F set = NHh(vh). We have

Epoll(Hh−1, Gn) =
⋃
X

E(Hh−1, Gn, F,X),

where the union is taken over all r-tuples X such that Xset ∈ Bstb(ε, r). There-
fore

|Epoll(Hh−1, Gn)| ≤
∑
X

|E(Hh−1, Gn, F,X)|, (15)

where the sum is over the same r-tuples X. Since TUPLEε(dH) holds for Gn
and r = degHh(vh) ≤ dH , the number of r-tuples X that we are summing
over in (15) is at most εnr. Observe also that NHh(vh) is a stable set in Hh,
because Hh ⊂ H is triangle-free. We now apply Lemma 34 to deduce from (15)
that |Epoll(Hh−1, Gn)| is at most

εnr × Ch−r−1nh−r−1pe(Hh−1) = εCh−r−1nh−1pe(Hh−1),

and our corollary follows.

We are now ready to prove Lemma 30. We start by outlining the idea of the
proof.

Proof strategy for Lemma 30. The proof uses an inductive argument. To keep
the induction step working, we need the Extension Lemma, Lemma 34. This
lemma yields an upper bound on the number of those “copies” of H in Gn that
contain a fixed copy of H[F ] ⊂ H for some F ⊂ V (H).

Next, we use Corollary 36 to infer that most of the copies of H in Gn
are induced copies. Then we further restrict the domain to a certain class of
embeddings, called clean embeddings, and show that the number of polluted
(i.e., not clean) embeddings is negligible. This enables us to reduce the proof of
Lemma 30 to the special case when the embeddings of H in Gn are clean and
induced.
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Proof of Lemma 30. Throughout this proof, we suppose that C > 1 is a fixed
constant and that Gn ∈ BDD(C,DH). We let p = e(Gn)

(
n
2

)−1, and suppose
that npdH ≥ npDH � 1. Recall that we have a fixed dH -degenerate order-
ing v1, . . . , vk of the vertices of H, and that Hh = H[{v1, . . . , vh}] (1 ≤ h ≤ k).

We shall prove by induction on h that

(**) for all 1 ≤ h ≤ k and all δ > 0, there is ε > 0 such that if Gn satis-
fies TUPLEε(dH), then

|E(Hh, Gn)| ∼δ nhpe(Hh), (16)

as long as n is sufficiently large.

Note that (16) clearly holds for any δ > 0 for h = 1. Now suppose that 1 < h ≤ k
and that (16) holds for smaller values of h for all δ > 0. Let δ > 0 be given.
We wish to show that (16) holds if Gn satisfies TUPLEε(dH) for small enough ε
and n is large enough.

We start by showing the lower bound, that is, |E(Hh, Gn)| > (1−δ)nhpe(Hh).
Let δ′ = min{δ/4, δ/2C}, and let ε′ = ε′(δ′) be the value of ε given by the
induction hypothesis to guarantee that

|E(Hh−1, Gn)| ∼δ′ nh−1pe(Hh−1), (17)

as long as n is sufficiently large. Now put η = δ′/2. Corollary 36 tells us that
if n is large enough, then

|Eni(Hh−1, Gn)| ≤ ηnh−1pe(Hh−1). (18)

Also, let ε′′ = ε′′(η) be the value of ε whose existence is guaranteed in Corol-
lary 38 to ensure that

|Epoll(Hh−1, Gn)| ≤ ηnh−1pe(Hh−1). (19)

We now let ε = min{ε′, ε′′, δ/8}, and claim that this choice of ε will do. Our
induction step is reduced to proving this claim.

For future reference, observe that we have

(1− 2δ′)(1− 2ε) ≥ 1− δ, (20)

(1 + δ′)(1 + ε) ≤ 1 +
δ

2
, (21)

and
δ′C ≤ δ

2
. (22)

Let r = degHh(vh) ≤ dH . Note that then e(Hh−1) = e(Hh) − r. By
our choice of ε, if n is sufficiently large, then the number of embeddings in
E(Hh−1, Gn) that are polluted or non-induced is

≤ 2ηnh−1pe(Hh−1) = δ′nh−1pe(Hh−1) = δ′nh−1pe(Hh)−r

22



(see (18) and (19)). Hence, by (17), the number |E ind
clean(Hh−1, Gn)| of clean

induced embeddings of Hh−1 in Gn is such that

(1− 2δ′)nh−1pe(Hh)−r < |E ind
clean(Hh−1, Gn)| < (1 + δ′)nh−1pe(Hh)−r. (23)

Given f ′ ∈ E ind
clean(Hh−1, Gn), we may estimate from below the number of em-

beddings f ∈ E(Hh, Gn) that extend f ′ as follows. Since f ′ is clean, by defini-
tion f ′(NHh(vh)) /∈ Bstb(ε, r). Equivalently, either

(a) f ′(NHh(vh)) is not a stable set in G, or

(b) |NGn
(
NHh(vh)

)
− npr| < εnpr holds.

