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The underlying themes in this talk are:

o dynamics of asymptotically holomorphic maps — especially those
which are polynomial-like;

@ renormalization of one-dimensional dynamical systems — an area
of Dynamics to which Welington de Melo made some fundamental
contributions. (Here, we focus on a specific class of one-dimensional
systems, namely unimodal maps.)
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Asymptotically holomorphic maps

o Let UC C be a non-empty open set.
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Asymptotically holomorphic maps

o Let UC C be a non-empty open set.
o Letf:U— ((AZ be continuous, and let r > 1.
@ Also, let A C U be compact with f(A) C A

We say that f is asymptotically holomorphic of order r near A if:
(iy fecCr

(ii) f is a quasi-regular map;
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Asymptotically holomorphic maps

o Let UC C be a non-empty open set.
o Letf:U— ((AZ be continuous, and let r > 1.
@ Also, let A C U be compact with f(A) C A

We say that f is asymptotically holomorphic of order r near A if:
(iy fecCr
(ii) f is a quasi-regular map;

(iii) For all z € U, we have

\ufe(2)] < Cdist(z,A) 1.
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Asymptotically holomorphic maps

o Let UC C be a non-empty open set.
o Letf:U— ((AZ be continuous, and let r > 1.
@ Also, let A C U be compact with f(A) C A

We say that f is asymptotically holomorphic of order r near A if:
(iy fecCr
(ii) f is a quasi-regular map;

(iii) For all z € U, we have

\ufe(2)] < Cdist(z,A) 1.

0f(z)
0f(z)

Here, ur(z) = is the complex dilatation of f at z € U.
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AHPL-maps

Let U, V C C be Jordan domains, with U compactly contained in V/, and
let f: U — V be a proper C" map (r > 3).
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Let U, V C C be Jordan domains, with U compactly contained in V/, and
let f: U — V be a proper C" map (r > 3). Let

NCKr=[)f"(V)

n>0

be a forward invariant compact set contained in the filled-in Julia set Kr.
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AHPL-maps

Let U,V C C be Jordan domains, with U compactly contained in V, and
let f: U — V be a proper C" map (r > 3). Let

NCKe=()F"(V)

n>0

be a forward invariant compact set contained in the filled-in Julia set Kr.
We say that f is an asymptotically holomorphic polynomial-like map
(near A), or simply an AHPL-map, if

(i) fis a degree d > 2 branched covering map of U onto V/, branched at
a unique critical point ¢ € A of criticality given by d;

(i) f is asymptotically holomorphic of order r near A.

Note that A contains the post-critical set of f.
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AHPL-Maps (cont.)

@ Stoilow factorization: Every AHPL-map f : U — V can be written
as f = ¢og, where g: U — V is a holomorphic branched covering
map and ¢ : V — V' is an asymptotically holomorphic
homeomorphism.
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AHPL-Maps (cont.)

@ Stoilow factorization: Every AHPL-map f : U — V can be written
as f = ¢og, where g: U — V is a holomorphic branched covering
map and ¢ : V — V is an asymptotically holomorphic
homeomorphism.

@ Warning: In general, an AHPL-map is not uniformly quasi-regular.

In particular, it is in general not quasi-conformally conjugate to a
bona-fide polynomial-like map.
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AHPL-Maps (cont.)

@ Stoilow factorization: Every AHPL-map f : U — V can be written
as f = ¢og, where g: U — V is a holomorphic branched covering
map and ¢ : V — V is an asymptotically holomorphic
homeomorphism.

@ Warning: In general, an AHPL-map is not uniformly quasi-regular.
In particular, it is in general not quasi-conformally conjugate to a
bona-fide polynomial-like map.

@ Also, in general such a map is not uniformly asymptotically conformal
(UAQ) in the sense of Gardiner and Sullivan.
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Motivation and Goals

But why study AHPL-maps?
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But why study AHPL-maps?

@ There is a beautiful theory of renormalization of real-analytic
unimodal maps (with seminal contributions by Sullivan,
Douady-Hubbard, McMullen, Lyubich, Avila-Lyubich,...).
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unimodal maps (with seminal contributions by Sullivan,
Douady-Hubbard, McMullen, Lyubich, Avila-Lyubich,...).

@ There is also a theory of renormalization of C" unimodal maps (for
finite r) that unfortunately relies on heavy techniques from non-linear
analysis (initiated by Davie).
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finite r) that unfortunately relies on heavy techniques from non-linear
analysis (initiated by Davie).

