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Abstract. We consider several extremal problems concerning repre-
sentations of graphs as distance graphs on the integers. Given a graph
G = (V, E), we wish to find an injective function ϕ : V → Z+ =
{1, 2, . . . } and a set D ⊂ Z+ such that {u, v} ∈ E if and only if
|ϕ(u)− ϕ(v)| ∈ D.

Let s(n) be the smallest N such that any graph G on n vertices
admits a representation (ϕG,DG) such that ϕG(v) ≤ N for all v ∈
V (G). We show that s(n) = (1 + o(1))n2 as n → ∞. In fact, if we
let sr(n) be the smallest N such that any r-regular graph G on n vertices
admits a representation (ϕG,DG) such that ϕG(v) ≤ N for all v ∈ V (G),
then sr(n) = (1 + o(1))n2 as n → ∞ for any r = r(n) � log n with rn
even for all n.

Given a graph G = (V, E), let De(G) be the smallest possible car-
dinality of a set D for which there is some ϕ : V → Z+ so that (ϕ,D)
represents G. We show that, for almost all n-vertex graphs G, we have

De(G) ≥ 1

2

(
n

2

)
− (1 + o(1))n3/2(log n)1/2,

whereas for some n-vertex graph G, we have

De(G) ≥

(
n

2

)
− n3/2(log n)1/2+o(1).

Further extremal problems of similar nature are considered.

1. Introduction and statement of the main results

We are interested in representing a graph G = (V,E) by assigning to
each vertex v ∈ V an integer ϕ(v) so that we can then distinguish those
pairs of vertices u, v that are edges from those that are not simply by
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|ϕ(u)− ϕ(v)|. In other words, for each graph G = (V,E) we wish to find a
function ϕ : V → Z+ = {1, 2, . . . } and a set D ⊂ Z+ so that {u, v} ∈ E if
and only if |ϕ(u)− ϕ(v)| ∈ D.

We shall investigate numerical parameters associated with such repre-
sentations (ϕ,D) of G. A basic question is to determine or estimate the
smallest possible value for max{ϕ(v) : v ∈ V (G)} for a given graph G,
when we let ϕ and D vary freely. We denote this value by s(G) (see (5)).
Let s(n) = maxG s(G), where the maximum is taken over all n-vertex
graphs. One of our results shows that s(n) = (1 + o(1))n2 (see Theorem 4).

We shall also investigate the size of the sets D that we need, both for
individual graphs and when considering all graphs on a fixed number of
vertices. Other parameters pertaining to the function ϕ, which may be of
some interest on their own, will also be considered (see Lemmas 12 and 13).

We are grateful to B. Bollobás and O. Pikhurko for letting us know that
problems and results of nature similar to the ones considered here appear
in [6] and [17].

Finally, we observe that the subject of this paper may be thought of as a
particular case of the problem of representing graphs as induced subgraphs
of Cayley graphs (see, e.g., Babai and Sós [2] and the references therein). At
least to some extent, this paper shows that the specific case of representing
graphs as induced subgraphs of Cayley graphs on the integers is already of
some interest.

1.1. Definitions. We shall consider integer functions

ϕ : [n] → Z+ (1)

with domain [n] = {1, . . . , n}. In what follows, the asymptotics will be with
respect to n →∞. A map ϕ as in (1) defines an equivalence relation

∼ϕ (2)

on
(
[n]
2

)
, the edge set of the complete graph Kn with vertex set [n], given by

{i, j} ∼ϕ {k, `} ⇐⇒ |ϕ(i)− ϕ(j)| = |ϕ(k)− ϕ(`)|. (3)
Let Dist(ϕ) be the set of equivalence classes of ∼ϕ. Note that

(*) |Dist(ϕ)| is the number of distinct ‘distances’, i.e., integers of the
form

|ϕ(i)− ϕ(j)| (i, j ∈ [n], i 6= j), (4)
that ϕ induces.

In what follows, we shall be interested in the numerical parameters |Dist(ϕ)|
and max{ϕ(i) : i ∈ [n]} of the functions ϕ : [n] → Z+.

We now introduce a central definition.

Definition 1 (G(ϕ,D)). Given ϕ : [n] → Z+ and D ⊂ Z+ = {1, 2, . . . }, we
define the graph G(ϕ,D) as the graph whose vertex set is [n], with i and j
adjacent if and only if |ϕ(i)− ϕ(j)| ∈ D.
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If G is isomorphic to G(ϕ,D), then we shall say that (ϕ,D) spaces G (or
that (ϕ,D) is a spacing of G).

Clearly, in the definition of G(ϕ,D) above, we make i adjacent to j if
and only if the distance between ϕ(i) and ϕ(j) is an element of a set D
of ‘distinguished’ distances. Furthermore, it is clear that the edge set
of G(ϕ,D) is a union of equivalence classes of the relation ∼ϕ; equivalently,
if {i, j} ∼ϕ {k, `}, then {i, j} is an edge of G(ϕ,D) if and only if {k, `} is.

We are interested in representing graphs G as graphs of the form G(ϕ,D).
In particular, when representing an n-vertex graph G as some G(ϕ,D),
numerical constraints on D and im(ϕ) = {ϕ(i) : i ∈ [n]} arise. For instance,
we shall show that for almost all G, we must allow |D| to be of order n2.
To prove such constraints, we shall give upper estimates for the number of
graphs that are of the form G(ϕ,D), up to isomorphism.

Let us now define some extremal parameters for n-vertex graphs G. In
what follows, ϕ and D will always stand for a function ϕ : [n] → Z+ and
a set D ⊂ Z+. (We mention that, in the definitions that follow, we may
restrict ourselves to injective functions ϕ, as G has n vertices and we always
wish to have G isomorphic to G(ϕ,D).)

Given ϕ, we shall say that a graph G is a ϕ-graph if G is isomorphic
to G(ϕ,D) for some D. Similarly, given D, we shall say that G is a D-graph
if G is isomorphic to G(ϕ,D) for some ϕ.

Our first extremal parameter is s(G), the minimal integer N for which
there is a function ϕ with im(ϕ) ⊂ [N ] such that G is a ϕ-graph. Formally,

s(G) = min{N : there is ϕ : [n] → Z+

such that im(ϕ) ⊂ [N ] and G is a ϕ-graph} (5)

= min{max im(ϕ) : G is a ϕ-graph}.

Therefore, s(G) is the ‘space’ that we need in order to obtain a representa-
tion G(ϕ,D) of G. We now define µ(G) to be the maximal cardinality of
an equivalence class of ∼ϕ, where we let ϕ vary among all functions such
that G is a ϕ-graph:

µ(G) = max{|C| : C is an equivalence class of ∼ϕ,

where ϕ is such that G is a ϕ-graph}. (6)

Thus, µ(G) is the maximum ‘multiplicity’ with which a ‘distance’ (recall (*))
may occur in a representation G(ϕ,D) of G.