Since H is triangle-free, the set NHh(vh) is a stable set in Hh. Since f ′ is
induced, the set f ′(NHh(vh)) is also a stable set and consequently (a) fails to
hold. Thus (b) must hold, that is,

|NGn
(
NHh(vh)

)
− npr| < εnpr. (24)

Note that, to obtain an extension f ∈ E(Hh, Gn) of f ′, we must simply se-
lect f(vh) in NGn(f ′(NHh(vh))) \ f ′(V (Hh−1)). Consequently, the number of
extensions of f ′ to embeddings of Hh in Gn is at least

|NGn
(
f ′(NHh(vh))

)
\ f ′

(
V (Hh−1)

)
|

≥ (1− ε)npr − (h− 1) ≥ (1− 2ε)npr, (25)

where we used (24), the fact that npr ≥ npdH � 1, and that n is large. Com-
bining (20), the lower bound in (23), and (25), we obtain that

|E(Hh, Gn)| > (1− 2δ′)nh−1pe(Hh)−r(1− 2ε)npr ≥ (1− δ)nhpe(Hh). (26)

Now we need to show that |E(Hh, Gn)| < (1+δ)nhpe(Hh). Fix f ′ ∈ E(Hh−1, Gn).
The number of extensions of f ′ to embeddings of Hh in Gn is bounded from
above by

|NGn
(
f ′(NHh(vh))

)
|. (27)

If, furthermore, f ′ ∈ E ind
clean(Hh−1, Gn), then we know that (24) holds and hence

the quantity in (27) is ≤ (1 + ε)npr. Combining this fact with the upper
bound in (23) and recalling (21), we obtain that the number of embeddings f ∈
E(Hh, Gn) whose restrictions to V (Hh−1) are in E ind

clean(Hh−1, Gn) is

< (1 + δ′)nh−1pe(Hh)−r(1 + ε)npr

= (1 + δ′)(1 + ε)nhpe(Hh) ≤
(

1 +
δ

2

)
nhpe(Hh). (28)

We already know that |E(Hh−1, Gn)\E ind
clean(Hh−1, Gn)| ≤ δ′nh−1pe(Hh)−r. Since

r = degGn(vh) ≤ dH ≤ DH and Gn ∈ BDD(C,DH), each such embed-
ding f ′ gives rise to ≤ Cpnr embeddings f ∈ E(Hh, Gn). Therefore, the
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number of embeddings f ∈ E(Hh, Gn) whose restrictions to V (Hh−1) are not
in E ind

clean(Hh−1, Gn) is, by (22),

≤ δ′nh−1pe(Hh)−r × Cnpr ≤ δ

2
nhpe(Hh). (29)

From (28) and (29), we deduce that

|E(Hh, Gn)| < (1 + δ)nhpe(Hh). (30)

Inequalities (26) and (30) complete our induction step, and hence (**) follows
by induction. Lemma 30 follows on taking h = k in (**).

3.2.4 Proof of Theorem 16

In this short section, we observe that we have already done all the work to prove
Theorem 16. Indeed, let H and {Gn}∞n=1 be as in the statement of Theorem 16.
We first observe that we may boost hypothesis (iii) in the statement of that
theorem to TUPLE(dH), by applying Lemma 29. But then we are in condition
to apply Lemma 30. We leave the details to the reader.

3.3 Proof of Theorem 23

Throughout this section, H will be a (not necessarily triangle-free) graph on k
vertices and e edges. Recall that we denote the set of embedding of H in a
graph G by E(H,G). The set of induced embeddings of H in G will be denoted
by E ind(H,G), and the set of non-induced embeddings of H in G will be denoted
by Eni(H,G).

To prove Theorem 23, we need to prove the implications

NSUB(k + 1)⇒ INDTUP(k − 1)

and
INDTUP(k − 1)⇒ NSUB(k),

for all appropriate sequences of graphs {Gn}∞n=1. The implications above will
be proved in Lemmas 39 and 41 below.

Lemma 39. Let k ≥ 3 and C > 1 be fixed. Let p = p(n) = o(1) be a function
of n satisfying npk−1 � 1. Then

NSUB(k + 1)⇒ INDTUP(k − 1)

for any sequence of graphs {Gn}∞n=1 with p = p(n) = e(Gn)
(
n
2

)−1 and Gn ∈
BDD(C, k − 1) for all n.

Proof. We shall be somewhat sketchy in this proof. Let the sequence of graphs
{Gn}∞n=1 be as in the statement of our lemma. Suppose that INDTUP(k − 1)
fails to hold. We will show that NSUB(k+ 1) fails to hold as well. By definition
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of INDTUP(k − 1), we know that there are integers 1 ≤ r < k and 0 ≤ t ≤
(
r
2

)
for which we have

|Badind(r, t)| 6= o(nrpt), (31)

where

Badind(r, t) = {X ⊂ V (Gn) : |X| = r, e(X) = t, and |N(X)− npr| 6= o(npr)}.

Given a graph F with r vertices and t edges, let E(F,Gn; Badind(r, t)) be the
set of induced embeddings f of F in Gn with the image f(V (F )) of f in the
family Badind(r, t). Formally,

E(F,Gn; Badind(r, t)) = {f ∈ E ind(F,Gn) : f(V (F )) ∈ Badind(r, t)}.

Observe that there are at most
((r2)
t

)
graphs on r vertices and t edges that can

be induced on X ∈ Badind(r, t). Hence we deduce from (31) that there is a
graph F with r vertices and t edges such that

|E(F,Gn; Badind(r, t))| 6= o(nrpt). (32)

Unwinding the definitions, we see that (32) means that the number of induced
embeddings f of F in Gn failing to satisfy

|N(f(V (F )))| ∼ npr

fails to be o(nrpt).
Suppose now that the vertices of F are u1, . . . , ur. Let ur+1 and ur+2 be

two new vertices. We let F1 be the graph obtained from F by adding ur+1 to F
and joining it to all vertices in F . Moreover, we let F2 be the graph obtained
from F1 by adding ur+2 to F1 and joining it to all vertices in F . Note that ur+1

and ur+2 are not adjacent in F2. Finally, we let F3 be obtained from F2 by
adding the edge {ur+1, ur+2}. For convenience, put F0 = F .