@ Our goal is to use AHPL-maps to develop a more direct approach
that unifies the real-analytic and C" cases.
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@ There is also a theory of renormalization of C" unimodal maps (for
finite r) that unfortunately relies on heavy techniques from non-linear
analysis (initiated by Davie).

@ Our goal is to use AHPL-maps to develop a more direct approach
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Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields

natural questions to be asked about AHPL-maps and their Julia sets, to
wit:
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(1) Are the (expanding) periodic points dense in J¢?
(2) When is Jf locally connected?
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Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields

natural questions to be asked about AHPL-maps and their Julia sets, to
wit:

(1) Are the (expanding) periodic points dense in J¢?
(2) When is Jf locally connected?
(3)

3) What is the classification of stable components of Kr \ J¢?
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Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields
natural questions to be asked about AHPL-maps and their Julia sets, to
wit:

(1) Are the (expanding) periodic points dense in J¢?

(2) When is Jf locally connected?

(3) What is the classification of stable components of ICr \ J¢?
(4)

4) Can f have non-wandering domains?
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Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields
natural questions to be asked about AHPL-maps and their Julia sets, to
wit:

(1) Are the (expanding) periodic points dense in J¢?

(2) When is Jf locally connected?

(3) What is the classification of stable components of ICr \ J¢?

(4)

(5)

Can f have non-wandering domains?

Is there a (topological) pull-back argument for AHPL-maps?
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Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields
natural questions to be asked about AHPL-maps and their Julia sets, to
wit:
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(2) When is Jf locally connected?

(3) What is the classification of stable components of ICr \ J¢?
(4)
(

4) Can f have non-wandering domains?

5) Is there a (topological) pull-back argument for AHPL-maps?
These questions do not have obvious answers.
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Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields
natural questions to be asked about AHPL-maps and their Julia sets, to
wit:

(1) Are the (expanding) periodic points dense in J¢?

(2) When is Jf locally connected?

(3) What is the classification of stable components of ICr \ J¢?
(4)
(

5) Is there a (topological) pull-back argument for AHPL-maps?

Can f have non-wandering domains?

These questions do not have obvious answers.

But if f happens to be a deep renormalization of an infinitely
renormalizable asymptotically holomorphic map of bounded type, then we
can answer these questions.
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Main Theorem

Let f € C3t (o > 0) be a unimodal, infinitely renormalizable interval
map of bounded type whose critical point has criticality given by an even
integer d.
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Main Theorem

Let f € C3t (o > 0) be a unimodal, infinitely renormalizable interval
map of bounded type whose critical point has criticality given by an even
integer d. Then every C3T asymptotically holomorphic extension F of f
to a map defined on a neighborhood of the interval in the complex plane is
such that there exist a sequence of domains U, C V, C C containing the
critical point of f and iterates q, with the following properties.
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Main Theorem

Let f € C3t (o > 0) be a unimodal, infinitely renormalizable interval
map of bounded type whose critical point has criticality given by an even
integer d. Then every C3T asymptotically holomorphic extension F of f
to a map defined on a neighborhood of the interval in the complex plane is
such that there exist a sequence of domains U, C V, C C containing the
critical point of f and iterates q, with the following properties.

@ Themap G := F9: U, — V, is a degree d AHPL-map.

© For large enough n, each periodic point in the filled Julia set
K¢ = {z € U,; G'(2) € U, Vi > 0} is repelling.
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Main Theorem

Let f € C3t (o > 0) be a unimodal, infinitely renormalizable interval
map of bounded type whose critical point has criticality given by an even
integer d. Then every C3T asymptotically holomorphic extension F of f
to a map defined on a neighborhood of the interval in the complex plane is
such that there exist a sequence of domains U, C V, C C containing the
critical point of f and iterates q, with the following properties.

@ Themap G := F9: U, — V, is a degree d AHPL-map.

© For large enough n, each periodic point in the filled Julia set
Ke :={z € Uy, G'(z) € U, Vi > 0} is repelling.

© The Julia J¢ := 0K ¢ and filled-in Julia set of G coincide, i.e.,
Je =Ke.
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@ The map G is topologically conjugate to a polynomial mapping in a
neighbourhood of its Julia set. In particular, G has no wandering
domains.
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Renormalizing unimodal maps

@ A unimodal map f : [-1,1] — [—1,1] is said to be renormalizable if
there exist p = p(f) > 1 and A = \(f) = P(0) such that
fP|[—|Al,]Al] is unimodal and maps [—|A|, |A|] into itself.
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Renormalizing unimodal maps

@ A unimodal map f : [-1,1] — [—1,1] is said to be renormalizable if
there exist p = p(f) > 1 and A = \(f) = P(0) such that
fP|[—|Al,]Al] is unimodal and maps [—|A|, |A|] into itself.