Our third and fourth parameters concern the number of ‘distances’ that
we use in our representations of G. We let

D(G) = min{|Dist(ϕ)| : G is a ϕ-graph}. (7)

Hence, D(G) is the minimal possible number of ‘distances’ that are induced
by the ϕ : [n] → Z+ in the representations G(ϕ,D) of G. We may also
restrict ourselves to counting distinct ‘distances’ that occur as edges in our
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representations of G. We let

De(G) = min{|D| : G is a D-graph}. (8)

Thus, De(G) is the minimum number of ‘edge lengths’ that are required in
the representations G(ϕ,D) of G.

It is easy to see that s(Kn) = s(Cn) = s(Pn) = n, where, as usual, Cn is
the cycle on n vertices and Pn is the path on n vertices. However, calculating
the spacing number of a graph exactly can be delicate, even for very simple
graphs. As usual, Km,n denotes the complete bipartite graph with vertex
classes of cardinality m and n.

Proposition 2. For m ≥ n, we have

s(Km,n) =

{
2m if m = n

2m− 1 if m > n.
(9)

In order to prove the proposition, we must first prove the following.

Proposition 3. For any n > 1, we have s(K1,n) = 2n− 1.

To see that s(K1,n) ≤ 2n− 1 consider G(ϕ,D), where

im(ϕ) = {1, 2, 3, 5, 7, . . . , 2n− 1} (10)

and
D = {1, 3, 5, . . . , 2n− 3}. (11)

Then (ϕ,D) spaces K1,n, and hence s(K1,n) ≤ 2n − 1. The reverse in-
equality will be proved in Section 2. Proposition 2 follows by monotonicity
under taking induced subgraphs.

Another example that seems to show that the problem of determining
or estimating s(G) does require some idea is the case in which G is a tree.
The authors have not come across any general, non-trivial bounds for this
case (see Section 6 below and [2, Remark 7.2]). Let us now get back to the
general case.

Let

s(n) = max
G

s(G), µ(n) = min
G

µ(G), D(n) = max
G

D(G), (12)

and
De(n) = max

G
De(G), (13)

where the maxima are taken over all n-vertex graphs G. For positive inte-
gers r, we also let

sr(n) = max
G

s(G), (14)

where the maximum is taken over all r-regular graphs G on n vertices. Our
main concern in this note is to give estimates for the extremal functions s(n),
sr(n), µ(n), D(n), and De(n).
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1.2. Statement of the results. The following are our results pertaining
to the parameters given above. The proofs will be given in Sections 4 and 5.

We start with the extremal functions s(n) and sr(n).

Theorem 4. We have

n2

(
1− (4 + o(1))

√
log n

n

)
≤ s(n) ≤ n2 + O(n1.525). (15)

Theorem 5. (i) For every fixed integer r ≥ 2 and for all n with rn
even, we have

sr(n) ≥ (1 + o(1))
(

1
r!

)2/(r+2)( r

e
√

2

)2r/(r+2)

n2r/(r+2). (16)

(ii) Let r = r(n) be an integer function satisfying log n � r ≤ (n− 1)/2
and with rn even for all n. Then

sr(n) = (1 + o(1))n2. (17)

Our result concerning the ‘multiplicity’ parameter µ(n) is as follows.

Theorem 6. For all sufficiently large n, we have

µ(n) < 2 + 8 log2 n. (18)

The next three results deal with the functions D(n) and De(n) and the
parameter De(G), concerning the number of distinct distances that are in-
volved in our representations of graphs.

Theorem 7. For any ε > 0, there is n0 = n0(ε) such that if n ≥ n0, then

D(n) >

(
n

2

)
− 4n log2 n + 2n− 1

2
log2(2πn)− ε. (19)

Theorem 8. For almost all n-vertex graphs G, we have

De(G) ≥ 1
2

(
n

2

)
− (1 + o(1))n3/2

√
log n. (20)

Theorem 9. For any function ω = ω(n) such that ω(n) → ∞ as n → ∞,
we have

De(n) ≥
(

n

2

)
− 3ωn3/2

√
log n− 3 (21)

for all large enough n.

Finally, we observe that there are n-vertex graphs G for which we have
both De(G) = (1 + o(1))

(
n
2

)
and s(G) = (1 + o(1))n2.

Corollary 10. Let ε > 0 be fixed and suppose ω = ω(n) → ∞ as n → ∞.
Then, for all large enough n, there is an n-vertex graph G for which we have

De(G) ≥
(

n

2

)
− 3ωn3/2

√
log n− 3 (22)
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and

s(G) ≥

(
1− (2

√
6 + ε)ω1/2

(
log n

n

)1/4
)

n2. (23)

2. Proof of Proposition 3

We have already observed that s(K1,n) ≤ 2n−1. To establish the reverse
inequality, we need the following claim.

Claim 11. If K1,n is isomorphic to G(ϕ,D), where im(ϕ) ⊂ [2n− 1], then
the root vertex is associated with neither 1 nor max im(ϕ).

Proof. Assume otherwise; specifically, assume that the root vertex of K1,n is
associated with 1. Then there are n distinct differences in D corresponding
to the edges in the graph. However, since 1 is associated with the vertex
of degree n in our graph, the largest value, namely max im(ϕ), must be
associated with a leaf v. Hence there are n − 1 distinct values not in D
corresponding to the non-edges between v and the other leaves. However
this implies that 2n − 2 =

∣∣D| + |[2n − 2] \ D
∣∣ ≥ n + n − 1 = 2n − 1, a

contradiction. �

We can now prove the proposition.

Proof of Proposition 3. We proceed by induction on n, and note that the
claim is easily shown true when n = 2 or n = 3. Let (ϕ,D) be a spacing of
K1,n (n > 3) that realizes the spacing number and assume that max im(ϕ) =
s(K1,n) is at most 2n− 2. If x is the vertex of degree n in the graph, then
the claim tells us that x is not associated with 1 or s(K1,n). Therefore,
both 1 and s(K1,n) must be leaves. Note that both 2 and s(K1,n) − 1
must also be in im(ϕ) and associated with leaves, lest s(K1,n−1) ≤ 2n − 4
(contradicting the induction assumption), or one of these points is associated
with x, contradicting the claim. Now, assume that x is associated with some
point pi in im(ϕ). By the above, pi /∈ {1, 2, s(K1,n) − 1, s(K1,n)}. Assume
that there are l ≥ 2 points associated with leaves in the interval [1, pi]
and n − l points associated with leaves in the interval [pi, s(K1,n)]. Then
the points from im(ϕ) in these intervals along with D comprise spacings
of K1,l and K1,n−l respectively. Also, the root vertex of these stars are
associated with the largest and smallest values in these intervals. In order
to space K1,l in this way, the claim implies pi ≥ 2l. However, we then
have s(K1,n−l) ≤ s(K1,n) − pi ≤ 2n − 2 − 2l = 2(n − l) − 2, contradicting
the induction assumption. �

As noted above, this also completes the proof of Proposition 2.