In Claim 40 below, we prove that

|E ind(Fi, Gn)| 6∼ n|V (Fi)|p|E(Fi)|,

for some i, 0 ≤ i ≤ 3. Consequently NSUB(k+1) fails, which is a contradiction.
This contradiction proves Lemma 39.

Claim 40. For some i, 0 ≤ i ≤ 3, we have

|E ind(Fi, Gn)| 6∼ n|V (Fi)|p|E(Fi)|.

Proof. Assume for a contradiction that the number of embeddings of Fi in Gn
(0 ≤ i ≤ 3) is ∼ n|V (Fi)|p|E(Fi)|. We will show that

|E(F,Gn; Badind(r, t))| = o(nrpt),

which would contradict (32).
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Since p = o(1), we may deduce from Corollary 36 that the number of induced
embeddings |E ind(Fi, Gn)| of Fi in Gn satisfies

|E ind(Fi, Gn)| ∼ n|V (Fi)|p|E(Fi)|, (33)

for all 0 ≤ i ≤ 3.
For each induced embedding f of F to Gn, put

d(f) = |N(f(V (F )))|;

that is, d(f) is the number of joint neighbors of the vertices in the image of f .
Clearly, we have

|E ind(F1, Gn)| =
∑
{d(f) : f ∈ E ind(F,Gn)}. (34)

Moreover, by (33) and the fact that p = o(1), we have that

|E ind(F2, Gn)| ∼ |E ind(F2, Gn)|+ |E ind(F3, Gn)|

=
∑
{d(f)(d(f)− 1) : f ∈ E ind(F,Gn)}. (35)

Note that (33) and (34) imply that∑
{d(f) : f ∈ E ind(F,Gn)} ∼ nr+1pt+r ∼ |E ind(F,Gn)|npr. (36)

Since npr ≥ npk−1 � 1, we may deduce from (36) that∑
f

d(f)2 ≥ 1
|E ind(F,Gn)|

(∑
f

d(f)
)2

�
∑
f

d(f), (37)

where all the sums above are over f ∈ E ind(F,Gn). Combining (33), (35),
and (37), we deduce that∑

{d(f)2 : f ∈ E ind(F,Gn)} ∼ nr+2pt+2r ∼ |E ind(F,Gn)| (npr)2
. (38)

In view of (36) and (38), we may now simply apply Lemma 26 to deduce that

d(f) = |N(f(V (F )))| ∼ npr

for (1−o(1))|E ind(F,Gn)| ∼ nrpt embeddings f ∈ E ind(F,Gn). This means that

|E(F,Gn; Badind(r, t))| = o(nrpt).

However, as observed above, this contradicts (32). Thus the claim holds.

We now prove the implication

INDTUP(k − 1)⇒ NSUB(k),

for all appropriate sequences of graphs {Gn}∞n=1. We in fact give a more precise
assertion in Lemma 41 below.
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Lemma 41. Let δ > 0, C > 1 and k ≥ 3 be fixed. Let H be a (not necessarily
triangle-free) graph on k vertices, and let p = p(n) = o(1) be a function of n
satisfying npDH � 1. Then there exist ε > 0 and an integer n3 for which the
following holds. If a sequence of graphs {Gn}∞n=1 is such that, for all n,

(i) Gn ∈ BDD(C,DH),

(ii) p = p(n) = e(Gn)
(
n
2

)−1,

(iii) INDTUPε(dH) holds for Gn,

then the number of embedding of H in Gn is

N(H,Gn) ∼δ nkpe

for all n ≥ n3, where e = |E(H)|.

Proof. The proof of this lemma is very similar to the proof of Lemma 30, and
hence we shall only sketch an informal proof.

We shall assume throughout that C > 1 and k ≥ 3 are fixed constants and
that Gn ∈ BDD(C,DH) for all n, where {Gn}∞n=1 is as in the statement of our
lemma. Let us also fix a graph H as in the statement of our lemma. As in
the proof of Lemma 30, we shall also fix a dH -degenerate ordering v1, . . . , vk
of the vertices of H. As before, if 1 ≤ h ≤ k, we shall write Hh for the
graph H[{v1, . . . , vh}] induced by {v1, . . . , vh} in H.

We shall prove by induction on h that

(†) for all 1 ≤ h ≤ k, if property INDTUP(dH) holds for {Gn}∞n=1, then

|E(Hh, Gn)| ∼ nhpe(Hh). (39)

Note that (†) is trivially true for h = 1. Now suppose that 1 < h ≤ k and
that (†) holds for smaller values of h. We need to show that (39) holds assuming
that INDTUP(dH) holds.

By Corollary 36, we know that

|Eni(Hh−1, Gn)| = o(nh−1pe(Hh−1)). (40)

From the induction hypothesis and (40), we may deduce that

|E ind(Hh−1, Gn)| ∼ nh−1pe(Hh−1). (41)

We now need to introduce some notation. Let r = degHh(vh), and suppose
that the neighborhood NHh(vh) of vh in Hh induces t edges in Hh. Clearly,
NHh(vh) induces t edges in Hh−1 as well. As in the proof of Lemma 39, we put

Badind(r, t) = {X ⊂ V (Gn) : |X| = r, e(X) = t, and |N(X)− npr| 6= o(npr)}.

