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Abstract

A set S ⊂ N of positive integers is a Sidon set if the pairwise sums of its
elements are all distinct, or, equivalently, if

|(x+ w)− (y + z)| ≥ 1

for every x, y, z, w ∈ S with x < y ≤ z < w. Let 0 ≤ α < 1 be given. A set
S ⊂ N is an α-strong Sidon set if

|(x+ w)− (y + z)| ≥ wα

for every x, y, z, w ∈ S with x < y ≤ z < w. We prove that the existence
of dense strong Sidon sets implies that randomly generated, infinite sets of
integers contain dense Sidon sets. We derive the existence of dense strong
Sidon sets from Ruzsa’s well known result on dense Sidon sets [J. Number
Theory 68 (1998), no. 1, 63–71]. We also consider an analogous definition
of strong Sidon sets for sets S contained in [n] = {1, . . . , n}, and give good
bounds for F (n, α) = max |S|, where S ranges over all α-strong Sidon sets
contained in [n].
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1. Introduction1

Let N be the set of positive integers. A set A ⊂ N is called a Sidon2

set if all the sums a1 + a2, with a1, a2 ∈ S and a1 ≤ a2, are distinct, or,3

equivalently, if4

|(x+ w)− (y + z)| ≥ 15

for every x, y, z, w ∈ S with x < y ≤ z < w.6

A well-known problem on Sidon sets is the determination of the maximum7

size of Sidon sets contained in [n] = {1, 2, . . . , n}. In the 1940s, Chowla,8

Erdős, Turán, and Singer [2, 4, 5, 12] proved that the maximum cardinality of9

a Sidon set contained in [n] is
√
n+O(n1/4). However, how dense a Sidon set10

contained in N can be is not well understood. For S ⊂ N, let S(n) = |S ∩ [n]|11

for all n ≥ 1. A major open problem is to decide how fast S(n) can grow12

for a Sidon set S ⊂ N. We will discuss on this later in the paragraph before13

Theorem 8.14

In connection with the study of Sidon sets contained in randomly gen-15

erated, infinite sets of integers, we considered the following related concept16

in [9].17

Definition 1 (α-strong Sidon sets). Fix a constant α with 0 ≤ α < 1. A set18

S ⊂ N is called an α-strong Sidon set if19

|(x+ w)− (y + z)| ≥ wα (1)20

for every x, y, z, w ∈ S with x < y ≤ z < w.21

Clearly, a 0-strong Sidon set is a Sidon set. In a way similar to Definition 1,22

one can define a finite version of strong Sidon sets.23

Definition 2 ((n, α)-strong Sidon sets). Fix an integer n ≥ 1 and a con-24

stant α with 0 ≤ α < 1. A set S ⊂ [n] = {1, 2, . . . , n} is an (n, α)-strong25

Sidon set if26

|(x+ w)− (y + z)| ≥ nα27

for every x, y, z, w ∈ S with x < y ≤ z < w.28

Note that there is a conceptual difference between Definitions 1 and 2.29

While the term |(x+ w)− (y + z)| in Definition 1 is compared with a power30

of w = max{x, y, z, w}, the same term in Definition 2 is compared with a31

power of n.32

In this paper, we are interested in how dense strong Sidon sets can be.33

We first consider the ‘finite’ case.34

Definition 3. Let F (n, α) be the maximal cardinality of an (n, α)-strong35

Sidon set contained in [n].36

We have the following upper and lower bounds for F (n, α).37
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Theorem 4. Fix 0 ≤ α < 1. We have38

n(1−α)/2 +O
(
n(1−3α)/2 + n(1−α)/4

)
≤ F (n, α) ≤ n(1−α)/2 +O

(
n(1−α)/3

)
.39

Theorem 4 is proved in Section 2. Next we consider the ‘infinite’ case.40

Definition 5. For a set S ⊂ N of positive integers, we define the counting41

function S(n) by42

S(n) = |S[n]| = |S ∩ [n]| (n ∈ N).43

We have the following upper bound on S(n) for α-strong Sidon sets44

S ⊂ N.45

Theorem 6. Every α-strong Sidon set S ⊂ N is such that, for every suffi-46

ciently large n,47

S(n) ≤ cn(1−α)/2,48

where c = c(α) is a constant that depends only on α.49

The proof of Theorem 6 is given in Section 3. We now turn to the existence50

of dense, infinite α-strong Sidon sets. We first consider an analogue of a51

result of Erdős (see [13, p. 132] or [7, Chapter II, Theorem 9]), who proved52

that there is a Sidon set S ⊂ N such that53

lim sup
n

S(n)n−1/2 ≥ 1

2
(2)54

(see also [10], where the constant 1/2 in (2) is improved to 1/
√
2). Our result55

is as follows.56

Theorem 7. For every 0 < α < 1, there is an α-strong Sidon set S ⊂ N57

such that58

lim sup
n→∞

S(n)n−(1−α)/2 ≥ 1

2
. (3)59

Theorem 7 is proved in Section 5 (improving the constant 1/2 in (3)60

to 1/
√
2, in the spirit of [10], should be possible, but we do not think61

it would be worth it at this stage). As is well known, the following is a62

major open problem: given ε > 0, are there Sidon sets S = Sε ⊂ N such63

that S(n) ≥ n1/2−ε for every n ≥ n0(ε)? In this direction, improving a64

classical result of Ajtai, Komlós and Szemerédi [1], Ruzsa [11] proved the65

existence of Sidon sets S ⊂ N with66

S(n) ≥ n
√
2−1+o(1)

67

for every n, where o(1)→ 0 as n→∞ (see also [3]). The main result of this68

paper is an attempt to extend Ruzsa’s result to strong Sidon sets.69
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Theorem 8. For every 0 ≤ α ≤ 10−4, there exists an α-strong Sidon set70

S ⊂ N such that71

S(n) ≥ n(
√
2−1+o(1))/(1+32

√
α) (4)72

for every n.73

The proof of Theorem 8, which is partly inspired by Ruzsa’s construction74

in [11], is given in Section 6. Unfortunately, the bound given in (4) gives the75

best known result only for small values of α. More precisely, the following76

result, which can be proved with a simple greedy argument (see Section 4),77

gives a better bound for α ≥ 5.75...× 10−5.78

Theorem 9. For every 0 ≤ α < 1, there exists an α-strong Sidon set S ⊂ N79

such that80

S(n) ≥ 1

2
n(1−α)/3 (5)81

for every sufficiently large n.82

This paper is organised as follows. Sections 2 to 5 are devoted to the83

proofs of Theorems 4, 6, 9 and 7. The proof of our main result for infinite84

strong Sidon sets, Theorem 8, is given in Section 6. In Section 7, we discuss85

the connection between strong Sidon sets and an extremal problem on random86

sets of integers investigated in [9]. We close with some concluding remarks in87

Section 8.88

We shall in general omit floor and ceiling signs when they are not essential,89

to avoid having to deal with uninteresting, fussy details. Our convention is90

that a/bc means a/(bc).91

2. Proof of Theorem 492

First, we prove the lower bound. Set93

Ji = {k ∈ N : idnαe ≤ k < (i+ 1)dnαe},94

for i ≥ 0, and let ` be the number of intervals Ji such that Ji ⊂ [n]. We have95

` =
⌊ n

dnαe

⌋
≥ n

nα + 1
− 1 = n1−α +O

(
n1−2α

)
− 1.96

Let I be a maximum Sidon set in [`]. By results of Chowla, Erdős and97

Turán and Singer [2, 4, 5, 12], we have98

|I| ≥
√
`+O(`1/4) ≥ n(1−α)/2 +O

(
n(1−3α)/2 + n(1−α)/4

)
.99

Set100

T = {idnαe : i ∈ I}.101
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We claim that T is an (n, α)-strong Sidon set. Indeed, if a1, a2, a3, a4 are102

in T , then there are j1, j2, j3, j4 with ai = jidnαe, for i = 1, 2, 3, 4. Since103

|(j1 + j2)− (j3 + j4)| ≥ 1, the statement follows.104

Next, we consider the upper bound. We will use a double counting105

argument (see Erdős and Turán [5]). Let S be an (n, α)-strong Sidon set. Let106

Ix = [x+ 1, x+m],107

where m will be chosen at the end of the proof, and let108

P =
{
(Ix, {a, b})