3. Auxiliary lemmas

In this section, we give two elementary results from combinatorial number
theory.
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3.1. Almost Sidon sets. To establish our bounds on s(n), we shall make
use of a classical object from combinatorial number theory. A set

A = {a1, . . . , an} (24)

is called a Sidon set if ∣∣{|ai − aj | : i < j}
∣∣ = (n

2

)
, (25)

that is, if all of the differences of distinct elements are distinct. It was shown
by Erdős and Turán in [9] that if A ⊂ [N ] is an n-element Sidon set, then

N ≥ n2 + O(n3/2) (26)

(see also [13, 14]). We shall examine a similar type of set, wherein the
pairwise differences are almost all distinct. Lemma 12 below, in a slightly
different form, appears as Theorem 1 in [6]. The proofs os Lemma 12 and [6,
Theorem 1] follow [9] closely, and were obtained independently.

Lemma 12. Let 0 < ε = ε(n) ≤ 1 be such that εn → ∞ as n → ∞.
Suppose ϕ : [n] → Z+ is an injective function such that

|Dist(ϕ)| ≥ (1− ε)
(

n

2

)
(27)

and
im(ϕ) ⊂ [N ]. (28)

Then
N ≥

(
1− (2 + o(1))

√
ε
)
n2. (29)

Proof. As mentione above, we follow [9] very closely. Let ε = ε(n) and
ϕ : [n] → Z+ be as in the statement of our lemma. Let im(ϕ) = {xi : 1 ≤
i ≤ n}, where

x1 < · · · < xn. (30)
Let m = bε1/2n2c. Let us consider the following N +m intervals of integers,
each of cardinality m:

I1 = [−m + 1, 1), I2 = [−m + 2, 2), . . . , IN+m = [N,N + m). (31)

Let Bk be the number of xi that belong to the interval Ik = [−m+k, k). Let
us count the triples (xi, xj ; Ik) for which we have xi < xj and xi, xj ∈ Ik.
Let T be the number of such triples.

We have

T =
∑

1≤k≤N+m

(
Bk

2

)
≥ 1

2
(N + m)

nm

N + m

(
nm

N + m
− 1
)

, (32)

where the inequality follows from convexity. Let us now estimate T in an
alternative way.

Pick L ≥ (1 − ε)
(
n
2

)
pairs (xiλ , xjλ

) (1 ≤ λ ≤ L) with xiλ < xjλ
for all λ

and all the differences

dλ = xjλ
− xiλ (1 ≤ λ ≤ L) (33)
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distinct. Fix a pair (xiλ , xjλ
). If dλ = xjλ

− xiλ ≥ m, then clearly there is
no k for which both xiλ and xjλ

∈ Ik. If dλ < m, then there are m − dλ

intervals Ik with both xiλ and xjλ
∈ Ik. Given that all the differences

in these L pairs are distinct, we deduce that the number of triples of the
form (xiλ , xjλ

; Ik) (1 ≤ λ ≤ L) that we are interested in is

≤
∑

1≤d<m

(m− d) =
(

m

2

)
. (34)

Now we have to take into account the triples (xi, xj ; Ik) for the pairs (xi, xj)
that are not one of the (xiλ , xjλ

) (1 ≤ λ ≤ L). We use a crude bound for
such pairs, of which there are at most ε

(
n
2

)
: each of the pairs occur in at

most m− 1 intervals Ik each. Therefore, we have

T ≤
(

m

2

)
+ ε

(
n

2

)
(m− 1) ≤ 1

2
(m2 + εn2m). (35)

Comparing (32) and (35), we have

n

(
nm

N + m
− 1
)
≤ m + εn2, (36)

which is equivalent to

n2m ≤ (N + m)(m + εn2 + n). (37)

Since εn →∞ as n →∞, we deduce from (37) that

N ≥ n2m

m + (1 + o(1))εn2
−m ≥ n2 1

1 + (1 + o(1))εn2/m
− ε1/2n2

≥ n2
(
1− (1 + o(1))ε1/2

)
− ε1/2n2, (38)

and (29) follows. �

3.2. The number of equivalence relations ∼ϕ. Recall that each ϕ : [n] →
Z+ defines an equivalence relation ∼ϕ on

(
[n]
2

)
(see (3)). Let

T (n) =
∣∣{∼ϕ : ϕ ∈ (Z+)[n]}

∣∣. (39)

The upper bound for T (n) given in Lemma 13 below will be crucial when es-
timating D(n) and De(n). The reader may find it interesting to observe how
small T (n) is, in comparison with the total number of equivalence relations
on
(
[n]
2

)
, which is given by the Bell number

b(n
2)

=
(

n

2

)(1+o(1))(n
2)

= n(1+o(1))n2
(40)

(see, e.g., [11]).
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Lemma 13. For all n ≥ 3, we have

T (n) ≤
(

2
((n

2)
2

)
n

)
≤ (1 + o(1))

(
en3

4

)n

. (41)

Proof. Let ϕλ : [n] → Z+ (λ ∈ Λ) be T (n) maps with all the ∼ϕλ
distinct.

Moreover, let p be a sufficiently large prime; any choice with

p > max
λ∈Λ

(max im(ϕλ))2 (42)

will do. We may consider the maps ϕλ as maps into Fp, the field of order p,
in the obvious way:

ϕλ : [n] → Fp. (43)
For convenience, let

xλ,i = ϕλ(i) (λ ∈ Λ, i ∈ [n]) (44)

and let
xλ = (xλ,i)1≤i≤n. (45)

Let

R =
(([n]

2

)
2

)
=
(

E(Kn)
2

)
, (46)

and consider the quadratic polynomials

f%(x1, . . . , xn) ∈ Fp[x1, . . . , xn] (% ∈ R), (47)

where, if % =
{
{i, j}, {k, `}

}
∈ R, then

f%(x1, . . . , xn) = (xi − xj)2 − (xk − x`)2. (48)

We let x = (x1, . . . , xn) and f(x) = (f%(x))%∈R.
Given z = (z%)%∈R ∈ FRp , let the zero pattern Z(z) of z be the {0, ∗}-

vector (s%)%∈R, where

s% =

{
0 if z% = 0
∗ otherwise.

(49)

We now consider the zero patterns Z(f(x∗)) of the vectors f(x∗), where we
let x∗ vary in Fn

p . Theorem 1.3 in [18] tells us that∣∣{Z(f(x∗)) : x∗ ∈ Fn
p}
∣∣ ≤ (2|R|

n

)
=
(

2
((n

2)
2

)
n

)
≤
(

n4/4
n

)
≤ (1 + o(1))

(
en3

4

)n

. (50)

It now suffices to relate zero patterns with the equivalence relations ∼ϕλ
.