In words, Badind(r, t) is the family of the r-element sets of vertices of Gn that
induce t edges in Gn and fail to have a joint neighborhood of cardinality ∼ npr.
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Since r = degHh(vh) ≤ dH and we are assuming that INDTUP(dH) holds,
we have

|Badind(r, t)| = o(nrpt). (42)

We now let

E(Hh−1, Gn; Badind(r, t)) = {f ∈ E ind(Hh−1, Gn) : f(NHh(vh)) ∈ Badind(r, t)}.

We will need the following claim, Claim 42. We delay its proof until the end of
this section.

Claim 42. We have

|E(Hh−1, Gn; Badind(r, t))| = o(nh−1pe(Hh−1)). (43)

Assuming Claim 42, we proceed with the proof of Lemma 41.
If f is an embedding of Hh−1 in Gn, let us write d(f) for the number of

extensions of f to embeddings of Hh in Gn. Note that

(‡) if
f ∈ E ind(Hh−1, Gn) \ E(Hh−1, Gn; Badind(r, t)), (44)

then
d(f) ∼ npr. (45)

Observation (‡), relation (41), and Claim 42 imply that

|E(Hh, Gn)| & nh−1pe(Hh−1) × npr = nhpe(Hh). (46)

We now need to estimate |E(Hh, Gn)| from above. Note that any embedding f
of Hh−1 in Gn extends to ≤ Cnpr embeddings of Hh in Gn, because we are as-
suming that Gn ∈ BDD(C,DH) and r = degHh(vh) ≤ dH ≤ DH . In particular,
if

f ∈ Eni(Hh−1, Gn) ∪ E(Hh−1, Gn; Badind(r, t)), (47)

then d(f) ≤ Cnpr. Inequality (40) and Claim 42 imply that the number of
embeddings f as in (47) is o(nh−1pe(Hh−1)). It follows that the number of
embeddings of Hh in Gn that extend embeddings f as in (47) is o(nhpe(Hh)).

Finally, we observe that if an embedding f ∈ E(Hh−1, Gn) is not as in (47),
then it must be as in (44). Recalling (‡), we see that the total number of
embeddings of Hh in Gn is ∼ nhpe(Hh). The proof of the induction step is
therefore complete, and hence (†) follows by induction. Naturally, Lemma 41
follows by setting h = k in (†).

Now we present the proof of Claim 42, which is a slight extension of the
proof of Corollary 38.
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Proof of Claim 42. By definition

E(Hh−1, Gn; Badind(r, t))

= {f ∈ E ind(Hh−1, Gn) : f(NHh(vh)) ∈ Badind(r, t)}.

Fix an r-tuple F such that F set = NHh(vh). By the above definition and the
fact that Gn satisfies INDTUP(k − 1), we have

|E(Hh−1, Gn; Badind(r, t))| =
∑
X

|E(Hh−1, Gn, F,X)|, (48)

where the sum is over all r-tuples X such that Xset ∈ Badind(r, t). By (42), the
number of r-tuples X that we are summing over in (48) is at most

r!× o(nrpt) = o(nrpt).

For each r-tule X, we apply the Extension Lemma (Lemma 34) to

E(Hh−1, Gn, F,X)

and deduce from (48) that

|E(Hh−1, Gn; Badind(r, t))| ≤ o(nrpt)× C(h−1)−rn(h−1)−rpe(Hh−1)−t

= o(nh−1pe(Hh−1)). (49)

This concludes the proof of Claim 42.

3.4 Remarks about Theorem 25 (the directed case)

We omit the proof of Theorem 25 (stated in Section 2.2) and make a few remarks
about its connection to the undirected case.

Theorem 25 is the directed version of the Embedding Lemma (Theorem 16).
Its proof goes along the lines of the the proof of the Embedding Lemma. That is,
it uses the directed versions of the Extension Lemma (Lemma 34), Lemma 29,
Lemma 30 and Corollary 36. However the proof of the directed versions of the
Extension Lemma, Lemma 30 and Corollary 36 are very similar to the proofs
for the undirected case. Thus we omit those proofs.

We shall rather state and prove Lemma 43, which is the directed analogue
of Lemma 29. Then at the end of this section we briefly say how to deduce
Lemma 29 from Lemma 43.

We follow the same notation as in the beginning of Section 2.2. Let ~G =
(V, ~E) be a digraph, π = (π1, . . . , πr) ∈ {+,−}r, and (u1, . . . , ur) ∈ V r. We let
dπ(u1, . . . , ur) = |Nπ(u1, . . . , ur)|, where

Nπ(u1, . . . , ur) = {w ∈ V : ∀i ∈ [r], (ui, w) ∈ ~E if πi = +

and (w, ui) ∈ ~E if πi = −}. (50)
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Lemma 43. Let t ≥ 2 be an integer and let ~G = (V, ~E) be a digraph on n
vertices satisfying the following conditions:

(a) for all but o(n) vertices u ∈ V ,

d+(u) =
1
2
pn(1 + o(1)),

(b) ∑
(u,v)∈V 2

(
d++(u, v)

)2 = n2

(
p2n

4

)2

(1 + o(1)).

If p = p(n) � n−1/t and ~G ∈
−−−→
BDD(C, 2), then, for all 2 ≤ r ≤ t, for all

π ∈ {+,−}r, and for all but o(nr) r-tuples (u1, . . . , ur) ∈ V r, we have

dπ(u1, . . . , ur) =
1
2r
prn(1 + o(1)).

Proof. First we show that

(c) for all but o(n) vertices u ∈ V , we have

d−(u) =
1
2
pn(1 + o(1)).

