LISTA 3

- 1. Seja K um corpo e seja L um corpo que é uma extensão de K. Mostre que se V é um K-espaço vetorial com base $\{x_{\lambda} : \lambda \in \Lambda\}$, então $L \otimes_K V$ é um L-espaço vetorial com base $\{1 \otimes x_{\lambda} : \lambda \in \Lambda\}$.
- 2. Seja R um anel, sejam M, M' R-módulos à direita e sejam N, N' R-módulos à esquerda. Sejam $f: M \to M'$ e $g: N \to N'$ homomorfismos de módulos. Mostre que existe um único homomorfismo de grupos $f \otimes g: M \otimes_R N \to M' \otimes_R N'$ tal que $(f \otimes g)(x \otimes y) = f(x) \otimes g(y)$, para todos $x \in M$ e $y \in N$.
- 3. Sejam M_R, M_R', RN, RN' e sejam $f_1, f_2, f \in \operatorname{Hom}_R(M, M')$ e $g_1, g_2, g \in \operatorname{Hom}_R(N, N')$. Demonstre as identidades abaixo:
 - (a) $(f_1 + f_2) \otimes g = (f_1 \otimes g) + (f_2 \otimes g)$,
 - (b) $f \otimes (g_1 + g_2) = (f \otimes g_1) + (f \otimes g_2)$,
 - (c) $f \otimes 0 = 0 \otimes g = 0$,
 - (d) $1_M \otimes 1_N = 1_{M \otimes_R N}$.
- 4. Sejam $M_R, M_R', M_R'', RN, RN', RN''$ e sejam $f \in \operatorname{Hom}_R(M, M'), f' \in \operatorname{Hom}_R(M', M''), g \in \operatorname{Hom}_R(N, N'), g' \in \operatorname{Hom}_R(N', N'')$. Mostre que $(f' \otimes g')(f \otimes g) = (f'f) \otimes (g'g)$.
- 5. (a) Sejam R e S álgebras sobre um anel comutativo K. Mostre que
 - (i) $R \otimes_K S$ é uma K-álgebra com produto satisfazendo $(r \otimes s)(r' \otimes s') = rr' \otimes ss'$, para todos $r, r' \in R$ e $s, s' \in S$;
 - (ii) as funções $\gamma_R : r \mapsto r \otimes 1$ e $\gamma_S : s \mapsto 1 \otimes s$ são homomorfismos de K-álgebras de R e S, respectivamente, em $R \otimes_K S$ satisfazendo $\gamma_R(r) \gamma_S(s) = \gamma_S(s) \gamma_R(r)$, para todos $r \in R$ e $S \in S$.
 - (b) Sejam R, S e T álgebras sobre um anel comutativo K. Sejam $f: R \to T$ e $g: S \to T$ homomorfismos de K-álgebras tais que f(r)g(s) = g(s)f(r), para todos $r \in R$ e $s \in S$. Mostre que existe um único homomorfismo de K-álgebras $h: R \otimes_K S \to T$ tal que $h\gamma_R = f$ e $h\gamma_S = g$. (Note que essas duas condições sobre h são equivalentes a $h(r \otimes s) = f(r)g(s)$, para todos $r \in R$ e $s \in S$.)
- 6. Sejam R e S álgebras sobre um anel comutativo K. Mostre que se M é um (R,S)-bimódulo, então M tem uma estrutura de $R \otimes_K S^{\mathrm{op}}$ -módulo à esquerda e uma estrutura de $R^{\mathrm{op}} \otimes_K S$ -módulo à direita tais que $(r \otimes s) \cdot m = rms$ e $m \cdot (r \otimes s) = rms$, para todos $r \in R, s \in S, m \in M$.
- 7. Seja K um corpo e sejam m, n inteiros não negativos. Mostre que as K-álgebras $\mathsf{M}_m(K) \otimes_K \mathsf{M}_n(K)$ e $\mathsf{M}_{mn}(K)$ são isomorfas.
- 8. Seja R um anel e seja P um R-módulo à esquerda projetivo e finitamente gerado. Mostre que o R-módulo à direita $P^* = \operatorname{Hom}_R(P,R)$ é projetivo e finitamente gerado.
- 9. Mostre que não existe nenhum funtor $F : \mathbf{Grp} \to \mathbf{Ab}$ tal que $FG = \mathbf{Z}(G)$, onde $\mathbf{Z}(G)$ denota o centro do grupo G. (Sugestão: Considere homomorfismos convenientes $S_2 \to S_3$ e $S_3 \to S_2$.)
- 10. Mostre que os funtores $\operatorname{Hom}_R(R,-)$ e o funtor esquecimento de $\operatorname{mod-}R$ em $\operatorname{mod-}\mathbb{Z}$ são naturalmente isomorfos.
- 11. Seja \mathcal{C} uma categoria e seja $F: \mathcal{C} \to \mathcal{C}$ um funtor. Mostre que se F é naturalmente isomorfo ao funtor identidade $1_{\mathcal{C}}$, então F é fiel e pleno.
- 12. Sejam R e S anéis, seja F: \mathbf{mod} - $R \to \mathbf{mod}$ -S um funtor covariante aditivo e seja G: \mathbf{mod} - $R \to \mathbf{mod}$ -S um funtor contravariante aditivo. Mostre que se $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ é uma sequência exata que

cinde em **mod**-R, então $0 \to FL \xrightarrow{F(f)} FM \xrightarrow{F(g)} FN \to 0$ e $0 \to GN \xrightarrow{G(g)} GM \xrightarrow{G(f)} GL \to 0$ são sequências exatas que cindem em **mod**-S.