Recall (3), (42), (44), and (45), and observe that, for any ∼ϕλ
and any % ={

{i, j}, {k, `}
}
∈ R, we have

{i, j} ∼ϕλ
{k, `} ⇐⇒ |ϕλ(i)− ϕλ(j)| = |ϕλ(k)− ϕλ(`)|

⇐⇒ (xλ,i − xλ,j)2 = (xλ,k − xλ,`)2 ⇐⇒ f%(xλ) = 0 in Fp. (51)
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(Note that the ‘if’ part of the last ‘if and only if’ follows from (42).) By
the definition of zero patterns, the equivalences in (51) tell us that the
relations ∼ϕλ

and ∼ϕλ′ coincide if and only if Z(f(xλ)) = Z(f(xλ′)). This
fact and (50) imply (41), and Lemma 13 is proved. �

4. Proofs of Theorems 4, 5, and 6

In this section we shall prove our results concerning the extremal func-
tions s(n), sr(n), and µ(n).

4.1. Proofs of Theorems 4 and 5. We start with the spacing parame-
ters s(n) and sr(n).

Proof of Theorem 4. We shall show that(
1− (4 + o(1))

√
log n

n

)
n2 ≤ s(n) ≤ n2 + O(n1.525). (52)

We prove the upper bound using Sidon sets. Let G be a graph with
vertex set {v1, . . . , vn} and let A = {a1, . . . , an} be a Sidon set. Then (ϕ,D)
spaces G, where ϕ : [n] → Z+ is any function such that im(ϕ) = A and

D =
{
|ai − aj | : {vi, vj} ∈ E(G)

}
. (53)

Thus, in order to estimate s(n) from above, we wish to minimize the max-
imum element in an n-element Sidon set. The following is a well known
consequence of a result of Singer [20] (for details, see [12, Chapter II]).

Lemma 14. Let q be a prime power. Then there is a (q +1)-element Sidon
set A = {a0, a1, . . . , aq} with 1 ≤ a0 < a1 < · · · < aq ≤ q2 + q + 1.

It was shown by Baker, Harman, and Pintz [3] that, for any sufficiently
large n, there is always a prime q in the interval [n− 1, n + (1 + o(1))n.525].
Putting together the observations above, we have

s(n) ≤
(
n + (1 + o(1))n.525

)2 +
(
n + (1 + o(1))n.525

)
+ 1

= n2 + O(n1.525), (54)

and the upper bound in (52) follows. We now turn to the lower bound
on s(n).

Let δ be a fixed positive real, and let

ε = ε(n) =
4 log n

n− 1
. (55)

Suppose for a contradiction that

s(n) ≤ N0 =

⌊
n2

(
1− (4 + δ)

√
log n

n

)⌋
. (56)
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Let us invoke Lemma 12, with ε given in (55). Lemma 12 tells us that
if ϕ : [n] → Z+ is such that

|Dist(ϕ)| ≥ (1− ε)
(

n

2

)
(57)

and im(ϕ) ⊂ [N ], then

N ≥ n2
(
1− (2 + o(1))

√
ε
)

= n2

(
1− (4 + o(1))

√
log n

n

)
. (58)

Comparing (56) and (58), we see that, for all n ≥ n0(δ), the ϕ : [n] → Z+

that are such that im(ϕ) ⊂ [N0] must all be such that (57) fails, that is,

|Dist(ϕ)| < (1− ε)
(

n

2

)
. (59)

Note that (56) tells us that if we consider the graphs G(ϕ,D) with ϕ : [n] →
Z+ such that im(ϕ) ⊂ [N0] and D ⊂ Z+ arbitrary, then we obtain all n-
vertex graphs up to isomorphism.

Remark 19(i) and (59), coupled with the fact that there are at least 2(n
2)/n!

graphs on n vertices up to isomorphism, tell us that

Nn
0

n!
2(1−ε)(n

2) ≥
(

N0

n

)
2(1−ε)(n

2) ≥ 1
n!

2(n
2). (60)

Inequalities (55) and (60) give that N0 ≥ n2, which contradicts (56) for
all n ≥ n0(δ). This contradiction completes the proof of Theorem 4. �

The proof of Theorem 5 is similar to the proof of Theorem 4. The following
estimates for the number of r-regular graphs will be used now. We first quote
a classical result of Bender and Canfield [4] (see also [5, Corollary 2.17]), in
the case in which r is a fixed integer.

Theorem 15. For any fixed integer r ≥ 2, the number R(n, r) of labelled,
n-vertex r-regular graphs satisfies

R(n, r) ≥ (
√

2 + o(1))e−(r2−1)/4

(
rr/2

er/2r!

)n

nrn/2 (61)

as n →∞ with rn even.

For recent results concerning the number of r-regular graphs with r =
r(n) → ∞ as n → ∞, see McKay and Wormald [16], where Theorem 15
is extended to r = o(

√
n). For a wider range of r, we shall make use of

the following fact, which may be deduced from the well known theorems of
Egorychev and Falikman [8, 10] and Brégman [7]. (A result stronger than
Fact 16 may be proved with the same method; here, we only state a result
that is enough for our purposes.)
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Fact 16. If r = r(n) satisfies log n � r ≤ n/2 and rn is even for all n,
then the number R(n, r) of labelled, r-regular graphs on n vertices satisfies

R(n, r) ≥
( (n

2

)
rn/2

)
(1− o(1))rn. (62)

Note that Fact 16 implies that the number of r-regular graphs on n ver-
tices is the same as the number of graphs with n vertices and rn/2 edges,
up to a factor of the form exp{−o(rn)}. We shall only give a brief sketch of
the proof of Fact 16 here. (For an alternative proof, the reader is referred
to Shamir and Upfal [19].)

Proof of Fact 16 (Sketch). For simplicity, we suppose that n and r are both
even. First we examine the number Bip(n/2, r/2) of r/2-regular spanning
subgraphs of Kn/2,n/2. In a standard way, using the theorems of Ego-
rychev [8] and Falikman [10] that give a lower bound for the number of
perfect matchings in regular bipartite graphs (van der Waerden’s conjec-
ture) and a result of Brégman [7] that gives an upper bound for such a
number (Minc’s conjecture), one may show that

Bip(n/2, r/2) ≥
(

n/2
r/2

)n/2

(1− o(1))rn. (63)

Next, one observes that

R(n, r) ≥
∏
j≥1

[
Bip

( n

2j
,

r

2j

)]2j−1

(64)

(for simplicity, divisibility conditions are ignored in (64)). One may de-
rive (62) from (63) and (64). �

We may now prove Theorem 5.

Proof of Theorem 5. We first prove (i). Note that if r = 2, then the claimed
bound (16) is trivial. Fix an integer r ≥ 3. In what follows, rn is supposed
to be even.