∣∣∣ Ix ∩ [n] 6= ∅, {a, b} ⊂ Ix ∩ S
}
.109

Note that Ix ∩ [n] 6= ∅ if and only if 1−m ≤ x ≤ n− 1.110

We can count P by considering Ix first. We have111

|P| =
∑

1−m≤x≤n−1

(
Sx
2

)
,112

where Sx = |Ix ∩ S|. Since f(t) =
(
t
2

)
is convex, by Jensen’s inequality, we113

have114

|P| ≥ (n+m− 1)

(
(
∑
Sx)/(n+m− 1)

2

)
.115

Since each element in S appears exactly m intervals Ix, we have
∑
Sx = m|S|.116

Consequently,117

|P| ≥ m|S|
2(n+m− 1)

(m|S| − (n+m− 1)) . (6)118

Next, we count P by considering {a, b} first. A pair {a, b} ⊂ S, with119

0 < b− a < m, is contained in (m− (b− a)) intervals of Ix. Hence,120

|P| =
∑
{a,b}⊂S

0<b−a<m

(m− (b− a)). (7)121

Since S is an (n, α)-strong Sidon set, each b − a (a, b ∈ S, 0 < b − a < m)122

differs from all other b′ − a′ (a′, b′ ∈ S, 0 < b′ − a′ < m) by at least nα.123

Consequently,124 ∑
{a,b}⊂S

0<b−a<m

(b− a) ≥ 0 + nα + · · ·+ knα =
k(k + 1)

2
nα. (8)125

where k is an integer such that126

knα < m ≤ (k + 1)nα. (9)127
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Inequalities (7) and (8) give that128

|P| ≤ (k + 1)m− k(k + 1)

2
nα

(9)
≤ m

2

(m
nα

+ 1
)
. (10)129

It follows from (6) and (10) that130

m|S|
2(n+m− 1)

(m|S| − (n+m− 1)) ≤ m

2

(m
nα

+ 1
)
,131

that is,132

|S|2 − n+m− 1

m
|S| − n+m− 1

m

(m
nα

+ 1
)
≤ 0.133

Hence,134

|S| ≤ n

m
+

1

2

√( n
m

+O(1)
)2

+ 4
( n
m

+O(1)
)(m

nα
+ 1
)

135

≤ n

m
+
( n

2m
+O(1)

)
+

√( n
m

+O(1)
)(m

nα
+ 1
)

136

≤ 3n

2m
+ n(1−α)/2 +

√
n

m
+O

(√
m

nα

)
+O(1),137

where the last two inequalities follow from
√
x+ y ≤

√
x+
√
y.138

By taking m = n(2+α)/3, we have139

n

m
= n1−(2+α)/3 = n(1−α)/3 and

√
m

nα
=
√
n(2+α)/3−α = n(1−α)/3.140

Thus,141

|S| ≤ n(1−α)/2 +O
(
n(1−α)/3

)
,142

which completes the proof of the upper bound in Theorem 4.143

3. Proof of Theorem 6144

Let S ⊂ N be an α-strong Sidon set. For all integers i ≥ 0, let145

Si := S ∩ (2i, 2i+1].146

Clearly, Si is a (2i, α)-strong Sidon set. Since147

Si − 2i := {s− 2i : s ∈ Si} ⊂ [2i]148

is also a (2i, α)-strong Sidon set, Theorem 4 implies that149

|Si| = |Si − 2i| ≤ F (2i, α) ≤ 2
i(1−α)/2+1

(11)150
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for all i sufficiently large, say, i ≥ k0. Set151

c = c(α) = 1 +
2(1−α)/2+1

2(1−α)/2 − 1
.152

We infer that, for k satisfying (1− α)(k − 1)/2 ≥ k0, we have153

154

S(n) ≤ 2k0 +
∑

k0≤i<k
|Si|

(11)
≤ 2k0 +

∑
0≤i<k

2i(1−α)/2+1
155

≤ 2(1−α)(k−1)/2 +
2 · 2(1−α)k/2

2(1−α)/2 − 1
≤ c2(1−α)(k−1)/2 ≤ cn(1−α)/2.156

This completes the proof of Theorem 6.157

4. Proof of Theorem 9158

Theorem 9 follows easily from the following lemma.159

Lemma 10. Fix 0 ≤ α < 1. There is a sequence a1 < a2 < · · · < ak < · · ·160

of positive integers with161

ak ≤ 61/(1−α)k3/(1−α) (12)162

for every k ≥ 1 such that S = {ak : k ≥ 1} is an α-strong Sidon set.163

To derive Theorem 9 from Lemma 10, it suffices to notice that, for164

every k, the set S in Lemma 10 is such that S(n) ≥ S(ak) = k for every n ≥165

61/(1−α)k3/(1−α) ≥ ak. Inequality 5 follows for all large enough n. We now166

proceed to prove Lemma 10.167

Proof of Lemma 10. For simplicity, for every k ≥ 1, let

tk = 61/(1−α)k3/(1−α)

be the value on the right-hand side of (12). Let a1 = 1. Now let k ≥ 2 and168

suppose that we have already have defined ai for all 1 ≤ i < k in such a way169

that Sk−1 = {a1, . . . , ak−1} does not contain x < y ≤ z < w violating (1)170

and, for all 1 ≤ i < k, we have171

ai ≤ ti (13)172

We shall define ak ‘greedily’. Let173

Fk = {f ∈ N \ Sk−1 : Sk−1 ∪ {f} contains x < y ≤ z ≤ w violating (1)}.174

Naturally, if f ∈ Fk, then we cannot add f to Sk−1 to continue our definition175

of our α-strong Sidon set. Let176

Ck = {c ∈ N : c /∈ Sk−1 ∪ Fk}177
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be the set of ‘candidates’ to be added to Sk−1. It follows from Claim 11
below that Ck is non-empty and hence minCk exists. We set

ak = minCk.