- 13. Seja R um anel. Mostre que existem isomorfismo naturais entre os funtores abaixo:
 - (a) $1_{R-\mathbf{mod}}$ e $\operatorname{Hom}_R(R,-)$ de $R-\mathbf{mod}$ em $R-\mathbf{mod}$.
 - (b) $1_{R-\mathbf{mod}} \in (R \otimes_R -) \text{ de } R-\mathbf{mod} \in R-\mathbf{mod}$.
- 14. Seja R um anel, seja M um R-módulo à direita e seja $\{N_{\lambda} : \lambda \in \Lambda\}$ uma família de R-módulos à direita. Mostre que existem isomorfismos de \mathbb{Z} -módulos

$$\operatorname{Hom}_R\left(M,\prod_{\lambda\in\Lambda}N_\lambda\right)\cong\prod_{\lambda\in\Lambda}\operatorname{Hom}_R(M,N_\lambda)$$
 e $\operatorname{Hom}_R\left(\bigoplus_{\lambda\in\Lambda}N_\lambda,M\right)\cong\prod_{\lambda\in\Lambda}\operatorname{Hom}_R(N_\lambda,M)$.

- 15. Seja R um anel, seja M um R-módulo à direita finitamente gerado e seja $\{N_{\lambda}: \lambda \in \Lambda\}$ uma família de R-módulos à direita. Mostre que $\operatorname{Hom}_R(M,\bigoplus_{\lambda\in\Lambda}N_{\lambda})\cong\bigoplus_{\lambda\in\Lambda}\operatorname{Hom}_R(M,N_{\lambda})$, como \mathbb{Z} -módulos.
- 16. Seja R um anel e seja $0 \to L \to M \to N \to 0$ uma sequência exata em **mod**-R. Mostre que se L e N forem planos, então M é plano.
- 17. Sejam R e S anéis e seja F: \mathbf{mod} - $R \to \mathbf{mod}$ -S um funtor covariante e aditivo. Dizemos que F é exato se para toda sequência exata curta $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ de \mathbf{mod} -R, a sequência de \mathbf{mod} -S obtida aplicando F, qual seja, $0 \to FL \xrightarrow{F(f)} FM \xrightarrow{F(g)} FN \to 0$, for exata. Mostre que F é exato se, e somente se, para toda sequência exata $L \xrightarrow{f} M \xrightarrow{g} N$ de \mathbf{mod} -R, a sequência $FL \xrightarrow{F(f)} FM \xrightarrow{F(g)} FN$ for exata em \mathbf{mod} -S. Conclua que se F é exato então F manda sequências exatas arbitrárias de \mathbf{mod} -R em sequências exatas de \mathbf{mod} -S.
- 18. Mostre que um anel R é semi-simples se, e somente se, para todo anel S, qualquer funtor covariante e aditivo F: \mathbf{mod} - $R \to \mathbf{mod}$ -S for exato.
- 19. Seja R um anel e seja $S \subseteq Z(R)$ um subconjunto multiplicativamente fechado. Seja M um R-módulo à direita finitamente gerado. Mostre que $S^{-1}M = 0$ se, e somente se, existir $s \in S$ tal que Ms = 0.
- 20. Seja R um anel e seja $S \subseteq Z(R)$ um subconjunto multiplicativamente fechado. Seja $\lambda: R \to S^{-1}R$ o homomorfismo natural definido por $\lambda(a) = a/1$, para todo $a \in R$. Seja $\bar{R} = R/\ker \lambda$, seja $\pi: R \to \bar{R}$ o homomorfismo canônico e seja $\bar{S} = \pi(S)$. Mostre que $\bar{S} \subseteq Z(\bar{R})$, que \bar{S} é um subconjunto multiplicativamente fechado de \bar{R} e que os anéis $S^{-1}R$ e $\bar{S}^{-1}\bar{R}$ são isomorfos.
- 21. Seja R um anel e sejam $S, T \subseteq Z(R)$ dois subconjuntos multiplicativamente fechados tais que $S \subseteq T$. Mostre que existe um homomorfismo de anéis $\phi: S^{-1}R \longrightarrow T^{-1}R$ que satisfaz, para todo $a/s \in S^{-1}R$, $\phi(a/s) = a/s$, visto como um elemento de $T^{-1}R$. Além disso, mostre que as seguintes afirmações são equivalentes:
 - (i) ϕ é um isomorfismo.
 - (ii) Para cada $t \in T$, t/1 é inversível em $S^{-1}R$.
 - (iii) Para cada $t \in T$, existe $a \in R$ tal que $at \in S$.
- 22. Seja R um anel e seja Q um R-módulo à direita injetivo. Mostre que todo somando direto de Q é injetivo.
- 23. Mostre que um anel *R* é semi-simples se, e somente se, todo ideal à direita de *R* for um *R*-módulo injetivo.