@ With p smallest possible, the first renormalization of f is the map
Rf : [-1,1] — [-1,1] given by

Rf(x) = ; FP(\x) (1)
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Renormalizing unimodal maps

@ A unimodal map f : [-1,1] — [—1,1] is said to be renormalizable if
there exist p = p(f) > 1 and A = \(f) = P(0) such that
fP|[—|Al,]Al] is unimodal and maps [—|A|, |A|] into itself.

@ With p smallest possible, the first renormalization of f is the map
Rf : [-1,1] — [-1,1] given by

1
Rf(x) = 3 fP(Ax) (1)
o A; = fI([—|Al,|A]]), for 0 <j < p— 1, are pairwise disjoint and their

relative order inside [—1,1] determines a unimodal permutation 6 of
{0,1,...,p—1}.
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@ A unimodal map f : [-1,1] — [—1,1] is said to be renormalizable if
there exist p = p(f) > 1 and A = \(f) = P(0) such that
fP|[—|Al,]Al] is unimodal and maps [—|A|, |A|] into itself.

@ With p smallest possible, the first renormalization of f is the map
Rf : [-1,1] — [-1,1] given by

Rf(x) = ; FP(\x) (1)

o A; = fI([—|Al,|A]]), for 0 <j < p— 1, are pairwise disjoint and their
relative order inside [—1,1] determines a unimodal permutation 6 of
{0,1,...,p—1}.

o If Rf is itselt renormalizable, we may define R?f = R(Rf), etc.
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Renormalizing unimodal maps

@ A unimodal map f : [-1,1] — [—1,1] is said to be renormalizable if
there exist p = p(f) > 1 and A = \(f) = P(0) such that
fP|[—|Al,]Al] is unimodal and maps [—|A|, |A|] into itself.

@ With p smallest possible, the first renormalization of f is the map
Rf : [-1,1] — [-1,1] given by

Rf(x) = ;f”()\x) (1)

o A; = fI([—|Al,|A]]), for 0 <j < p— 1, are pairwise disjoint and their
relative order inside [—1,1] determines a unimodal permutation 6 of
{0,1,...,p—1}.

o If Rf is itselt renormalizable, we may define R?f = R(Rf), etc.

o If R"f is defined for all n > 1, we say that f is infinitely
renormalizable.
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Renormalizing unimodal maps (cont.)
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Renormalizing unimodal maps (cont.)
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Notation

Let £ : | — I be an infinitely renormalizable unimodal map (where
I =[-1,1]).
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Let £ : | — I be an infinitely renormalizable unimodal map (where
I =[-1,1]).

@ For each n > 0, we write
1
v
where o =1, Ao = 1, g, = [["=3 p(R'f) and X, = f9(0).

R"f(x) = fn(\px) ,
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Let £ : | — I be an infinitely renormalizable unimodal map (where
I =[-1,1]).
@ For each n > 0, we write

R™"f(x) = — - fI"(A\px) ,

1

An
where o =1, Ao = 1, g, = [["=3 p(R'f) and X, = f9(0).

@ The positive integers a; = p(R'f) > 2 are the renormalization periods
of f, and the g,'s are the closest return times of the orbit of the
critical point ¢ = 0.
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Let £ : | — I be an infinitely renormalizable unimodal map (where
I =[-1,1]).
@ For each n > 0, we write

R"f(x) = — - fI"(A\nx) ,

1

An
where o =1, Ao = 1, g, = [["=3 p(R'f) and X, = f9(0).

@ The positive integers a; = p(R'f) > 2 are the renormalization periods
of f, and the g,'s are the closest return times of the orbit of the
critical point ¢ = 0.

o We write Ag , = [—|Aal, [ An]], and A;, = F/(Ag.p) for
0 <i<qg,—1. These are the renormalization intervals of f at level
n, collectively denoted by C,,.
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Let £ : | — I be an infinitely renormalizable unimodal map (where
I =[-1,1]).
@ For each n > 0, we write

R"f(x) = — - fI"(A\nx) ,

1

An
where o =1, Ao = 1, g, = [["=3 p(R'f) and X, = f9(0).