To that end, we first observe that∑
a∈V

d−(a) =
∑
u∈V

d+(u). (51)

Condition (a) above and the fact that all vertices have degree ≤ Cpn imply that∑
u∈V

d+(u) = n
(pn

2

)
(1 + o(1)) + o(n)Cpn = n

(pn
2

)
(1 + o(1)). (52)

Moreover, by the Cauchy–Schwarz inequality and (b) above, we have

∑
a∈V

d−(a)2 =
∑

(u,v)∈V 2

d++(u, v) ≤ n
{ ∑

(u,v)∈V 2

d++(u, v)2
}1/2

≤ n
(pn

2

)2

(1 + o(1)). (53)

Lemma 26 and (51), (52), and (53) now imply that (c) above does indeed hold.
We may deduce from (c) that∑

(u,v)∈V 2

d++(u, v) =
∑
a∈V

d−(a)2 ≥ n2

(
p2n

4

)
(1 + o(1)). (54)

Lemma 26, condition (b) and (54) now imply that
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(d) for all but o(n2) pairs (u, v) ∈ V 2, we have

d++(u, v) =
1
4
p2n(1 + o(1)).

Similarly, we may deduce that

(e) for all but o(n2) pairs (u, v) ∈ V 2, we have

d−−(u, v) =
1
4
p2n(1 + o(1)).

Indeed, this is a consequence of Lemma 26 and the identities∑
(u,v)∈V 2

d−−(u, v) =
∑
a∈V

d+(a)2

and ∑
(u,v)∈V 2

d−−(u, v)2 =
∑

(a,b)∈V 2

d++(a, b)2.

Having established the auxiliary facts (c)–(e), we are now in position to
verify Lemma 43. For π = (π1, . . . , πr) ∈ {+,−}r, let P (π) = |{i : πi = +}| and
Q(π) = r−Pπ. We write u = (u1, . . . , ur) for a general element in V r. We have∑

u∈V r
dπ(u) =

∑
a∈V

d−(a)P (π)d+(a)Q(π). (55)

Condition (a) and property (c) deduced above and the fact that all vertices
have degree ≤ Cpn allows us to conclude that the right-hand side of (55) is ∼
n(pn/2)r = nr(prn/2r), so that∑

u∈V r
dπ(u) = nr

(
1
2r
prn

)
(1 + o(1)). (56)

We now observe that∑
u∈V r

dπ(u)2 =
∑

(a,b)∈V 2

(
d−−(a, b)

)P (π)(
d++(a, b)

)Q(π)
. (57)

Properties (d) and (e) deduced above and the fact that all pairs of vertices
have joint degree ≤ Cp2n allows us to conclude that the right-hand side of (57)
is ∼ n2(p2n/4)r = nr(prn/2r)2, so that∑

u∈V r
dπ(u)2 = nr

(
1
2r
prn

)2

(1 + o(1)). (58)

Finally, Lemma 26 and (56) and (58) imply that for all but o(nr) r-tuples u ∈
V r, we have

dπ(u) =
1
2r
prn(1 + o(1)),

which concludes the proof of Lemma 43.
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Now we present a sketch of the proof of Lemma 29 (introduced in Section 3),
based on Lemma 43. We start by restating Lemma 29 in the following equivalent
form.

Lemma 44. Suppose t ≥ 2 and C > 1 are constants and p = p(n) satisfies
npt � 1. Let {Gn}∞n=1 be a sequence of graphs with Gn ∈ BDD(C, 2) for all n
and |E(Gn)| = (1 + o(1))p

(
n
2

)
. If

(a) for all but o(n) vertices u ∈ V (Gn),

degGn(u) = pn(1 + o(1)),

(b) for all but at most o(n2) pairs {x1, x2} ⊂ V (Gn),∣∣NGn(x1) ∩NGn(x2)
∣∣ = p2n(1 + o(1)),

then, for all r ∈ [t], all but at most o(nr) r-element sets {x1, . . . , xr} ⊂ V (Gn)
are such that ∣∣NGn(x1) ∩ · · · ∩NGn(xr)

∣∣ = prn(1 + o(1)).

Sketch of the proof of Lemma 44. Lemma 44 follows from Lemma 43. Suppose
we are given a graph Gn as above; we then randomly orient its edges to get ~Gn.
One can easily show that the hypothesis of Lemma 43 holds almost surely for ~Gn.
Finally, note that if ~Gn satisfies the conclusion of Lemma 43, then Gn satisfies
the conclusion of Lemma 44.

4 Auxiliary facts and related work

4.1 General facts

We have used Facts 45 and 46 given below. Recall that, for two graphs X and Y ,
the set of all embeddings of X in Y is denoted by E(X,Y ).

Fact 45. Let k ≥ 1 be a fixed integer. For any sequence of graphs {Gn}∞n=1, we
have

NSUB(k + 1)⇒ NSUB(k).

Proof. Suppose {Gn}∞n=1 satisfies NSUB(k+1) and let p = p(n) = |E(Gn)|
(
n
2

)−1.
To prove this fact, we have to show that, for any graph H on k vertices, we have

|E(H,Gn)| = (1 + o(1))nkpe, (59)

where e = |E(H)|. Given a graph H as above we construct H+ where V (H+) =
V (H) ∪ {u} and E(H+) = E(H). By definition of H+, it follows that

|E(H+, Gn)| = N(H,Gn)(n− k). (60)

By hypothesis, we know that {Gn}∞n=1 satisfies NSUB(k + 1). Thus

|E(H+, Gn)| = (1 + o(1))nk+1pe. (61)

Combining (60) and (61), we obtain (59).
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Similarly, we may prove the following simple fact.