It follows by induction that this procedure defines an infinite α-strong Sidon178

set S = {ak : k ≥ 1}, with a1 < a2 < · · · < ak < · · · . Recall that we have179

assumed that (13) holds for all 1 ≤ i < k. We now prove the following claim.180

Claim 11. We have ak ≤ tk.181

Clearly, once we have established Claim 11, Lemma 10 follows by induc-182

tion.183

Proof of Claim 11. We first note that it suffices to check that184

tk ≥ |Sk−1|+ |Fk ∩ [tk]|+ 1. (14)185

Indeed, if (14) holds, then there must be some candidate c ∈ Ck for our186

choice of ak with c ≤ tk, and hence ak = minCk ≤ tk follows, as claimed.187

We now verify (14).188

Since |Sk−1| = k−1, our task is to give a suitable upper bound for |Fk∩[tk]|.189

Recall that Sk−1 contains no elements x < y ≤ z < w violating (1). On the190

other hand, if f ∈ Fk ∩ [tk], then Sk−1 ∪ {f} does contain such elements x <191

y ≤ z < w, and hence one of x, y, z or w must be f . Suppose for instance192

that f = w. We have at most (k− 1)
(
k−1
2

)
choices for (x, y, z). For each such193

choice, we have194

|f − (y + z − x)| ≤ fα ≤ tαk ,195

as (1) holds and f ≤ tk. Thus, the triple (x, y, z) contributes at most 2tαk + 1196

elements f to the set Fk ∩ [tk]. We now estimate the number of f that are in-197

cluded in Fk∩[tk] because they play the role of z in some quadruple (x, y, z, w)198

violating (1), where x, y and w belong to Sk−1. We have199

|f − (x+ w − y)| ≤ wα ≤ tαk ,200

where we used that w ∈ Sk−1 and hence w ≤ ak−1 ≤ tk−1 < tk. Thus, again,201

the triple (x, y, w) forbids at most 2tαk + 1 elements. The analysis is similar202

for the cases in which f = x and f = y. It follows that203

204

|Fk ∩ [tk]| ≤ 4(k − 1)

(
k − 1

2

)
(2tαk + 1)205

< 4(k − 1)
k2

2
3tαk = 6k3tαk − 6k2tαk ≤ 6k3tαk − k.206

Recalling that |Sk−1| = k − 1 and tk = 61/(1−α)k3/(1−α), we see that inequal-207

ity (14) follows. This completes the proof of Claim 11.208

The proof of Lemma 10 is complete.209
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5. Proof of Theorem 7210

Recall that Theorem 7 asserts that, for any 0 < α < 1, there is an211

α-strong Sidon set S such that, for any ε > 0, there are arbitrary large n for212

which S(n)n−(1−α)/2 ≥ 1/2− ε. That is, (3) holds.213

Proof of Theorem 7. Let p be an odd prime. Erdős (see [7, Chapter II,214

Theorem 9]) constructed a Sidon set Ap ⊂ N with |Ap| = p− 1 such that215

(i ) 2p2 < a < 4p2 − p for all a ∈ Ap and216

(ii ) p < |a− a′| < 2p2 − p for all distinct a and a′ ∈ Ap.217

Let218

η =
α

1− α
and µ = 4α/(1−α). (15)219

Note for later reference that220

(1 + η)α = η and µ = (4µ)α. (16)221

Consider also the sets222

Sp = {bµp2ηac : a ∈ Ap}. (17)223

In order to construct the set S as required in the theorem, we fix a rapidly224

increasing sequence (pn)n≥1 of primes, say, with225

p1 = max{5, 21/(2η)} and pn+1 > 4µp2+2η
n + 1 (18)226

for all n ≥ 1, and set227

S =
⋃
n≥1

Spn .228

We now state three facts concerning the sets Sp and S =
⋃
n≥1 Spn .229

(a ) For every x ∈ Sp, owing to (i ) and (17), we have230

2µp2+2η − 1 < x < 4µp2+2η − µp1+2η.231

(b ) For every x ∈
⋃

1≤j≤n Spj and y ∈ Spn+1 , owing to (i ), (17) and (18),232

we have233

y − x > 2µp2+2η
n+1 − 1− 4µp2+2η

n > 2µp2+2η
n+1 − pn+1.234

(c ) If x and y ∈ Sp are distinct, then, owing to (ii ) and (17), we have235

µp1+2η − 1 < |y − x| < 2µp2+2η − µp1+2η + 1.236

We are ready to show the following.237
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Fact 12. The set S =
⋃
n≥1 Spn is an α-strong Sidon set.238

Proof. Suppose x, y, z and w ∈ S =
⋃
n≥1 Spn with x < y ≤ z < w.239

Let n ≥ 1 be such that w ∈ Spn . For simplicity, let p = pn. We shall consider240

the four cases in which |{x, y, z, w} ∩ Sp| = 1, 2, 3, and 4, separately.241

• Case 1: Suppose first that {x, y, z, w} ∩ Sp = {w}. Then242

w − y
(b )
> 2µp2+2η − p, while z − x

(a )
< 4µp2+2η

n−1
(18)
< pn = p.243

Consequently,244

|(x+ w)− (y + z)| ≥ 2µp2+2η − 2p ≥ µp2η (16)
=
(
4µp2+2η

)α (a )

≥ wα.245

• Case 2: Suppose now that {x, y, z, w} ∩ Sp = {z, w}. Then246

w − z
(c )
> µp1+2η − 1, while, as before, y − x

(a )
< 4µp2+2η

n−1
(18)
< pn = p.247

Hence,248

|(x+ w)− (y + z)| > µp1+2η − 1− p
(18)
> µp2η

(16)
=
(
4µp2+2η

)α (a )

≥ wα.249

• Case 3: Suppose {x, y, z, w} ∩ Sp = {y, z, w}. Then250

w − z
(c )
< 2µp2+2η − µp1+2η + 1, while y − x

(b )
> 2µp2+2η − p,251

and hence252

|(x+ w)− (y + z)| > µp1+2η − 1− p
(18)
> µp2η

(16)
=
(
4µp2+2η

)α (a )

≥ wα.253

• Case 4: Suppose that {x, y, z, w} ∩ Sp = {x, y, z, w}. Since Ap is a254

Sidon set, we have255

|(x+ w)− (y + z)|
(17)

≥ µp2η − 2
(16)
=
(
4µp2+2η

)α − 2
(a )

≥ wα.256

257

It now remains to prove (3). Note that (a ) above implies that, in an258

interval of the form (n, (2 + o(1))n), where n = b2µp2+2ηc and o(1) → 0259

as n→∞, we have p− 1 elements of S. However,260

261

p− 1 = (1 + o(1))

(
n

2µ

)1/(2+2η)
(15)
= (1 + o(1))

(
n

2µ

)(1−α)/2
262

=

(
1

(4µ)(1−α)/2
+ o(1)

)
(2n)(1−α)/2

(15)
=

(
1

2
+ o(1)

)
(2n)(1−α)/2,263

and (3) follows.264
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6. Construction of a dense strong Sidon set265

In this section, we construct a dense strong Sidon set for a small α, which266

implies Theorem 8.267

Let268

b ≥ 5 (19)269

be an integer, fixed throughout this section, and let α be such that270

b =
⌊ 1

6
√
α

⌋
. (20)271

Let272

m0 = 2100b
4
. (21)273

We shall construct a function φ = φb : N≥m0 → N such that, for any Sidon set274

S ⊂ N≥m0 , the set φ(S) = S̃ = {m̃ = φ(m) : m ∈ S} is an α-strong Sidon set.275

Furthermore, the map φ will satisfy the property that φ(m) = m̃ = O(m1+5/b)276

(see Fact 16). Therefore, the α-strong Sidon set S̃ will be denser for larger b277

and the denser S is, the better. We emphasise that our construction of φ is278

insensitive to the structure of the Sidon set S; it only makes use of the fact279

that S is a Sidon set. In particular, we can take S to be the Sidon sets of280

Ruzsa [11] as well the Sidon sets of Cilleruelo [3].281

6.1. Construction of φ282

In order to describe the map φ = φb, we need to introduce several defini-283

tions. For a positive integer m, let arar−1 . . . a2a1 be the binary expansion284

of m; that is,285

m = (arar−1 . . . a1)2 = ar2
r−1 + · · ·+ a22 + a1 (22)286

and ar 6= 0. Note that, in particular, r = r(m) is the number of bits in the287

binary expansion of m. Observe that288

2r−1 ≤ m < 2r. (23)289

In what follows, we shall often identify the binary expansion of a positive290

integer m with the integer m itself. Furthermore, we let t = t(m) be the291

integer such that292

2t ≤ r

3b
< 2t+1,293

and let294

s = s(m) = 2t. (24)295

Note that296
r

6b
< s ≤ r

3b
. (25)297

If m ≥ m0 = m0(b), then s = s(m) ≥ s0(b) for some s0(b).298
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 0 0 0 ar
... ... as+1  as ... a2b ... ab+1 ab ... a2 a1

AR A1A2

 AR
... A2s+2 00000 A2s+1 0as000 A2s 

... 0a1000 As+1 00010 As
... A2 00000 A1

C2s+1 C2s Cs+1 Cs C1

as+1

Aj

Figure 1: The binary expansions of m and m̃. The number j is such that the block Aj
contains as+1.