@ The positive integers a; = p(R'f) > 2 are the renormalization periods
of f, and the g,'s are the closest return times of the orbit of the
critical point ¢ = 0.

o We write Ag , = [—|Aal, [ An]], and A;, = F/(Ag.p) for
0 <i<qg,—1. These are the renormalization intervals of f at level
n, collectively denoted by C,,.

@ The postcritical set of f is

oo gn—1

P()= U ain-

n=0 i=0
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Sullivan’s real bounds

Theorem (Real Bounds)

Let f: | — | be a C3 unimodal map as above, and suppose that f is infinitely
renormalizable with combinatorial type bounded by N > 1. Then there exist
constants Kr > 0 and 0 < ar < Bf < 1 such that the following holds for all
néeN.

(i) If A € Cpy1, A* € C, and A C A¥, then ar|A*| < |A] < Br|A¥|.

(i) Forall1<i<j<gqp,—1andeachx e A, we have

i |Aj,n]
Kr |Aj nl

|A',n|
| Al

< |(F7Y ()] < Ke

(iii) We have |[R"f|c2(y < K.

Moreover, there exist positive constants K = K(N), a = a(N), 5 = B(N),
with 0 < a < 8 <1, and ng = no(f) € N such that, for all n > ng, the
constants K¢, ar and Br in (i), (ii) and (iii) above can be replaced by K, a
and f3, respectively.
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Meaning

In informal terms, the theorem states three things.

@ The post-critical set P(f) is a Cantor set with bounded geometry.
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In informal terms, the theorem states three things.
@ The post-critical set P(f) is a Cantor set with bounded geometry.

@ The successive renormalizations of f are uniformly bounded in the C?
topology.
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In informal terms, the theorem states three things.
@ The post-critical set P(f) is a Cantor set with bounded geometry.
@ The successive renormalizations of f are uniformly bounded in the C?
topology.
@ These bounds become universal at sufficiently deep levels (such
bounds are called beau by Sullivan).

November 23rd, 2018 14 / 31
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Complex bounds

@ Sullivan also showed that all limits of renormalization are in fact
restrictions of nice complex-analytic maps, namely quadratic-like (or
polynomial-like) maps — with good bounds.
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Complex bounds

@ Sullivan also showed that all limits of renormalization are in fact
restrictions of nice complex-analytic maps, namely quadratic-like (or
polynomial-like) maps — with good bounds.

@ These are the so-called complex bounds. Just as the real bounds,
the complex bounds are beau.
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Theorem (Complex bounds)

Let f : U — C be an asymptotically holomorphic map of order r > 3 (with
U D 1) and suppose that f|; : | — | is an infinitely renormalizable unimodal
map with combinatorial type bounded by N. There exist C = C(N) > 1 and
no = ng(f) € N such that the following statements hold true for all n > ny.
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Theorem (Complex bounds)

Let f : U — C be an asymptotically holomorphic map of order r > 3 (with
U D 1) and suppose that f|; : | — | is an infinitely renormalizable unimodal
map with combinatorial type bounded by N. There exist C = C(N) > 1 and
no = ng(f) € N such that the following statements hold true for all n > ny.

(i) For each 0 < i < g, — 1 there exist Jordan domains U; ,, V; », with
piecewise smooth boundaries and symmetric about the real axis, such
that A; , C U;n C Vi, the Vi, are pairwise disjoint, and we have the
sequence of surjections

f f f f

f f f
Uojn — Ui — -~ — Ugp1n — Voo — Vip— ---

— \éqn—fl,n .
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Theorem (Complex bounds)

Let f : U — C be an asymptotically holomorphic map of order r > 3 (with
U D 1) and suppose that f|; : | — | is an infinitely renormalizable unimodal
map with combinatorial type bounded by N. There exist C = C(N) > 1 and
no = ng(f) € N such that the following statements hold true for all n > ny.
(i) For each 0 < i < g, — 1 there exist Jordan domains U; ,, V; », with
piecewise smooth boundaries and symmetric about the real axis, such
that A; , C U;n C Vi, the Vi, are pairwise disjoint, and we have the
sequence of surjections
Uop o hp Do Dby 10 D VoDV, Do DV, 1.

(i) Foreach0<i<gqg,—1, fi,= fq"|U,.1n : Uin — Vin is a well-defined
AHPL-map with critical point at f'(c).
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Theorem (Complex bounds)

Let f : U — C be an asymptotically holomorphic map of order r > 3 (with
U D 1) and suppose that f|; : | — | is an infinitely renormalizable unimodal
map with combinatorial type bounded by N. There exist C = C(N) > 1 and
no = ng(f) € N such that the following statements hold true for all n > ny.