Fact 46. Let k ≥ 1 be a fixed integer. For any sequence of graphs {Gn}∞n=1, we
have

TFSUB(k + 1)⇒ TFSUB(k).

4.2 Proof of Proposition 6

In this section, we shall sketch the proof of Proposition 6(A) and we shall prove
Proposition 6(B) using a construction due to Alon [2].

Proof of Proposition 6 (A). We only outline the proof of Proposition 6(A), be-
cause a similar result is proved in [13] (see Theorem B′ in [13]). The graphs Gi
satisfying properties (i) and (ii) above can be constructed from sparse random
graphs whose triangles have been destroyed by the removal of a small fraction
of the edges. Replacing each vertex of such a triangle-free “random like graph”
by a stable set of appropriate cardinality and each edge by a complete bipartite
graph yields suitable graphs Gi.

The proof of Proposition 6(B) is based on a family of graphs constructed by
Alon [2].

4.2.1 Construction of Alon’s graph

Let k > 1 be an integer not divisible by 3 and let Fk = GF(2k) be the Galois
field with 2k elements. Depending on the context, we will think of the elements
of Fk as polynomials over GF(2) or as binary vectors of length k (whose entries
are the coefficients of the corresponding polynomial representations). If u and v
are two vectors, we will denote their concatenation by u ◦ v.

For any α ∈ Fk − {0}, we put the vector α in W0 if the constant term
of the polynomial α7 is 0. Otherwise we put α in W1. Let Γ = (Z2)3k be
the Abelian group with elements the binary vectors of length 3k. Let U0 =
{w0 ◦ w3

0 ◦ w5
0 : w0 ∈W0} and U1 = {w1 ◦ w3

1 ◦ w5
1 : w1 ∈W1}. Note that

|U0| = |W0| = 2k−1 − 1 and |U1| = |W1| = 2k−1.

In the following, we will use bold letters to denote vectors of length 3k to
distinguish them from vectors of length k.

The Alon graph G = G(Γ) is defined to be the Cayley graph on Γ with
generating set

S = U0 + U1 = {u0 + u1 : u0 ∈ U0, u1 ∈ U1} ⊂ Γ.

In other words V (G) = Γ = (Z2)3k and x, y ∈ V (G) form an edge in G if and
only if x + y ∈ S. Let M0 (resp. M1) be the 3k × (2k−1 − 1) (resp. 3k × 2k−1)
matrix whose columns are the vectors in U0 (resp. U1). Consider the matrix
M = [M0,M1]. It turns out that M is the parity check matrix of a BCH code of
designed distance 7. Alon showed that the graph G has the following properties:
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(a) G is triangle-free,

(b) G is d = |S| = 2k−1(2k−1 − 1)-regular,

(c) The second largest eigenvalue of the adjacency matrix of G has size Θ(2k).

Roughly speaking, properties (a) and (b) follow from the fact any 6 columns
in M are linearly independent over GF(2). Property (c) is much more delicate,
and depends on the Carlitz–Uchiyama bound for the Hamming weight of dual
code words of BCH codes. We refer the reader to Alon [2] for details.

Proof of Proposition 6 (B). From the above discussion, it follows that for each
k > 1 not divisible by 3, we have an Alon graph G with the properties (a), (b)
and (c) listed above. Let {Gi}∞i=1 be the family of all such graphs G (ordered
according to |V (Gi)|).

We prove Proposition 6(B) by showing that the family {Gi}∞i=1 satisfies (i),
(ii), and (iii) of Proposition 6(B).

Observe that (i) of Proposition 6(B) is simply (a) above. Next we prove (ii)
of Proposition 6(B). For each Gi, we have (by definition) n = |V (Gi)| = 23k

and d = pn = 2k−1(2k−1 − 1). Thus, letting k →∞ yields

p =
(

1
4

+ o(1)
)
n−1/3. (62)

Let A =
(
ax,y

)
x,y∈V (Gi)

denote the 0–1 adjacency matrix of the graph Gi, with 1

denoting edges. Let λj (1 ≤ j ≤ n = 23k) be the eigenvalues of A and adjust
the notation so that λ1 ≥ |λ2| ≥ · · · ≥ |λn|. It follows from properties (b) and
(c) above that

λ1 = d = 2k−1(2k−1 − 1) and |λ2| = Θ(2k). (63)

Hence {Gi}∞i=1 satisfies EIG. By Fact 3 in [6], we have EIG ⇒ DISC. Conse-
quently {Gi}∞i=1 satisfies DISC as well. Now it remains to show that {Gi}∞i=1

satisfies property TUPLE(2). Assume for a moment that {Gi}∞i=1 satisfies prop-
erty EIG(4), defined as follows:

EIG(4):
n∑
i=1

|λi|4 = (1 + o(1))p4n4.

By Fact 7 and Theorem 3 in [6], we have EIG(4)⇒ CYCLE(4). By Fact 28
in Section 3.2, we have CYCLE(4) ⇒ TUPLE(2). Therefore, in order to show
that {Gi}∞i=1 satisfies TUPLE(2), it is enough to show that {Gi}∞i=1 satisfies
EIG(4).

By (63), there exists a constant C such that

λ4
1 = d4 = p4n4 (64)

and
n∑
i=2

|λi|4 < n(C2k)4 = C423k · 24k = o(p4n4), (65)
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where in (65) we used that p4n4 = 28k. By (64) and (65), our graph sequence
{Gi}∞i=1 satisfies property EIG(4). This concludes the proof of (ii) of Proposi-
tion 6(B).