To define m̃ = φ(m), we describe the binary expansion of m̃ from the299

binary expansion of m. Formally speaking, binary expansions (or repre-300

sentations) of positive integers will be considered to be words in {0, 1}∗ =301 ⋃
l≥0{0, 1}l. Given a word w, we shall write ‖w‖ for the length of w. We302

shall sometimes add 0s to the left of the binary expansion of a number to303

make it have a suitable length.304

Let m have binary expansion arar−1 . . . a1. Add a suitable number x,305

with 0 ≤ x < b, of 0 bits to the left of the expansion of m to obtain a word306

whose length is a multiple of b. We now factor this word as307

ARAR−1 . . . A2A1, (26)308

where each Ai = Ai(m) is of length b (see Figure 1). Note that AR contains309

at least one bit equal to 1. We call (26) the b-factorization of m. Note that310

r

b
≤ R <

r

b
+ 1. (27)311

To describe the binary expansion of m̃, we first define 2s bits cj . Let cj ∈312

{0, 1} (1 ≤ j ≤ 2s) be defined by313

c2sc2s−1 . . . cs+1cs . . . c1 = asas−1 . . . a2a10
s. (28)314

Clearly, the word in (28) is obtained as follows: we first write the s least315

significant bits of m and then we add a string of 0s of length s, which gives316

us a word of length 2s. It will be convenient to refer to the s least significant317
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bits as, . . . , a1 of m as the weak bits of m. The remaining bits of m will318

be referred to as the strong bits of m. As it turns out, we shall often be319

interested in the bit as+1, that is, in the weakest strong bit of m.320

Next we define the 5-bit words Ci = Ci(m) (1 ≤ i ≤ 2s). Let us write Ci,j321

for the jth bit of Ci, that is, let322

Ci = Ci,5Ci,4Ci,3Ci,2Ci,1.323

For i > 2s, we let Ci = 05 = 00000. For 1 ≤ i ≤ 2s, the definition of the bits324

of Ci is as follows:325

Ci,5 = Ci,3 = Ci,1 = 0,326

Ci,4 = ci (recall (28)), (29)327

Ci,2 =

{
1 if i = s,

0 otherwise.
328

Figure 1 may be of some help to see where the Ci = Ci(m) (1 ≤ i ≤ 2s)329

occur in the definition m̃ = φ(m). We are now finally able to define the map330

φ : N≥m0 → N.331

Definition 13. Let m be any positive integer with m ≥ m0. Let (26) be its332

b-factorization. We let333

φ(m) = m̃ = ARCR−1AR−1 . . . C2A2C1A1, (30)334

where the Ci are as defined above.335

For convenience, the 5-bit blocks Ci in (30) are referred to as C-blocks,336

while the b-bit blocks Ai are referred to as A-blocks. Note that, when we337

construct m̃ from m, the bits ai of m are placed in ‘new positions’, with every338

bit moved some positions to the left, because of the insertion of the C-blocks:339

the bits in A1 stay in the same positions, the bits in A2 move 5 positions to340

the left, and, more generally, the bits in Aj move 5(j−1) positions to the left.341

Also, the weak bits of m are copied in the middle of φ(m) (see Figure 1).342

Rationale behind the definition of m̃ = φ(m)343

Very roughly speaking, we define m̃ = φ(m) as above because of the344

following. Suppose S is a Sidon set. Then if we know the sum m + m′345

of m and m′ ∈ S, then we know {m,m′}. For φ(S) to be a strong Sidon346

set, for any m and m′ ∈ S, we force the sum m̃ + m̃′ = φ(m) + φ(m′)347

to determine {m,m′} uniquely, even if we know the value of m̃ + m̃′ =348

φ(m) + φ(m′) only approximately. (See Fact 19 and Lemma 22 below.) This349

is the reason we copy the weak bits of m and m′ in “more significant parts”350

of m̃ = φ(m) and m̃′ = φ(m′). Also, since we have to deal with sums of351

the form m̃+ m̃′ = φ(m) + φ(m′), we need to consider carries. To overcome352

difficulties that may arise from such carries, we have some zero bits in the353

definition of the C-blocks Ci.354
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6.2. Preliminary remarks on φ355

We now state some elementary facts about the function φ. This section356

may help the reader get a feeling on how φ(m) = m̃ relates to m. However,357

readers who prefer to see immediately how φ is used in the proof of Theorem 8358

may consider skipping this section and going directly to Section 6.3.359

We start with the following immediate fact.360

Fact 14. If we know all the bits of m̃ = φ(m) (m ≥ m0), we can recover m.361

In fact, we are going to observe that one does not need to know all bits362

of m̃ to recover m. In order to formulate our claim, consider the A-block Aj363

containing the weakest strong bit as+1 and observe that364

j = d(s+ 1)/be < s.365

We will observe that if we are given a word m̃ with some (but possibly not366

all) bits on the right from the image of as+1 “erased" (i.e., instead of 0 or 1367

on the bit’s spot, we see the “neutral" symbol ∗), we can still recover m.368

To this end, we first observe that m̃ has length r + 10s, however, since369

all we know about the relation of r and s is that 3bs ≤ r < 6bs, we cannot370

recover the value of r and s just from the information about the length of m̃.371

However, since j = d(s+ 1)/be < s,372

all Cs, Cs+1, . . . , C2s are on the left from Aj . (31)373

Since Cs is the unique C-block with Ci,2 = 1 and nothing was erased from374

Cs, we can determine the value of s from its location (see Figure 1). This375

allows us to find the value as+1 as well as all ai for i ≥ s+ 1. On the other376

hand, the information about a1, a2, . . . , as is encoded in Cs+1, Cs+2, . . . , C2s,377

and consequently we can recover m. This implies the following.378

Fact 15. If we know all the bits of m̃ = φ(m) except for the (1 + 5/b) s− 5379

least significant bits of m̃, then we can recover m.380

Proof. Recall that Aj is the A-block containing the weakest strong bit as+1381

of m. Since the number of C-blocks to the right of as+1 in m̃ is j − 1, the382

position of as+1 in m̃ is383

(s+ 1) + 5(j − 1) = s+ 5j − 4 ≥ s+ 5(s+ 1)

b
− 4 ≥

(
1 +

5

b

)
s− 4,384

where j = d(s+ 1)/be. Hence, the number of least significant bits in m̃ we385

do not need to know to recover m is at least (1 + 5/b) s− 5.386

Next we show that m̃ is not much larger than m if b is large.387

Fact 16. We have m1+5/b/64 < m̃ < 4m1+5/b.388
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Proof. Let r be the number of bits in m, and let r̃ be the number of bits389