(i) For each 0 < i < g, — 1 there exist Jordan domains U; ,, V; », with
piecewise smooth boundaries and symmetric about the real axis, such
that A; , C U;n C Vi, the Vi, are pairwise disjoint, and we have the
sequence of surjections

f f f f

f f f
Uojn — Ui — -~ — Ugp1n — Voo — Vip— ---

— an,]_’,, .

(i) Foreach0<i<gqg,—1, fi,= fq"|U,.1n : Uin — Vin is a well-defined
AHPL-map with critical point at f'(c).

(i) We have mod (Vi \ Uin) > C1 and diam(V; ) < C|A; 4|, for all
0<i<gy—1.
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Theorem (Complex bounds)

Let f : U — C be an asymptotically holomorphic map of order r > 3 (with
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piecewise smooth boundaries and symmetric about the real axis, such
that A; , C U;n C Vi, the Vi, are pairwise disjoint, and we have the
sequence of surjections

f f f f

f f f
Uojn — Ui — -~ — Ugp1n — Voo — Vip— ---

— an,]_’,, .

(i) Foreach0<i<gqg,—1, fi,= fq"|U,.1n : Uin — Vin is a well-defined
AHPL-map with critical point at f'(c).

(i) We have mod (V. \ Uin) > C ! and diam(V; ) < C|Aj,
0<i<gy,—1.

(iv) The map fi : Uiy — Vi, has a Stoilow decomposition f; , = ¢j,n© gi.n
such that K(¢jn) <1+ C|Ao,n|, for each0<i<g,—1.

, for all
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Theorem (Complex bounds)

Let f : U — C be an asymptotically holomorphic map of order r > 3 (with
U D 1) and suppose that f|; : | — | is an infinitely renormalizable unimodal
map with combinatorial type bounded by N. There exist C = C(N) > 1 and
no = ng(f) € N such that the following statements hold true for all n > ny.

(i) For each 0 < i < g, — 1 there exist Jordan domains U; ,, V; », with
piecewise smooth boundaries and symmetric about the real axis, such
that A; , C U;n C Vi, the Vi, are pairwise disjoint, and we have the
sequence of surjections

f f f f

f f f
Uojn — Ui — -~ — Ugp1n — Voo — Vip— ---

— an,]_’,, .

(i) Foreach0<i<gqg,—1, fi,= fq"|U,.1n : Uin — Vin is a well-defined
AHPL-map with critical point at f'(c).

(i) We have mod (V. \ Uin) > C ! and diam(V; ) < C|Aj,
0<i<gy,—1.

(iv) The map fi : Uiy — Vi, has a Stoilow decomposition f; , = ¢j,n© gi.n
such that K(¢jn) <1+ C|Ao,n|, for each0<i<g,—1.

, for all

This theorem is a straightforward consequence of (a special case of) the

complex bounds proved by Clark, van Strien & Trejo in [2].
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Example: Period-doubling

Here is the situation for period-doubling, when n =2 and g, = 22 = 4.
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Here is the situation for period-doubling, when n =2 and g, = 22 = 4.
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Example: Period-doubling

Here is the situation for period-doubling, when n =2 and g, = 22 = 4.
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Example: Period-doubling

Here is the situation for period-doubling, when n =2 and g, = 22 = 4.

f f

R N
SRS

~_ 7

f
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C? Bounds for AHPL-maps

One can go a bit further and bound also the C? norms of such
renormalizations.
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C? Bounds for AHPL-maps

One can go a bit further and bound also the C? norms of such
renormalizations.

Theorem

Let f : U — V be an infinitely renormalizable AHPL-map of bounded
combinatorial type bounded by N € N, and let R"f : U, — V,,, n > 1, be
the sequence of renormalizations of f. There exists a constant C¢ > 0
such that ||[R"f||c2(y,) < Cr. Moreover, there exist C = C(N) > 0 and
m = m(f) € N such that [|R"f||c2y,)y < C for all n > m.
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C? Bounds for AHPL-maps

One can go a bit further and bound also the C? norms of such
renormalizations.

Theorem

Let f : U — V be an infinitely renormalizable AHPL-map of bounded
combinatorial type bounded by N € N, and let R"f : U, — V,,, n > 1, be
the sequence of renormalizations of f. There exists a constant C¢ > 0
such that ||[R"f||c2(y,) < Cr. Moreover, there exist C = C(N) > 0 and
m = m(f) € N such that [|R"f||c2y,)y < C for all n > m.