Let N be a positive integer. The number of graphs that are of the
form G(ϕ,D) with D ⊂ Z+ and with ϕ : [n] → Z+ such that im(ϕ) ⊂ [N ] is

≤
(

N

n

) ∑
1≤j≤rn/2

(
N − 1

j

)
, (65)

as we have
(
N
n

)
choices for im(ϕ) and we may suppose D ⊂ [N − 1].

Now suppose that sr(n) ≤ N . Then the quantity in (61) divided by n!
has to be at most the quantity in (65). This gives that

(
√

2 + o(1))e−(r2−1)/4

(
rr/2

er/2r!

)n
nrn/2

n!
≤
(

N

n

) ∑
1≤j≤rn/2

(
N − 1

j

)
. (66)
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Let us now show that N ≥ rn. Suppose for a contradiction that N < rn.
In this case, we get from (66) that

(
√

2 + o(1))e−(r2−1)/4

(
rr/2

er/2r!

)n
nrn/2

n!
≤
(

rn

n

)
2rn. (67)

Taking the nth root, we obtain from (67) that

rr/2

er/2r!
nr/2 ≤ rn2r, (68)

which is clearly false for n ≥ n0(r) because r ≥ 3. This contradiction shows
that we do have N ≥ rn.

It follows from N ≥ rn that the quantity in (65) is

≤ 1
2
rn

(
N

n

)(
N

rn/2

)
. (69)

From (66), we have

(
√

2 + o(1))e−(r2−1)/4

(
rr/2

er/2r!

)n
nrn/2

n!
≤ 1

2
rn

(
N

n

)(
N

rn/2

)
. (70)

Taking the nth root, we obtain

(1 + o(1))
rr/2

er/2r!
enr/2−1 ≤ eN

n

(
2eN
rn

)r/2

, (71)

whence

(1 + o(1))
rr

2r/2err!
nr ≤ N (r+2)/2. (72)

Therefore

N ≥ (1 + o(1))
(

1
r!

)2/(r+2)( r

e
√

2

)2r/(r+2)

n2r/(r+2), (73)

and (16) follows. This completes the proof of (i).
Let us now turn to the proof of (ii). Let r = r(n) as in the statement

of the theorem be given. Clearly, it follows from the upper bound in (15)
that sr(n) ≤ (1 + o(1))n2. We need to prove the reverse inequality.

Assume that, for some fixed ε > 0,

sr(n) ≤ (1− ε)n2 for arbitrarily large n. (74)

We shall derive a contradiction from this assumption, and this will complete
the proof of (17).

Lemma 12 tells us that if ϕ : [n] → Z+ is such that

im ϕ ⊂ [(1− ε)n2], (75)

then there exists some σ > 0 for which we have

|Dist(ϕ)| < (1− σ)
(

n

2

)
. (76)
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Thus, the total number of ϕ-graphs with ϕ satisfying (75) is, up to isomor-
phism, at most (

n2

n

) ∑
j≤rn/2

(
(1− σ)

(
n
2

)
j

)
. (77)

We shall now compare (62) and (77). It will be convenient to consider
separately two ranges for r.

Case 1. r ≤ (1− σ)(n− 1)/2

In this case, we bound the quantity in (77) from above by(
n2

n

)
rn

2

(
(1− σ)

(
n
2

)
rn/2

)
. (78)

Using that r � log n, we see that the quantity in (78) is smaller than (62)
for n ≥ n0(σ). This contradicts (74), completing the proof in this case.

Case 2. (1− σ)(n− 1)/2 < r ≤ (n− 1)/2

In this case, we bound the quantity in (77) from above by

2(1−σ)(n
2)(1 + o(1))n2

. (79)

However, examining (62), one sees that in this case the number of r-regular
graphs is at least ( (

n
2

)⌊
((1− σ)/2)

(
n
2

)⌋)(1− o(1))n2
. (80)

We shall estimate (80) using the following well known fact, which is a
consequence of Stirling’s formula.

Fact 17. Let 0 < α < 1 be fixed and let m be a positive integer. Then(
m

bαmc

)
=

[(
1
α

)α( 1
1− α

)1−α
]m

(1 + o(1))m, (81)

where o(1) → 0 as m →∞.

Applying Fact 17 to (80), we have that the number of r-regular graphs is
at least [(

2
1− σ

)(1−σ)/2( 2
(1 + σ)

)(1+σ)/2
](n

2)
(1− o(1))n2

. (82)

As in the first case, assumption (74) tells us that the quantity in (79) should
be at least as large as the quantity in (82), that is,[(

2
1− σ

)(1−σ)/2( 2
(1 + σ)

)(1+σ)/2
](n

2)
≤ 2(1−σ)(n

2)(1 + o(1))n2
. (83)

We shall now see that (83) does not hold if n ≥ n0(σ).
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Keeping in mind that σ > 0 is a constant and n tends to infinity, inequal-
ity (83) simplifies to(

1− σ

2

)
log2

2
1− σ

+
(

1 + σ

2

)
log2

2
1 + σ

≤ 1− σ. (84)

Equivalently,(
1− σ

2

)
(1− log2(1− σ)) +

(
1 + σ

2

)
(1− log2(1 + σ)) ≤ 1− σ; (85)

that is,
(1− σ) log2(1− σ) + (1 + σ) log2(1 + σ)− 2σ ≥ 0. (86)

Let
f(σ) = (1− σ) log2(1− σ) + (1 + σ) log2(1 + σ)− 2σ. (87)

Note that f(0) = 0 and

f ′(σ) = log2

(
1 + σ

1− σ

)
− 2 < 0. (88)

This implies that f is decreasing for σ ∈ (0, 1
2 ]. Hence, for any small σ > 0,

the inequalities given in (83)–(86) fail for n ≥ n0(σ). Thus, as in Case 1,
assumption (74) cannot hold. This completes the proof of Case 2, and
hence (ii) of Theorem 5 is proved. �

4.2. Proof of Theorem 6. We now consider the ‘multiplicity’ parame-
ter µ(n).

Proof of Theorem 6. We wish to show that there exists a graph G such that
for any ϕ : [n] → Z+ such that G is a ϕ-graph, no element of Dist(ϕ) has
cardinality 2 + 8 log2 n or more.

Suppose ϕ : [n] → Z+ is an injective function such that ∼ϕ has an equiv-
alence class C ⊂

(
[n]
2

)
of cardinality µ ≥ 2+8 log2 n. It is clear that C spans

a disjoint union of paths on [n]. Therefore, there is a matching M ⊂ C
with |M | ≥ |C|/2. Let ν = |M | ≥ 1 + 4 log2 n. Considering this matching,
one sees that there are 2ν distinct integers

x1 < y1, x2 < y2, . . . , xν < yν (89)

in im(ϕ) with all the differences yi − xi (1 ≤ i ≤ ν) equal.
Clearly, by the definition of G(ϕ,D), regardless of D, the subgraphs of

G(ϕ,D) induced by the xi (1 ≤ i ≤ ν) and the yi (1 ≤ i ≤ ν) are isomorphic.
To prove our theorem, namely, to verify (18), it suffices to prove the following
fact.