in m̃. Recalling (23), we have390

2r−1 ≤ m < 2r and 2r̃−1 ≤ m̃ < 2r̃. (32)391

For each factor Ai (1 ≤ i ≤ R − 1) of m of length b, we add a factor Cj of392

length 5 to construct m̃. Hence, we have that r̃ = r+5(R−1). Therefore, (27)393

gives that394

r (1 + 5/b)− 5 ≤ r̃ < r (1 + 5/b) . (33)395

This together with (32) and b ≥ 5 completes the proof of Fact 16.396

6.3. Key lemma and proof of Theorem 8397

The construction of m̃ lets us prove the following result.398

Lemma 17 (Key lemma). Let b and m0 = m0(b) be as in (19) and (21).399

Let S ⊂ N≥m0 be a Sidon set and let S̃ = {m̃ : m ∈ S}. For m̃i ∈ S̃400

(1 ≤ i ≤ 4) with m̃1 < m̃2 ≤ m̃3 < m̃4, we have401

|(m̃1 + m̃4)− (m̃2 + m̃3)| ≥ 2`, (34)402

where ` = b(1 + 5/b)r(m̃4)/(36b
2)c − b− 6.403

The proof of Lemma 17 will be given in Section 6.4. We now show that404

Lemma 17 may be used to construct strong Sidon sets.405

Lemma 18. Let α with 0 < α ≤ 10−4 be given and, following (19) and (20),406

let407

b = b1/(6
√
α)c ≥ 5. (35)408

Let m0 be as in (21). If S ⊂ N≥m0 is a Sidon set, then S̃ = {m̃ : m ∈ S} is409

an α-strong Sidon set. Moreover,410

S̃(n) = S

(⌊(n
4

)1/(1+5/b)
⌋)

. (36)411

Proof. Before we start, we note that the assumption 0 < α ≤ 10−4 guarantees412

that 1/(6
√
α) ≥ 5, with plenty of room. We claim that S̃ is an α-strong413

Sidon set, i.e.,414

|(m̃1 + m̃4)− (m̃2 + m̃3)| ≥ m̃α
4415

for m̃1, m̃2, m̃3, m̃4 ∈ S̃ with m̃1 < m̃2 ≤ m̃3 < m̃4. Indeed, Lemma 17416

gives that417

log2 (|(m̃1 + m̃4)− (m̃2 + m̃3)|) ≥
⌊
1 + 5/b

36b2
r(m̃4)

⌋
− b− 6 ≥ r(m̃4)

36b2
,418
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where the last inequality follows from (21), i.e., r(m̃4) ≥ r(m0) ≥ 100b4.419

Consequently, in view of m̃ < 2r(m̃) and (35), we infer that420

|(m̃1 + m̃4)− (m̃2 + m̃3)| ≥ m̃1/(36b2)
4 ≥ m̃α

4 .421

Next, we consider the counting function S̃(n). One can easily check that422

for any m ≤ (n/4)1/(1+5/b) Fact 16 implies that m̃ ≤ n. In otherwords, for423

any m ∈ S ∩
[
(n/4)1/(1+5/b)

]
, its φ-image φ(m) = m̃ is contained in [n].424

Since φ is one-to-one, we obtain (36), as desired.425

We now prove Theorem 8 combining Ruzsa’s theorem [11] and Lemma 18.426

Proof of Theorem 8. Ruzsa’s theorem guarantees the existence of a Sidon427

set S satisfying428

S(n) ≥ n
√
2−1+o(1).429

Recall (20) and note that, for α ≤ 10−4, we have430

5

b
=

5

b1/6
√
bc
≤ 32

√
α. (37)431

Using (37), we see that the set S̃ given by Lemma 18 is an α-strong Sidon432

set with433

434

S̃(n) = S
(
b(n/4)1/(1+5/b)c

)
435

≥ n(
√
2−1+o(1))/(1+5/b) ≥ n(

√
2−1+o(1))/(1+32

√
α),436

as required.437

6.4. Proof of Lemma 17438

Before addressing inequality (34), we will show that, similarly as in439

the proof of Fact 15, one can recover m +m′ from partial information of440

m̃+ m̃′ = φ(m) + φ(m′). First, we define notation for binary expansions of441

sums of the form m̃+ m̃′ = φ(m) +φ(m′), and therefore it will be convenient442

to describe such expansions explicitly. Suppose m ≥ m′. Recall (22) and443

similarly let444

m′ = a′r′a
′
r′−1 . . . a

′
1.445

Consider the b-factorization ARAR−1 . . . A2A1 (as in (26)) of m and let the446

b-factorization of m′ be447

A′R′A
′
R′−1 . . . A

′
2A
′
1. (38)448

Since we suppose m ≥ m′, we have R ≥ R′. Now let C ′i be the C-blocks in449

the binary expansion of m̃′, so that450

m̃′ = A′R′C
′
R′−1A

′
R′−1 . . . C

′
2A
′
2C
′
1A
′
1.451
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For convenience, let us set A′i = 0b for every i > R′ and recall that we452

let C ′i = 05 for every i > 2s(m′) and hence, in particular, C ′i = 05 for453

every i ≥ R′. For every 1 ≤ i ≤ R, we let454

a+i =

{
0 if Ai +A′i < 2b,

1 otherwise,
(39)455

C+
i = Ci + C ′i + a+i−1,456

A+
i = (Ai +A′i) mod 2b. (40)457

Note that a+i is a carry. One sees that the binary expansion of m̃+ m̃′ is458

a+RA
+
RC

+
R−1A

+
R−1 . . . C

+
2 A

+
2 C

+
1 A

+
1 . (41)459

It will be convenient to extend the notion of ‘C-blocks’ to the binary expansion460

of m̃+ m̃′: those are the 5-bit blocks C+
i in (41). Similarly, the ‘A-blocks’461

of m̃+ m̃′ are the b-bit strings A+
i in (41).462

The next fact tells that we can recover m+m′ from m̃+ m̃′. It is a little463

less trivial than Fact 14 since we need to consider carries.464

Fact 19. If we know all the bits of the sum m̃+ m̃′ = φ(m) + φ(m′), then465

we can recover m+m′.466

Proof. Suppose m̃+ m̃′ has binary expansion (41). It is clear that the b-bit467

string A+
1 in (41) is formed by the b least significant bits of m+m′. Moreover,468

we can tell whether there is a carry to the (b+ 1)st bit when we add the b469

least significant bits of m and m′ by examining the rightmost bit of C+
1470

in (41). This information and A+
2 let us determine the next least significant b471

bits of m+m′. Proceeding this way, we are able to determine all the bits472

of m+m′.473

We will prove a strengthened version of Fact 19 similar to Fact 15: we do474

not need to know a certain number of the least significant bits of m̃+ m̃′ to475

recover m+m′. Recall the notation (38)–(41).476

Lemma 20. Let m and m′ be such that m,m′ ≥ m0 and m̃ ≥ m̃′. Let A′j′477

be the A-block of m′ that contains the weakest strong bit of m′. Then a+R, C
+
i478

and A+
i (j′ ≤ i ≤ R) as defined in (39)–(40) determine m+m′ uniquely.479

Proof. Suppose we know a+R, C
+
i and A+

i (j′ ≤ i ≤ R). We have to recover480

the bits of m +m′ from this data. First we claim that we can determine481

s = s(m) and s′ = s(m′). Note first that m̃ ≥ m̃′ implies that s ≥ s′.482

From (31), observe that the C-blocks C+
s and C+

s′ are placed in the left of483

A′j′ . Moreover, it follows from the definition of Ci,2 (1 ≤ i ≤ 2s) and C ′i,2484