The proof uses the real as well as the complex bounds. In fact, the
complex bounds are essential even to make sure that the renormalizations
R"f appearing above are well-defined AHPL-maps.
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C? Bounds for AHPL-maps

One can go a bit further and bound also the C? norms of such
renormalizations.

Theorem

Let f : U — V be an infinitely renormalizable AHPL-map of bounded
combinatorial type bounded by N € N, and let R"f : U, — V,,, n > 1, be
the sequence of renormalizations of f. There exists a constant C¢ > 0
such that ||[R"f||c2(y,) < Cr. Moreover, there exist C = C(N) > 0 and
m = m(f) € N such that [|R"f||c2y,)y < C for all n > m.

The proof uses the real as well as the complex bounds. In fact, the
complex bounds are essential even to make sure that the renormalizations
R"f appearing above are well-defined AHPL-maps.

The proof also uses the chain rule for the second derivative of a
composition.
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Recall the Main Theorem

Let f € C3t (a > 0) be a unimodal, infinitely renormalizable interval map of
bounded type whose critical point has criticality given by an even integer d.
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Recall the Main Theorem

Main Theorem

Let f € C3t (a > 0) be a unimodal, infinitely renormalizable interval map of
bounded type whose critical point has criticality given by an even integer d.
Then every C3+ asymptotically holomorphic extension F of f to a map
defined on a neighborhood of the interval in the complex plane is such that
there exist a sequence of domains U, C V,, C C containing the critical point
of f and iterates q, with the following properties.
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Main Theorem

Let f € C3t (a > 0) be a unimodal, infinitely renormalizable interval map of
bounded type whose critical point has criticality given by an even integer d.
Then every C3+ asymptotically holomorphic extension F of f to a map
defined on a neighborhood of the interval in the complex plane is such that
there exist a sequence of domains U, C V,, C C containing the critical point
of f and iterates q, with the following properties.

@ Themap G :=F9: U, — V, is a degree d AHPL-map.
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Recall the Main Theorem

Main Theorem

Let f € C3t (a > 0) be a unimodal, infinitely renormalizable interval map of
bounded type whose critical point has criticality given by an even integer d.
Then every C3+ asymptotically holomorphic extension F of f to a map
defined on a neighborhood of the interval in the complex plane is such that
there exist a sequence of domains U, C V,, C C containing the critical point
of f and iterates q, with the following properties.

@ Themap G :=F9: U, — V, is a degree d AHPL-map.

@ For large enough n, each periodic point in the filled Julia set

K¢ :={z € Uy; G'(z) € U, Vi > 0} is repelling.
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Recall the Main Theorem

Main Theorem

Let f € C3t (a > 0) be a unimodal, infinitely renormalizable interval map of
bounded type whose critical point has criticality given by an even integer d.
Then every C3+ asymptotically holomorphic extension F of f to a map
defined on a neighborhood of the interval in the complex plane is such that
there exist a sequence of domains U, C V,, C C containing the critical point
of f and iterates q, with the following properties.

@ Themap G :=F9: U, — V, is a degree d AHPL-map.

@ For large enough n, each periodic point in the filled Julia set

K¢ :={z € Uy; G'(z) € U, Vi > 0} is repelling.
Q The Julia Jg .= 0K ¢ and filled-in Julia set of G coincide, i.e., J¢c = K¢.
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Main Theorem

Let f € C3t (a > 0) be a unimodal, infinitely renormalizable interval map of
bounded type whose critical point has criticality given by an even integer d.
Then every C3+ asymptotically holomorphic extension F of f to a map
defined on a neighborhood of the interval in the complex plane is such that
there exist a sequence of domains U, C V,, C C containing the critical point
of f and iterates q, with the following properties.
@ Themap G :=F9: U, — V, is a degree d AHPL-map.
@ For large enough n, each periodic point in the filled Julia set
K¢ :={z € Uy; G'(z) € U, Vi > 0} is repelling.
Q The Julia Jg .= 0K ¢ and filled-in Julia set of G coincide, i.e., J¢c = K¢.
@ The map G is topologically conjugate to a polynomial mapping in a
neighbourhood of its Julia set. In particular, G has no wandering domains.
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Q The Julia Jg .= 0K ¢ and filled-in Julia set of G coincide, i.e., J¢c = K¢.
@ The map G is topologically conjugate to a polynomial mapping in a
neighbourhood of its Julia set. In particular, G has no wandering domains.
Q The Julia set J¢ is locally connected.
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Ingredients in the Proof of the Main Theorem