Fact 18. For all large enough n, there is an n-vertex graph G that does
not contain two vertex disjoint, isomorphic induced subgraphs of order ν ≥
1 + 4 log2 n.
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Proof. Consider the binomial random graph G = G(n, p) with p = 1/2, and
let ν = ν(n) ≥ 1 + 4 log2 n be given. Let Xν = Xν(G) be the number of
pairs (H,H ′) of induced subgraphs of G of order ν with H isomorphic to H ′.
Then

P(Xν > 0) ≤ E(Xν) < n2ν2−(ν
2) =

(
n22−(ν−1)/2

)ν
≤ 1, (90)

and therefore a graph as required does exist. �

As observed above, Fact 18 concludes the proof of Theorem 6. �

5. Proofs of Theorems 7, 8, and 9

Let us now prove our results concerning the number of distances in our
representations of graphs. Before we proceed, we make the following remark
on the number of graphs that may be ‘generated’ from a given ϕ.

Remark 19. (i) Fix ϕ : [n] → Z+. Then∣∣{G(ϕ,D) : D ⊂ Z+}
∣∣ ≤ 2|Dist(ϕ)|. (91)

(ii) Fix ϕ : [n] → Z+ and let D be an integer. Then∣∣{G(ϕ,D) : |D| ≤ D}
∣∣ ≤ D∑

j=0

(
|Dist(ϕ)|

j

)
≤

D∑
j=0

((n
2

)
j

)
. (92)

5.1. Proofs of Theorems 7 and 8. We start with our result concern-
ing D(n).

Proof of Theorem 7. We wish to show that for any ε > 0 and any n ≥ n0(ε),
there exists a graph G on n vertices such that whenever G is a ϕ-graph we
have

|Dist(ϕ)| >
(

n

2

)
− 4n log2 n + 2n− 1

2
log2(2πn)− ε.

Let D =
(
n
2

)
− 4n log2 n + 2n − (1/2) log2(2πn) − ε, where ε > 0 is an

arbitrary fixed constant, and suppose for a contradiction that D(n) ≤ D.
Note that if ϕ : [n] → Z+ is such that |Dist(ϕ)| ≤ D, then, by Remark 19(i),
we have ∣∣{G(ϕ,D) : D ⊂ Z+}

∣∣ ≤ 2|Dist(ϕ)| ≤ 1
2ε
√

2πn
2(n

2)n−4n4n. (93)

By Lemma 13, as we let ϕ : [n] → Z+ vary, we have

T (n) ≤ (1 + o(1))
(

en3

4

)n

(94)

distinct ∼ϕ. By (93) and (94), if we only consider ϕ : [n] → Z+ with
|Dist(ϕ)| ≤ D, we are able to produce

≤ (1 + o(1))
(

en3

4

)n( 4
n4

)n 2(n
2)

2ε
√

2πn
= (1 + o(1))

( e
n

)n 2(n
2)

2ε
√

2πn
(95)
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non-isomorphic graphs. On the other hand, using Stirling’s formula n! =
(1 + o(1))(n/e)n

√
2πn, we see that there are

≥ 1
n!

2(n
2) ≥ 1 + o(1)√

2πn

( e
n

)n
2(n

2) (96)

graphs on n vertices up to isomorphism. According to our assumption
that D(n) ≤ D, the quantity in (95) must be at least the quantity in (96),
which is not the case for n ≥ n0(ε). This completes the proof of Theo-
rem 7. �

Proof of Theorem 8. We shall prove that for almost all graphs G on n ver-
tices, if G is a D-graph, then

|D| ≥ 1
2

(
n

2

)
− (1 + o(1))n3/2

√
log n. (97)

The proof of this result follows the same steps as the proof of Theorem 7,
except that we shall make use of Remark 19(ii) instead of Remark 19(i).

For any given k, let us consider all D-graphs for all D ⊂ Z+ such that

|D| ≤ D =
1
2

(
n

2

)
− k. (98)

By Remark 19(ii) and Lemma 13, the number of such graphs is, up to
isomorphism,

≤ T (n)
D∑

j=0

((n
2

)
j

)
≤ (1 + o(1))

(
en3

4

)n D∑
j=0

((n
2

)
j

)

≤ (1 + o(1))
(

en3

4

)n

2(n
2) exp

{
−2k2

(
n

2

)−1
}

, (99)

where in the last inequality we used that

dN/2−ae∑
j=0

(
N

j

)
≤ 2Ne−2a2/N (100)

for all integers N ≥ 1 and all real a (see, e.g., [1, Theorem A.1]). From (99),
we see that if, for some ε > 0, an ε-fraction of the graphs on n vertices are
such that De(G) ≤ 1

2

(
n
2

)
− k, then we must have

ε√
2πn

( e
n

)n
2(n

2) ≤ (1 + o(1))
(

en3

4

)n

2(n
2) exp

{
−2k2

(
n

2

)−1
}

, (101)

which tells us that

ε√
2πn

(
4
n4

)n

≤ (1 + o(1)) exp

{
−2k2

(
n

2

)−1
}

. (102)
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Therefore, for large enough n, we have, say,

2
ε

√
πn

(
n4

4

)n

≥ exp

{
2k2

(
n

2

)−1
}

, (103)

and hence

2k2 ≤
(

n

2

)(
4n log n− n log 4 +

1
2

log(πn) + log
2
ε

)
, (104)

which tells us that
k ≤ (1 + o(1))n3/2

√
log n. (105)

As ε > 0 was arbitrary, this concludes the proof. �

5.2. Proof of Theorem 9. The proof of our result on De(n), related to the
number of ‘edge lengths’ in our representations of graphs, will be somewhat
more technical.

5.2.1. Preliminary lemmas. In this section, we shall state and prove two
simple inequalities related to a certain enumeration problem for an algebra
of sets. Suppose we have a set X of cardinality N , and suppose we have an
equivalence relation ∼ defined on X. We are interested in the sets that may
be obtained by taking unions of equivalence classes of ∼. In fact, we are
interested in such unions that have a given cardinality T . In what follows,
we shall have N =

(
n
2

)
and T quite close to

(
n
2

)
.

Both the statement and the proof of our first lemma are purely numerical,
and hence we postpone its combinatorial interpretation (see the discussion
after the proof of Lemma 20).

Let a pair of non-negative integers b = (b1, b2) such that

b1 + 2b2 =
(

n

2

)
(106)

be given. For all non-negative integers T and real g ≥ 0, we let

c(b;T, g) = c(b1, b2;T, g) =
∑(

b1

t1

)(
b2

t2

)
, (107)

where the sum is over all integers t1 and t2 such that t1+2t2 = T , and t2 ≥ g.
Note that, in (107), we may ignore the terms with t2 > b2. In what follows,
we always suppose that g ≤ t2 ≤ b2.