(1 ≤ i ≤ 2s′) that there are at most two indices i such that C+
i,2 6= 00. If485

s 6= s′, then there are exactly two indices i such that C+
i,2 = 1. In this case,486
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one is s and the other is s′. On the other hand, if s = s′, then there is only487

one index i such that C+
i,3C

+
i,2 = 10. In this case we can have s = s′ = i. In488

either case, we can thus recover s and s′ from the given data.489

Next we claim that one can recover the value of ai+a′i for all i (1 ≤ i ≤ s′).490

We distinguish two cases.491

• If s = s′, then C+
i (s = 1 ≤ i ≤ 2s) determines a1+a′1, a2+a′2, . . . , as+492

a′s. This is because Ci and C ′i contain ai and a
′
i for all 1 ≤ i ≤ s = s′.493

• If s > s′, then we must have s ≥ 2s′ since s and s′ are powers of 2494

(recall (24)). Therefore, the C-blocks Ci (s + 1 ≤ i ≤ 2s) of m and495

the C-blocks C ′i (s
′ + 1 ≤ i ≤ 2s′) of m′ do not ‘overlap’. Recall that496

the bits ci (1 ≤ i ≤ s) in the definition of the Ci (1 ≤ i ≤ s) are497

all 0 (see (28) and (29)). Consequently, we deduce that, examining C+
i498

(s′+1 ≤ i ≤ 2s′), we are able to recover all the weak bits a′i (1 ≤ i ≤ s′)499

of m′. On the other hand, since C ′i = 05 for every i > 2s′, we can500

also recover all the weak bits ai (1 ≤ i ≤ s) of m by examining C+
i501

(s+ 1 ≤ i ≤ 2s). Thus we can recover all the values of ai + a′i for all i502

(1 ≤ i ≤ s′).503

The claim above implies that we can recover A+
i for every 1 ≤ i ≤ j′ − 1.504

Recall that we know a+R, C
+
i and A+

i (j′ ≤ i ≤ R). A little thought505

considering carries shows that we can recover m+m′, which completes the506

proof of Lemma 20.507

Lemma 20 easily yields the following.508

Lemma 21. If we know all the bits of m̃+ m̃′ = φ(m)+φ(m′) except for the509

(1 + 5/b) s′−b−4 least significant bits of m̃+m̃′, then we can recover m+m′.510

Proof. Lemma 20 implies that the number of least significant bits of m̃ +511

m̃′ we do not need to know to recover m̃ + m̃′ is the number of bits in512

Cj′−1Aj′−1 . . . C1A1, which is equal to513

(b+ 5)(j′ − 1),514

where j′ =
⌈
(s′ + 1)/b

⌉
and s′ = s(m′). Consequently,515

516

(b+ 5)(j′ − 1) = (b+ 5)

(⌈
s′ + 1

b

⌉
− 1

)
517

≥ (b+ 5)

(
s′ + 1

b
− 1

)
≥
(
1 +

5

b

)
s′ − b− 4.518

519

In order to show (34) of Lemma 17, the number of least significant bits520

in m̃+ m̃′ we do not need to know to recover m+m′ has to be expressed as521

a parameter of m rather than m′.522
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 0   ?   0   ?   0 ai+b-1 ... ai+1ai

C-block A-block

0         1   1       1  1...

+                                   1

1         0   0       0  0...

Figure 2: The case in which the number of carries is largest.

Lemma 22. Let m and m′ be such that m,m′ ≥ m0 and m̃ ≥ m̃′. If we523

know all the bits of m̃ + m̃′, except for the b(1 + 5/b)r(m̃)/(36b2)c − b − 6524

least significant ones, then we can recover m+m′.525

Proof. We consider two cases depending on the values of m̃′ and m̃. Roughly526

speaking, the first case is when logm′ . (logm)/b, and the second case is527

when logm′ & (logm)/b.528

• Case 1: First we suppose that529

log2 m̃
′ ≤ (1 + 5/b)s− b− 5530

for s = s(m). Since the number of bits in Ai is b and the least significant bit531

of a C-block is 0, carries may happen in a row at most b times (see Figure 2).532

Since log2 m̃
′ ≤ (1 + 5/b)s− b− 5, the binary expansion of m̃+ m̃′ is the533

same as m̃ except for (1 + 5/b)s − 5 least significant bits. Hence, Fact 15534

implies that we can recover m. Thus we can obtain m̃, and then we recover535

m̃′ = (m̃+ m̃′)− m̃. Fact 14 gives that m̃′ determines m′, and hence, we can536

determine m+m′.537

• Case 2: We suppose that538

log2 m̃
′ > (1 + 5/b)s− b− 5.539

Inequalities (23) and (25) give that540

log2 m̃
′ ≤ r̃′ ≤ 6bs′,541

and hence,542

s′ >
1 + 5/b

6b
s− 1. (42)543

Lemma 21 implies that the number of least significant bits of m̃+ m̃′ we do544
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not need to know to recover m+m′ is545

546 (
1 +

5

b

)
s′ − b− 4

(42)
>

(1 + 5/b)2

6b
s− b− 6547

(25)
≥
(
1 + 5/b

6b

)2

r − b− 6
(33)
≥ 1 + 5/b

36b2
r̃ − b− 6,548

which completes the proof of Lemma 22.549

It only remains to show that Lemma 22 implies Lemma 17.550

Proof of Lemma 17. Fix m̃i ∈ S̃ (1 ≤ i ≤ 4) with m̃1 < m̃2 ≤ m̃3 < m̃4 and551

let m, µ, µ′, m′ ∈ S be such that552

m̃ = m̃4, µ̃ = m̃3, µ̃′ = (̃µ′) = m̃2 and m̃′ = (̃m′) = m̃1.553

Recall that554

` =

⌊
1 + 5/b

36b2
r(m̃)

⌋
− b− 6.555

Suppose, for a contradiction, that556 ∣∣ (m̃1 + m̃4)− (m̃2 + m̃3)
∣∣ = ∣∣ (m̃+ m̃′

)
−
(
µ̃+ µ̃′

) ∣∣ < 2`.557

In other words, m̃+ m̃′ and µ̃+ µ̃′ have the same binary expansion except558

possibly for the ` least significant bits. Lemma 22 gives that m+m′ = µ+µ′,559

which contradicts the assumption that S is a Sidon set.560

7. Sidon sets contained in random sets of integers561

7.1. An extremal problem on random sets of integers562

In [9] we investigated the following question: how dense Sidon sets S563

contained in a random set of integers can be? First we describe the probability564

model for random subsets of N that we shall use.565

Definition 23. Fix a constant α satisfying 0 ≤ α < 1. Let pm = m−α for566

every positive integer m. Let R = R(α) ⊂ N be a random set of integers567

obtained by including each m ∈ N independently with probability pm.568

We are interested in two types of problems on the growth rate of the569

counting function S(n) for Sidon sets S contained in the random set R(α).570

(i ) Find some constant f(α) such that, with probability 1, there is a Sidon571

set S contained in R(α) such that, for all n,572

S(n) ≥ nf(α)+o(1). (43)573
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(ii ) Find some constant g(α) such that, with probability 1, every Sidon574