The proof uses:
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Ingredients in the Proof of the Main Theorem

The proof uses:

@ The real bounds, the C2 bounds, and the complex bounds.
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Ingredients in the Proof of the Main Theorem

The proof uses:
@ The real bounds, the C2 bounds, and the complex bounds.
@ Control of distortion by f of the hyperbolic metric of Y = V \ R.
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Ingredients in the Proof of the Main Theorem

The proof uses:
@ The real bounds, the C2 bounds, and the complex bounds.

@ Control of distortion by f of the hyperbolic metric of Y = V \ R.

@ Control of sizes of puzzle pieces.

November 23rd, 2018 20 /31
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Ingredients in the Proof of the Main Theorem

The proof uses:
@ The real bounds, the C2 bounds, and the complex bounds.
@ Control of distortion by f of the hyperbolic metric of Y = V \ R.
@ Control of sizes of puzzle pieces.

@ Holomorphic motions (Slodkowski's theorem).
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Key to the proof of the Main Theorem
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Key to the proof of the Main Theorem

Proposition

If f:U— V is as in the theorem and z € K¢ is a point whose forward
orbit never lands on the real axis, then for all non-zero tangent vectors

ve T,Y we have
o IDFEvly
m ———— — 0.
nmoo  |lv]ly
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Key to the proof of the Main Theorem

Proposition

If f:U— V is as in the theorem and z € K¢ is a point whose forward
orbit never lands on the real axis, then for all non-zero tangent vectors
ve T,Y we have

n
im 12F7@VIY
oo ||v]y

The idea behind the proof is to use the Stoilow decomposition f = ¢po g
and show that, as we iterate, the expansion of the hyperbolic metric
by g beats the possible contraction by ¢ at each scale.
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Bounding expansion

Lemma

Let X, Y be hyperbolic Riemann surfaces with X C Y, andlet g : X — Y

be holomorphic univalent and onto. Then for all x € X and each tangent
vector v € T, X we have

IDg(x)vly = &(sx,v(x))Hvly (2)

where sx y(x) = dy(x, Y \ X) and ®(-) is the universal function given by

®(s) = sinh(s) Iog<1+e_s> . 3)

1—e*
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Bounding expansion

Lemma
Let X, Y be hyperbolic Riemann surfaces with X C Y, andlet g : X — Y

be holomorphic univalent and onto. Then for all x € X and each tangent
vector v € T, X we have

IDg(x)vly = &(sx,v(x))Hvly (2)

where sx y(x) = dy(x, Y \ X) and ®(-) is the universal function given by

o(s) = sinh (s) |og<1f::> . (3)

@ This lemma is essentially due to McMullen.
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Bounding expansion

Lemma
Let X, Y be hyperbolic Riemann surfaces with X C Y, andlet g : X — Y

be holomorphic univalent and onto. Then for all x € X and each tangent
vector v € T, X we have

IDg(x)vly = &(sx,v(x))Hvly (2)

where sx y(x) = dy(x, Y \ X) and ®(-) is the universal function given by

o(s) = sinh (s) |og<1f::> . (3)

@ This lemma is essentially due to McMullen.

@ Note that ®(s) is a continuous monotone increasing function with
®(0) =0 and d(c0) = 1.

Edson de Faria (IME-USP) Dynamics of Asymptotically Holomorphic Po November 23rd, 2018 22 /31



Bounding contraction

@ How much does the derivative of a quasiconformal diffeomorphism
¢ Y — Y distort the hyperbolic length of tangent vectors?
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Bounding contraction

@ How much does the derivative of a quasiconformal diffeomorphism
¢ Y — Y distort the hyperbolic length of tangent vectors?

@ The answer lies in the well-known double inequality

1 h |Dg(z)v|y ? h
K¢(Z)J¢(z) < <T> < K¢(Z)J¢(z)
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Bounding contraction

@ How much does the derivative of a quasiconformal diffeomorphism
¢ Y — Y distort the hyperbolic length of tangent vectors?

@ The answer lies in the well-known double inequality

1 h |Dg(z)v|y ? h
K¢(Z)J¢(z) < <T> < K¢(Z)J¢(z)

@ Hence, to bound the possible contraction of vectors by D¢, it suffices
to bound its hyperbolic Jacobian J(Z(z).
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Bounding contraction (cont.)