Lemma 20. Let ω = ω(n) →∞ as n →∞, and suppose ω = o(
√

n/ log n).
For any b = (b1, b2) as above, if g ≥ ωn3/2

√
log n and

T =
(

n

2

)
−
⌈
ωn3/2

√
log n

⌉
, (108)

then

c(b1, b2;T, g) ≤ n−ωn

((n
2

)
T

)
(109)

for all large enough n.
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Proof. We start by splitting the sum in (107) into two parts. Let us write
∑

1
for the sum over all integers t1 and t2 such that t1 + 2t2 = T , t2 ≥ g, and,
moreover, (

b2

t2

)
≥ 2nωn. (110)

Let
∑

2 denote the sum over the remaining pairs (t1, t2) in (107). Therefore,

c(b1, b2;T, g) =
∑

1

(
b1

t1

)(
b2

t2

)
+
∑

2

(
b1

t1

)(
b2

t2

)
. (111)

The first sum in (111) may be easily estimated from above, since

2nωn
∑

1

(
b1

t1

)(
b2

t2

)
≤
∑

1

(
b1

t1

)(
b2

t2

)2

≤
∑

1

(
b1

t1

)(
2b2

2t2

)
≤
((n

2

)
T

)
. (112)

Let us now consider the second sum in (111); that is, let us now consider t1
and t2 for which we have

(
b2
t2

)
< 2nωn. We shall estimate the terms(

b1

t1

)(
b2

t2

)
< 2nωn

(
b1

t1

)
(113)

by bounding
(
b1
t1

)
. Let us first derive some conclusions from the fact that(

b2
t2

)
< 2nωn. Suppose b2 ≥ 2t2. Then

2t2 ≤
(

b2

t2

)t2

≤
(

b2

t2

)
< 2nωn, (114)

and hence g ≤ t2 < 1+ωn log2 n, which is a contradiction for large enough n.
Therefore, we have b2 = t2 + s with 0 ≤ s < t2. But then

2s ≤
(

b2

s

)s

≤
(

b2

s

)
=
(

b2

t2

)
< 2nωn, (115)

whence

s < 1 + ωn log2 n. (116)

For convenience, put N =
(
n
2

)
. Now observe that(

b1

t1

)
=
(

N − 2b2

T − 2t2

)
=
(

N

T

)
(N − T )2(b2−t2)(T )2t2

(N)2b2

=
(

N

T

)
(N − T )2s

(N)2s

(T )2t2

(N − 2s)2t2

. (117)
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By (108), (116), and the fact that ω = o(
√

n/ log n), the quantity in (117)
is

≤
(

N

T

)(
N − T

N

)2s( T

N − 2s

)2t2

≤
(

N

T

)(⌈
ωn3/2

√
log n

⌉
N

)2s(
N − ωn3/2

√
log n

N − 2(1 + ωn log2 n)

)2t2

≤
(

N

T

)(
1− 2ω

√
(log n)/n

1− (5ω log2 n)/n

)2b2

≤
(

N

T

)(
1− ω

√
log n

n

)2b2

, (118)

for all sufficiently large n. Using that b2 ≥ t2 ≥ g ≥ ωn3/2
√

log n, we see
that the quantity in (118) is

≤
(

N

T

)
exp

(
−2ω2n log n

)
= n−2ω2n

(
N

T

)
. (119)

Therefore,∑
2

(
b1

t1

)(
b2

t2

)
< 2Tn−2ω2n+ωn

((n
2

)
T

)
<

1
2
n−ωn

((n
2

)
T

)
. (120)

Putting together (111), (112), and (120), we get that

c(b1, b2;T, g) =
∑

1

(
b1

t1

)(
b2

t2

)
+
∑

2

(
b1

t1

)(
b2

t2

)
≤ n−ωn

((n
2

)
T

)
, (121)

as required. �

We may interpret Lemma 20 as follows. Suppose we have a partition
of
(
[n]
2

)
into b1 blocks of cardinality 1 and b2 blocks of cardinality 2. Let us

call a set E ⊂
(
[n]
2

)
compatible with this partition if E is a union of blocks of

this partition. We are interested in compatible, T -element subsets E of
(
[n]
2

)
,

with the further restriction that we now describe.
For each such set E, let us say that we pay i− 1 pence for every block of

cardinality i that we use in the decomposition of E as a union of blocks. In
the function c(b;T, g) defined in (107), we are only counting those sets E
for which we pay at least g pence, and Lemma 20 tells us that not many
sets E cost at least g.

In our next lemma, we consider a general partition π of
(
[n]
2

)
, with bi

blocks of cardinality i (i ≥ 1). Lemma 21 tells us that the number of T -
element subsets E of

(
[n]
2

)
with cost ≥ 2g, compatible with π, is dominated

by the number of T -element subsets E of
(
[n]
2

)
with cost ≥ g, compatible

with π′, a certain partition with blocks of cardinality 1 and 2 only.
Let us describe the setup that we consider in Lemma 21, which is, in fact,

a purely numerical result. Suppose we have a sequence b = (b1, b2, . . . ) of
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non-negative integers such that

b1 + 2b2 + 3b3 + · · · =
(

n

2

)
. (122)

For all non-negative integers T and real g ≥ 0, we let

C(b;T, g) = C(b1, b2, . . . ;T, g) =
∑∏

i≥1

(
bi

ti

)
, (123)

where the sum is over all sequences t = (t1, t2, . . . ) of non-negative integers
such that

t1 + 2t2 + 3t3 + · · · = T (124)
and

t2 + 2t3 + 3t4 + · · · =
∑
i≥2

(i− 1)ti ≥ g. (125)

Given b = (b1, b2, . . . ) as above, let b′1 and b′2 be given by

b′1 = b1 + b3 + b5 + · · · =
∑
k≥0

b2k+1 (126)

and

b′2 = b2 + b3 + 2b4 + 2b5 + · · · =
∑
k≥2

⌊
k

2

⌋
bk. (127)

Note that, then, we have

b′1 + 2b′2 =
(

n

2

)
. (128)

Lemma 21. Let b, T , and g be as above. Then

C(b;T, 2g) ≤ c(b′1, b
′
2;T, g). (129)

Proof. Consider a partition π of
(
[n]
2

)
into bi blocks of size i for all i ≥ 1.

Then π induces another partition π′ of
(
[n]
2

)
into b′1 blocks of size 1 and b′2

blocks of size 2, where b′1 and b′2 are as in (126) and (127). We construct π′

from π by arbitrarily decomposing every block of size 2k into k blocks of size
2, and arbitrarily decomposing every block of size 2k + 1 into one singleton
block and k blocks of size 2.

Consider E, any T -element subset of
(
[n]
2

)
that is a union of blocks from π.

Then, clearly, E is a T -element subset composed solely of blocks from π′.
It remains to show that if E has ‘cost’ at least 2g in π, then G has cost at
least g in π′.