set S contained in R(α) is such that, for all n,575

S(n) ≤ ng(α)+o(1).576

The constants f(α) and g(α) obtained in [9] are the following (see Fig-577

ure 7.1):1578

(a ) f(α) = g(α) = 1− α for 2/3 ≤ α < 1.579

(b ) f(α) = g(α) = 1/3 for 1/3 ≤ α ≤ 2/3.580

(c ) f(α) = max{1/3,
√
2− 1− α} and g(α) = (1− α)/2 for 0 ≤ α ≤ 1/3.581

Thus, while we know the best possible f(α) and g(α) for 1/3 ≤ α ≤ 1, this582

is not the case for 0 ≤ α < 1/3. The goal of this section is to show that the583

existence of dense α-strong Sidon sets implies lower bounds for f(α) in (43).584

To this end, we use the following modification of Definition 1.585

Definition 24 ((α, c)-strong Sidon sets). Let constants c > 0 and α with586

0 ≤ α < 1 be given. A set S ⊂ N is called an (α, c)-strong Sidon set if587

|(x+ w)− (y + z)| ≥ cwα588

for every x, y, z, w ∈ S with x < y ≤ z < w.589

We shall consider (α, c)-strong Sidon sets for c = 1 and c = 16 only590

(c = 1 corresponds to α-strong Sidon sets and Theorem 25 below concerns591

the case c = 16). The existence of an (α, 16)-strong Sidon set with S(n)592

satisfying (4) follows from Theorem 8.593

We prove the following.594

Theorem 25. Let 0 ≤ α ≤ 1/2 be given. If there exists an (α, 16)-strong595

Sidon set S ⊂ N with596

S(n) ≥ nh(α)+o(1), (44)597

then, with probability 1, the random subset R = R(α) of N contains a Sidon598

set S∗ such that599

S∗(n) ≥ nh(α)+o(1).600

1We remark that, in [9], the random set R is generated by selecting each natural
number m with probability pm = min{αmδ−1, 1}. Thus, to translate the results in [9]
to the present context, one has to take the constant α in [9] to be 1 and the constant δ
in [9] to be 1− α. Thus, for instance, to interpret Figure 1 in [9] one should have in mind
that δ = 1− α (where α is the α in Definition 23, that is, it is the α in the present paper).
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f(α), g(α), r(α)

α

r(α)

g(α)

f(α)
1/3

√
2− 1

1/2

1/3 2/3 1

Figure 3: The graphs of the functions f(α), g(α) and r(α) = 1 − α. The slope of the
dashed line is −1/2, while the slope of the non-horizontal dotted line is −1.

Combining Theorems 8 and 25 implies that (43) holds with f(α) =601

(
√
2 − 1)/(1 + 32

√
α), which, unfortunately, does not improve the value602

obtained for f(α) in [9]. As it turns out, our strategy to obtain a better603

value for f(α) has been recently vindicated: Fabian, Rué and Spiegel [6]604

succeeded in obtaining dense enough strong Sidon sets by different methods,605

which, together with the strategy put forward here, gives a value for f(α)606

that supersedes the one in [9]. The reader is referred to [6] for details.607

The next section is devoted to the proof of Theorem 25.608

7.2. Proof of Theorem 25609

Theorem 25 trivially holds for α = 0, and hence throughout Section 7.2610

we assume that 0 < α ≤ 1/2. The proof of Theorem 25 is based on two611

auxiliary lemmas, Lemmas 26 and 29. In order to formulate these lemmas,612

we introduce some notation. Let613

β =
1

1− α
so that α = 1− 1

β
.614

Note that615

αβ = β − 1, 0 < α ≤ 1/2, 1 < β ≤ 2. (45)616

For every integer i ≥ 1, let617

Ii = N ∩
[
iβ, (i+ 1)β

)
.618
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For a, b ∈ N, write619

a ∼ b (46)620

if a, b ∈ Ii for some i ∈ N. The following holds.621

Lemma 26. For every sufficiently large i ∈ N, say i ≥ i0(α), we have622

P (|R ∩ Ii| ≥ 1) ≥ 1

3
. (47)623

Proof. Let Xi be the size of a random set obtained by choosing each element624

in Ii independently with probability625 (
(i+ 1)β

)−α
= (i+ 1)−αβ = (i+ 1)−(β−1). (48)626

Since each element in Ii is chosen to be in R independently with probability627

at least
(
(i+ 1)β

)−α, we have that P (|R ∩ Ii| ≥ 1) ≥ P (Xi ≥ 1). Therefore,628

to prove (47), it suffices to prove that P(Xi = 0) ≤ 2/3.629

Let us first note that, as β > 1, we have630

(i+ 1)β − iβ ≥ βiβ−1. (49)631

Moreover, for β > 1 and i ≥ i0(β), we have632

β

(
i

i+ 1

)β−1
−
(

1

i+ 1

)β−1
≥ β

2
. (50)633

Using (48), (49) and (50), we see that634

P(Xi = 0) ≤

(
1−

(
1

i+ 1

)αβ)(i+1)β−iβ−1

=

(
1−

(
1

i+ 1

)β−1)(i+1)β−iβ−1

635

≤ exp

(
−
(

1

i+ 1

)β−1 (
(i+ 1)β − iβ − 1

))
636

≤ exp

(
−
(

1

i+ 1

)β−1
(βiβ−1 − 1)

)
637

= exp

(
−β
(

i

i+ 1

)β−1
+

(
1

i+ 1

)β−1)
638

≤ exp

(
−β
2

)
≤ e−

1
2 <

2

3
,639

and (47) follows.640

For the proof of Lemma 29, it is convenient to have the following.641

Claim 27. Let S ⊂ N be an (α, 16)-strong Sidon set, where 0 < α ≤ 1/2.642

Then the elements of S are contained in distinct intervals of Ii, with possibly643

only one exceptional interval containing two elements of S.644
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Proof. In what follows, we shall make use of the following inequality: for all645

reals β and x with 1 < β ≤ 2 and x ≥ 1, we have646

(x+ 1)β − xβ ≤ 2βxβ−1. (51)647

Observe that (51) is equivalent to648

(1 + z)β − 2βz ≤ 1, (52)649

which is true in view of the fact that the derivative of LHS of (52) is negative.650

We now start the proof of Claim 27. Let us first show that there is651

at most one interval Ii that contains at least two elements of S. Suppose652

for a contradiction that i < j (i, j ∈ N) and x, y, z, w ∈ S are such that653

x < y < z < w, and x, y ∈ Ii and z, w ∈ Ij . Using (51), we see that654

655

|x+ w − (y + z)| ≤ |w − z|+ |y − x| ≤ |Ij |+ |Ii| ≤ 2|Ij |656

= 2
(
(j + 1)β − jβ

)
≤ 4βjβ−1 ≤ 4β(jβ)α < 4βwα.657

By (45), we have658

|x+ w − (y + z)| < 8wα.659

This contradicts the assumption that S is an (α, 16)-strong Sidon set.660

Next, we show that there is no interval with three elements of S. Suppose661

for a contradiction that i ∈ N and x, y, z ∈ S are such that x < y < z and662

x, y, z ∈ Ii. Then,663

|x+ z − (y + y)| ≤ |z − y|+ |y − x| < 2|Ii| ≤ 4βzα ≤ 8zα,664

which again contradicts the assumption on S. Therefore, Claim 27 is proved.665

666

In the proof of Theorem 25, it will be convenient to consider (α, 16)-strong667

Sidon sets S with the property that S meets every Ii (i ≥ 1) in at most one668

element.669

Definition 28. Let 0 < α ≤ 1/2 be given and let S be an (α, 16)-strong670

Sidon set. If the elements of S are all contained in distinct intervals Ii (i ≥ 1),671

we say that S is a canonical (α, 16)-strong Sidon set.672

Claim 27 allows us to discard at most 1 element of any (α, 16)-strong673

Sidon set S to obtain a canonical (α, 16)-strong Sidon set. Clearly, this674

process does not decrease the density of S (that is, the exponent h(α) in (44)675

does not change).676

We now show that certain perturbations of strong Sidon sets are Sidon677

sets. Recall that we write a ∼ b if a and b belong to the same interval Ii678

(see (46)).679
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Lemma 29. Let 0 < α ≤ 1/2 be given and let S = {s1 < s2 < . . . } ⊂ N be a680

canonical (α, 16)-strong Sidon set. For every i ≥ 1, let s′i be an integer such681

that s′i ∼ si, and let S′ = {s′1, s′2, . . . }. Then S′ is a Sidon set.682

Proof. Suppose for a contradiction that S′ is not a Sidon set. In other words,683

suppose that there are a, b, c, d ∈ S′ with a < b ≤ c < d such that a+d = b+c.684