Proposition

Let o > 1 and 8 > 1 be given, and suppose ¢ : D — D is a C?
quasiconformal diffeomorphism. If z € D is such that

Lo me@)
a " < ) <

and

sup [ps(¢)] < co(l - [2])7
(eA.

then for each 0 < 6 < 1 we have
J(z) < 14 G(1—|z))P0=0

where Cy > 0 depends on « and the C? norm of ¢.
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Bounding contraction (cont.)

Proposition

Let o > 1 and 8 > 1 be given, and suppose ¢ : D — D is a C?
quasiconformal diffeomorphism. If z € D is such that

Lo me@)
a " < ) <

and

sup [ps(¢)] < co(l - [2])7
(eA.

then for each 0 < 6 < 1 we have
J(z) < 14 G(1—|z))P0=0

where Cy > 0 depends on « and the C? norm of ¢.

In the application, 8 =r — 1.
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@ Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter
families of unimodals, they found remarkable universal scaling laws for
cascades of period-doubling bifurcations, both in parameter space and
in the geometry of the post-critical set of the map at the end of the
cascade. Proposed explanation: a period-doubling renormalization
operator (with hyperbolic fixed-point).
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History (cont.)

@ Davie (1996): Using hard analysis, extended the hyperbolicity picture
(local stable and unstable manifolds) for the period-doubling operator
from Lanford’s Banach space to the space of C?T¢ maps.
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Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of
bounded combinatorial type) is a hyperbolic Cantor set where the operator
acts as the full shift in a finite number of symbols.
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Major Conceptual Breakthroughs
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Major Conceptual Breakthroughs

@ Sullivan (1992): Tied the subject to the theory of quadratic-like maps
(introduced by Douady and Hubbard). Established real and complex a
priori bounds for renormalization. Gave the first conceptual proof of
existence of the Cantor limit set (the attractor of renormalization),
and proved convergence towards the attractor (without a rate).
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@ McMullen (1996): Proved that the convergence towards the attractor
takes place at an exponential rate.
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@ Lyubich (1999): Established the conjecture in the space of
quadratic-like germs up to affine equivalence, where the
renormalization operator is analytic.
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Major Conceptual Breakthroughs (cont.)

o Avila and Lyubich (2010): Working in the space of polynomial-like
germs, they proved exponential contraction of renormalization along
hybrid classes of infinitely renormalizable unimodal maps with
arbitrary (real) combinatorics.

Edson de Faria (IME-USP) Dynamics of Asymptotically Holomorphic Po November 23rd, 2018 30 /31



Major Conceptual Breakthroughs (cont.)

o Avila and Lyubich (2010): Working in the space of polynomial-like
germs, they proved exponential contraction of renormalization along
hybrid classes of infinitely renormalizable unimodal maps with
arbitrary (real) combinatorics.

® They deduced that orbits of renormalization are asymptotic to the full
renormalization horseshoe.
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Major Conceptual Breakthroughs (cont.)

o Avila and Lyubich (2010): Working in the space of polynomial-like
germs, they proved exponential contraction of renormalization along
hybrid classes of infinitely renormalizable unimodal maps with
arbitrary (real) combinatorics.

@ They deduced that orbits of renormalization are asymptotic to the full
renormalization horseshoe.

@ Their methods apply to unicritical polynomial-like maps, and yield a
unified approach, valid for all (real) combinatorics and all degrees of
criticality.
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C" smoothness

o dF, de Melo, Pinto (2006): Established Lanford's conjecture in the
space of C" quadratic unimodal maps. Here r is any real number
> 2+ «a, where oo < 1 is the largest of the Hausdorff dimensions of
the post-critical sets of maps in the attractor. The proof combines
Lyubich's theorem with Davie's tour de force.
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C" smoothness

o dF, de Melo, Pinto (2006): Established Lanford's conjecture in the
space of C" quadratic unimodal maps. Here r is any real number
> 2+ «a, where oo < 1 is the largest of the Hausdorff dimensions of
the post-critical sets of maps in the attractor. The proof combines
Lyubich's theorem with Davie's tour de force.

@ The authors also went beyond the conjecture, proving that the local
stable manifolds of the renormalization operator form a C® lamination
whose holonomy is C1*# for some 3 > 0. In particular, every smooth
curve which is transversal to such lamination intersects it at a set of
constant Hausdorff dimension less than one [3].
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