To complete our proof of Proposition 6(B), it remains to show that the
graphs Gi satisfy (iii). Since this will take some work, we state this fact as a
separate lemma (see Lemma 47 below).

Lemma 47. Gi ∈ BDD(128, 2) for all i ≥ 1.

We will use the following simple fact in the proof of Lemma 47.

Fact 48. Suppose a1 and a2 ∈ Fk with a1 6= 0 are given, and consider the
system of equations {

x+ y = a1

x3 + y3 = a2.
(66)

System (66) has at most two pairs of solutions in Fk, namely (x, y) = (α, β)
and (x, y) = (β, α) for some α and β ∈ Fk with β = α+ a1 6= α.

Proof. By substituting x+a1 for y in the second equation of (66), we obtain the
quadratic equation a1x

2 + a2
1x+ a3

1 + a2 = 0, which has at most two solutions.
If α is a solution to the latter equation, then so is β = α + a1, as a simple
calculation shows. This implies that the solutions to (66) are as claimed.

Proof of Lemma 47. Since (by definition) Gi is d-regular, where d = pn, we
have degGi(x) = pn for all x ∈ V (Gi). Thus, it remains to show that for any
two vertices x 6= y in V (Gi), we have

|NGi(x) ∩NGi(y)| ≤ 128p2n.

For x 6= y ∈ V (Gi), the vertex t ∈ V (Gi) belongs to N(x) ∩ N(y) if and
only if there exist s, s′ ∈ S such that x + t = s and y + t = s′, or, equivalently,
x + y = s + s′. Consequently,

|N(x) ∩N(y)| = |{(s, s′) ∈ S × S : s + s′ = x + y}|.

Set a = x + y = a1 ◦ a2 ◦ a3 where a1, a2, and a3 are in Fk. Let s = (w0 +
w1) ◦ (w3

0 + w3
1) ◦ (w5

0 + w5
1) and s′ = (v0 + v1) ◦ (v3

0 + v3
1) ◦ (v5

0 + v5
1) where v0,

w0 ∈W0 and v1, w1 ∈W1. Thus the equation x + y = s + s′ can be written as
w0 + w1 + v0 + v1 = a1

w3
0 + w3

1 + v3
0 + v3

1 = a2

w5
0 + w5

1 + v5
0 + v5

1 = a3.

(67)

For any f ∈ Fk, let

f̃ = f ◦ f3 ◦ f5 =

 f
f3

f5

 .
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We define

P =
{

(w̃0 + w̃1, ṽ0 + ṽ1) : w0, v0 ∈W0 and w1, v1 ∈W1 satisfy (67)
}
. (68)

Observe that

|N(x) ∩N(y)| = |{(s, s′) ∈ S × S : s + s′ = x + y}| = |P |.

For each z0 ∈W0, set

P (z0) =
{

(w̃0 + w̃1, ṽ0 + ṽ1) ∈ P : w0 = z0

}
.

Since any 6 columns of M are linearly independent, a moment’s thought shows
that the sets P (z0) (z0 ∈W0) are pairwise disjoint. Therefore

|N(x) ∩N(y)| = |P | =
∑
z0∈W0

|P (z0)|. (69)

Let
T =

{
z0 ∈W0 : |P (z0)| > 2

}
. (70)

We now state a claim that will be used to finish the proof of Lemma 47.

Claim 49. With the same notation as above, the following holds.

(1 ) |P (z0)| ≤ |W1| = 2k−1 for all z0 ∈W0.

(2 ) |T | ≤ 2.

The proof of Claim 49 is postponed to the end of Section 4.2. Now we are
ready to finish the proof of Lemma 47. By (69) and Claim 49, we have

|P | =
∑
z0∈W0

|P (z0)| =
∑
z0∈T

|P (z0)|+
∑

z0∈W0\T

|P (z0)|

≤ |T | · 2k−1 + |W0| · 2 ≤ 2 · 2k−1 + (2k−1 − 1) · 2 < 4 · 2k−1.

Now, it follows from (69) that

|N(x) ∩N(y)| = |P | < 4 · 2k−1 ≤ 128p2n,

because, as a quick calculation shows, p2n = 2k−4(1 − 1/2k−1)2 ≥ 2k−6. This
concludes the proof of Lemma 47, assuming Claim 49.

It remains to prove Claim 49.

Proof of Claim 49. We shall first prove (1) of Claim 49. Let z0 ∈ W0. If
|P (z0)| ≤ 1 then we are done. Otherwise there exist at least two pairs

(
z̃0 +

w̃′1, ṽ
′
0 + ṽ′1

)
,
(
z̃0 + w̃′′1 , ṽ

′′
0 + ṽ′′1

)
∈ P (z0). From the definition of P (z0) ⊂ P

and (67), it follows that

w̃′1 + ṽ′0 + ṽ′1 = w̃′′1 + ṽ′′0 + ṽ′′1 . (71)
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Since any 6 columns of the matrix M are linearly independent (see Alon [2]),
each element in

{
w̃′1, w̃

′′
1 , ṽ
′
0, ṽ
′′
0 , ṽ
′
1, ṽ
′′
1

}
must occur an even number of times.

Since W0 ∩W1 = ∅, {v′0, v′′0} ⊂W0 and {v′1, v′′1 , w′1, w′′1} ⊂W1, we have ṽ′0 = ṽ′′0 .