Let a ∈ Ii, b ∈ Ij , c ∈ Ik and d ∈ I`. Since we assume that S is canonical,685

we have that i < j ≤ k < `.686

We clearly have that687

iβ ≤ a < (i+ 1)β, jβ ≤ b < (j + 1)β,688

kβ ≤ c < (k + 1)β, `β ≤ d < (`+ 1)β.689

Hence,690

iβ + `β ≤ a+ d < (i+ 1)β + (`+ 1)β691

and692

jβ + kβ ≤ b+ c < (j + 1)β + (k + 1)β.693

Since a+ d = b+ c holds, the two intervals
[
iβ + `β, (i+ 1)β + (`+ 1)β

)
and694 [

jβ + kβ, (j + 1)β + (k + 1)β
)
are not disjoint. Firstly, if jβ + kβ ≤ iβ + `β,695

then necessarily iβ+ `β < (j+1)β+(k+1)β since otherwise the two intervals696

would be disjoint. Thus,697

jβ + kβ ≤ iβ + `β < (j + 1)β + (k + 1)β. (53)698

On the other hand, if iβ + `β ≤ jβ + kβ , then jβ + kβ < (i+ 1)β + (`+ 1)β ,699

and thus,700

iβ + `β ≤ jβ + kβ < (i+ 1)β + (`+ 1)β. (54)701

We claim that inequality (53) implies that 0 ≤ iβ+`β−(jβ+kβ) < 4β`β−1.702

Indeed,703

704

0 ≤ iβ + `β − (jβ + kβ) < (j + 1)β + (k + 1)β − jβ − kβ705

≤ 2βjβ−1 + 2βkβ−1 < 4β`β−1,706

where the next to last inequality follows from (45) and (51). Similarly,707

inequality (54) implies708

0 ≤ jβ + kβ − (iβ + `β) < 4β`β−1.709

Consequently, we have710 ∣∣iβ + `β − (jβ + kβ)
∣∣ < 4β`β−1. (55)711

Let x, y, z, w ∈ S be such that x ∼ a, y ∼ b, z ∼ c and w ∼ d. Since S is712

canonical, we have x < y ≤ z < w. Since x ∈ Ii, y ∈ Ij , z ∈ Ik and w ∈ I`,713
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we have that i = bx1/βc, j = by1/βc, k = bz1/βc, and ` = bw1/βc. Note that714

` ≤ w1/β < `+ 1, i.e.,715

w1/β − 1 < ` ≤ w1/β. (56)716

Raising all terms of (56) to the power of β and using the inequality ξβ − (ξ−717

1)β − βξβ−1 < 0 with ξ = w1/β , we infer that718

w − βwα < (w1/β − 1)β < `β ≤ w.719

Similarly, we have720

x− βxα < iβ ≤ x, y − βyα < jβ ≤ y and z − βzα < kβ ≤ z.721

Consequently, in view of the fact that722

`β−1 = `ββ
−1(β−1) ≤ w(β−1)/β = wα,723

we conclude that724

725 ∣∣x+ w − (y + z)
∣∣ ≤ ∣∣iβ + `β − (jβ + kβ)

∣∣+ 4βwα726

(55)
< 4β`β−1 + 4βwα ≤ 8βwα ≤ 16wα,727

where the last inequality follows from (45). This contradicts the assumption728

that S is an (α, 16)-strong Sidon set. This contradiction implies that S′ is729

indeed a Sidon set.730

We are now ready to prove Theorem 25.731

Proof of Theorem 25. Recall that Theorem 25 trivially holds for α = 0, and732

that, hence, we assume that 0 < α ≤ 1/2. Let S = {s1 < s2 < · · · } ⊂ N be733

an (α, 16)-strong Sidon set such that734

S(n) ≥ nh(α)+o(1).735

We may suppose that S is canonical.736

Let ij be such that sj ∈ Iij . Let R = R(α) be the random set introduced737

in Definition 23, and let i0 be the integer from Lemma 26. Set738

J = {j : ij ≥ i0 and R ∩ Iij 6= ∅}.739

For each such j ∈ J , we select an arbitrary element s∗j ∈ R ∩ Iij and740

let S∗ = {s∗1 < s∗2 < · · · }. Since s∗j ∼ sj , Lemma 29 implies that S∗ is a741

Sidon set.742

Next, we estimate S∗(n). Since S is canonical, between 1 and n, there743

are at least744

|S(n)| − i0 ≥ nh(α)+o(1)745

26



intervals Iij with S ∩ Iij 6= ∅. Moreover, by Lemma 26, we have746

P
(
R ∩ Iij 6= ∅

)
≥ 1/3747

for every j ≥ i0. Thus, Chernoff’s bound (see, e.g., [8, Corollary 2.3]) gives748

that, for any fixed ε > 0 and n ≥ n(ε),749

P
[
S∗(n) < nh(α)−ε

]
≤ 2 exp

(
−nh(α)−ε

)
≤ 1

n2
. (57)750

We now recall the well-known Borel–Cantelli lemma.751

Lemma 30 (Borel–Cantelli Lemma). Let {Fn}n∈N be a sequence of events in752

a probability space. If
∑∞

n=1 P[Fn] <∞, then, with probability 1, only finitely753

many Fn occur, i.e.,754

P
[⋂
i≥1

⋃
n≥i

Fn

]
= 0.755

Since
∑

1/n2 <∞, inequality (57) and the Borel–Cantelli Lemma gives756

that, with probability 1, the random set R is such that, for every n ≥ n0 =757

n0(R, ε),758

S∗(n) ≥ nh(α)−ε.759

This completes the proof of Theorem 25.760

8. Concluding remarks761

Erdős proved that ‘lim sup’ in (2) cannot be replaced by ‘lim’. Indeed,762

he showed that any Sidon set S ⊂ N is such that763

lim inf
n

S(n)n−1/2
√
log n <∞764

(see [13, p. 133] or [7, Chapter II, Theorem 8]). It is natural to ask whether765

a similar result holds for strong Sidon sets: is it true that, for any α-strong766

Sidon set S ⊂ N (0 ≤ α < 1), we have767

lim inf
n

S(n)n−(1−α)/2 = 0?768

Our approach for producing strong Sidon sets is based on the construction769

of a function φ such that φ(S) is a strong Sidon set for any Sidon set S.770

In contrast, Fabian, Rué, and Spiegel [6] obtained denser strong Sidon sets771

by nicely elaborating on a construction of Cilleruelo [3]. It would be very772

interesting to see whether there is a “black box” approach that can do773

numerically at least as well as the approach in [6].774

We close by mentioning that the approach of Fabian, Rué, and Spiegel [6]775

allowed them to investigate “strong Bh-sets”.776
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