Consider any block with 2k + 1 elements contained in E. In π, such a
block would cost 2k pence. The corresponding blocks in π′ would consist
of a singleton block and k blocks of size 2, and hence cost only k pence in
total. Similarly, a block of size 2k in π would cost 2k − 1 pence, while the
corresponding k blocks of size 2 in π′ would also cost k pence in total. This
implies that the cost of any block in π is reduced by at most half in π′.
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Thus, if the total cost of E is at least 2g pence in π, then E would cost at
least g pence in π′, and the result holds. �

5.2.2. The proof. Having dealt with the technical lemmas in Section 5.2.1,
the proof of Theorem 9 will be straightforward. Recall that we wish to
show that for any sufficiently large n and ω = ω(n) such that ω(n) → ∞
as n → ∞, there exists a graph G on n vertices such that whenever G is a
D-graph, then

|D| ≥
(

n

2

)
− 3ωn3/2

√
log n− 3.

Proof of Theorem 9. Let ω = ω(n) as in the statement of our theorem be
given. We may clearly suppose that ω = o(

√
n/ log n).

Fix ϕ : [n] → Z+, and consider the equivalence relation∼ϕ defined on
(
[n]
2

)
.

Let b = (b1, b2, . . . ), where bi (i ≥ 1) is the number of blocks, i.e., equiva-
lence classes, of ∼ϕ with cardinality i.

Let us write G(n, T ) for the class of n-vertex graphs with T edges, up to
isomorphism, where

T =
(

n

2

)
−
⌈
ωn3/2

√
log n

⌉
. (130)

We have

|G(n, T )| ≥ 1
n!

((n
2

)
T

)
. (131)

Let
g =

⌈
ωn3/2

√
log n

⌉
(132)

and observe that the number of graphs in G(n, T ) that are isomorphic to
some G(ϕ,D) (D ⊂ Z+) with

T − |D| ≥ 2g = 2
⌈
ωn3/2

√
log n

⌉
(133)

is

≤ C(b;T, 2g) ≤ n−ωn

((n
2

)
T

)
, (134)

where the second inequality in (134) follows from Lemmas 20 and 21.
Recall that we are considering a fixed ϕ : [n] → Z+. However, as we

consider all ϕ : [n] → Z+, we only have

T (n) ≤ (1 + o(1))
(

en3

4

)n

(135)

distinct equivalence relations (see (39) and Lemma 13). Therefore, us-
ing (134) and (135), we see that the number of graphs in G(n, T ) that are
D-graphs with D satisfying (133) is

≤ T (n)C(b;T, 2g) ≤ (1 + o(1))
(

en3

4

)n

n−ωn

((n
2

)
T

)
, (136)
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which is a great deal smaller than the lower bound given in (131). This
shows that there is a graph G0 in G(n, T ) such that if G0 is isomorphic
to G(ϕ,D) for some ϕ : [n] → Z+ and D ⊂ Z+, then T − |D| < 2g. This
graph G0 shows that

De(n) = max
G

De(G) > T − 2g

= T − 2
⌈
ωn3/2

√
log n

⌉
>

(
n

2

)
− 3ωn3/2

√
log n− 3, (137)

as required. �

5.3. Proof of Corollary 10. Corollary 10 follows from Theorem 9 and
Lemma 12.

Proof of Corollary 10. Let ε > 0 and ω = ω(n) → ∞ as n → ∞ be given.
Recall Theorem 9, and let n be large enough so that there is an n-vertex
graph G for which we have

De(G) ≥
(

n

2

)
− 3ωn3/2

√
log n− 3. (138)

Let ϕ : [n] → Z+ and D ⊂ Z+ be such that G is isomorphic to G(ϕ,D). We
may clearly suppose that

|Dist(ϕ)| ≥ |D|. (139)

We shall show that max im(ϕ) is at least as large as the right-hand side
of (23) if n is sufficiently large, and this will conclude the proof of Corol-
lary 10.

Inequalities (138) and (139) imply that |Dist(ϕ)| is at least as large as
the right-hand side of (138). Therefore (27) in Lemma 12 holds with ε =
(6 + o(1))ω

√
(log n)/n, and hence that lemma implies that

max im(ϕ) ≥

(
1− (2

√
6 + o(1))ω1/2

(
log n

n

)1/4
)

n2. (140)

The result follows by taking n ≥ n0(ε). �

6. Concluding remarks

Theorems 8 and 9 may be generalized to representations of graphs in
high-dimensional Euclidean spaces. More precisely, we consider the graphs
G(ϕ,D), but now with ϕ : [n] → Rd and D ⊂ R. Let

DR
e (d, G) = min{|D| : D ⊂ R for which ∃ϕ ∈

(
Rd
)[n]

such that G is isomorphic to G(ϕ,D)}, (141)

Note that, even for d = 2, it becomes easier to represent graphs in the
form G(ϕ,D) in Rd: an immediate argument shows that any tree may be
drawn on the plane in such a way that all edges are straight lines of length 1,
and no two non-adjacent vertices are at distance 1. Therefore, DR

e (2, T ) = 1.
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We mention that bounded degree graphs may be represented in bounded
dimension: as proved in [15], if a graph G has maximum degree ∆, then
DR

e (2∆, G) = 1.
Let us now put DR

e (d, n) = maxG DR
e (d, G), where the maximum is taken

over all n-vertex graphs.
As long as d = o(n/ log n), a bound similar to the one in Theorem 9 holds

for DR
e (d, n). Moreover, one may also prove a bound similar to the one in

Theorem 8 for DR
e (d, G) for almost all n-vertex graphs G. To prove these

results, one may use a well known result of Warren [21].
In addition to these higher-dimensional remarks, one may consider several

problems. First, is it possible to pair the lower bounds on D(n) or De(n)
with similar upper bounds? Can one give a non-trivial bound from below
for µ(n)?

It seems that a challenging problem is to find a non-trivial upper bound
on sr(n) or, in fact, to bound the spacing numbers of any broad class of
graphs from above. In [2, Remark 7.2], a problem of representing trees in a
similar manner is considered, and remains open.

It was demonstrated above (via K1,n) that determining the spacing num-
ber of even very simple graphs may be somewhat delicate. It would be of
some interest to find exactly the spacing numbers of more graphs.

Acknowledgements. The authors would like to thank John Schmitt and
Brian Wagner for their help in proving Proposition 2. We would also like to
extend our thanks to B. Bollobás, A. Kostochka, N. Linial, and O. Pikhurko
for their helpful questions and remarks. We are greatly appreciative for the
input of N. Wormald on the enumeration of regular graph. Finally, many
thanks to the referee for several excellent suggestions.

References

1. Noga Alon and Joel H. Spencer, The probabilistic method, John Wiley & Sons Inc.,
New York, 1992, With an appendix by Paul Erdős, A Wiley-Interscience Publication.
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