In other words if z0 is fixed then ṽ0 = ˜v0(z0) is uniquely determined for all pairs
(z̃0 + w̃1, ṽ0 + ṽ1) ∈ P (z0). By the definition of P (z0) ⊂ P , we have

z̃0 + w̃1 + ˜v0(z0) + ṽ1 =

a1

a2

a3

 . (72)

We distinguish the following two cases.

Case 1: z̃0 + ˜v0(z0) =
(
a1
a2
a3

)
In this case, equation (72) implies that w1 = v1. Hence the elements of

P (z0) are of the form (z̃0 + w̃1,˜v0(z0) + w̃1), where w1 ∈W1 is arbitrary. Thus
|P (z0)| ≤ |W1| = 2k−1. Hence (1) of Claim 49 holds in this case.

Case 2: z̃0 + ˜v0(z0) 6=
(
a1
a2
a3

)
Set a′1a′2

a′3

 =

a1

a2

a3

+ z̃0 + ˜v0(z0) 6=

0
0
0

 . (73)

Then (72) implies that w1 + v1 = a′1, w3
1 + v3

1 = a′2, and w5
1 + v5

1 = a′3. Observe
that these equations and (73) imply that a′1 6= 0 (indeed, otherwise w1 = v1, and
we would have a′1 = a′2 = a′3 = 0, which contradicts (73)). Now Fact 48 implies
that the equations w1 + v1 = a′1 and w3

1 + v3
1 = a′2 are satisfied by at most two

pairs (w1, v1). Hence |P (z0)| ≤ 2 ≤ 2k−1, and (1) of Claim 49 is proven.
Now we shall prove (2) of Claim 49. If z0 ∈ T then |P (z0)| > 2 and it

follows from the above discussion that for any (z̃0 + w̃1, ṽ0 + ṽ1) ∈ P (z0), we

have ṽ0 = ˜v0(z0) and w̃1 = ṽ1. This observation combined with (72) implies
that z0 + v0(z0) = a1 6= 0 and z3

0 + (v0(z0))3 = a2. Then Fact 48 implies that
these two equations have at most two solution pairs (z0, v0(z0)). Thus |T | ≤ 2,
proving (2) of Claim 49.

4.3 Connection to random graphs

4.3.1 Theorem 1 for subgraphs of random graphs

Proposition 6 tells us that the implications “DISC⇒ NSUB(3)”, “TUPLE(2)⇒
NSUB(3)” and “EIG ⇒ NSUB(3)” fail to be true when p = o(1). However,
counterexamples demonstrating this proposition are rare and “do not occur in
random graphs”. Before stating a theorem turning this statement precise, we
first introduce some definitions.
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Let G(m, q) be the random graph on m vertices and edges chosen indepen-
dently, each with probability q. Thus for a graph G on m vertices and e edges,

Prob
(
G(m, q) = G

)
= qe(1− q)(

m
2 )−e. (74)

Sometimes, we will view G(m, q) as the set of all 2(m2 ) labeled graphs with m
vertices and with the probability distribution given in (74).

For G ∈ G(m, q) and c ∈ (0, 1), let RG(c) be the family of all subgraphs F
of G (not necessarily induced and not necessarily spanning) such that

|E(F )| ≥ cq
(
m

2

)
.

Fix integers m ≥ k ≥ 4 and let δ, c, ε > 0 be given. Let F = F(k, δ, c, ε,m) be
the family of m-vertex graphs G defined as follows:

G ∈ F iff for any F ∈ RG(c) and any pair of properties
P , Q ∈ {NSUB(k),DISC,EIG,TUPLE(2)},
if F satisfies Pε, then F satisfies Qδ.

Theorem 1 extends for “subgraphs of random graphs” if p → 0 sufficiently
slowly. More precisely, we have the following theorem (see [13] and [14]).

Theorem 50. Let k ≥ 4 and δ, c ∈ (0, 1) be given. Suppose that

q ≥ m−1/(k−1)(logm)100.

Then there exists ε > 0 such that, for G ∈ G(m, q), we have

Prob
(
G ∈ F(k, δ, c, ε,m)

)
→ 1 as m→∞.

4.3.2 Turán’s problem for subgraphs of random graphs

Theorem 16 implies the following extremal result for subgraphs of random
graphs. As usual, we write χ(H) for the chromatic number of a graph H.

Theorem 51. Let H be a triangle-free graph, and consider the random graph
G(m, q), where q � m−1/DH . Suppose ε > 0 is fixed. Then, asymptotically
almost surely, G ∈ G(m, q) satisfies the following property. If F ⊂ G is any
subgraph of G with

|E(F )| ≥
(

1− 1
χ(H)− 1

+ ε

)
q

(
m

2

)
,

then F contains a copy of H.

For discussions on Turán type extremal problems for subgraphs of random
graphs, see [11, Chapter 8], [12], [13, Section 1.4.2], and [14].

38



5 Concluding remarks

The are several questions that remain unsettled. We recall a few of them.

(1 ) Although somewhat technical, the main open question is probably Con-
jecture 20.

(2 ) As mentioned earlier, it would be interesting to know if one can extend
Proposition 6 to the existence of graphs Gi with |V (Gi)| = ni and p(ni) =
|E(Gi)|/

(
ni
2

)
� n

−1/3
i such that Gi satisfies (i) and (ii) in Proposition 6

and Gi ∈ BDD(C, 2) for some constant C for all i.

(3 ) It would be interesting to extend Theorem 23 to Conjecture 24.
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[14] Y. Kohayakawa, V. Rödl, and M. Schacht, The Turán theorem for random
graphs, submitted, 2002.
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