Dynamics of Asymptotically Holomorphic Polynomial-like Maps

In memory of Welington de Melo (1946-2016)

Edson de Faria

Department of Mathematics IME-USP

November 23rd, 2018

(based on joint work with T. Clark and S. van Strien) arXiv:1804.06122v1 [math.DS]

The underlying themes in this talk are:

The underlying themes in this talk are:

• **dynamics of asymptotically holomorphic maps** – especially those which are *polynomial-like*;

The underlying themes in this talk are:

- dynamics of asymptotically holomorphic maps especially those which are polynomial-like;
- renormalization of one-dimensional dynamical systems an area of Dynamics to which Welington de Melo made some fundamental contributions.

The underlying themes in this talk are:

- dynamics of asymptotically holomorphic maps especially those which are polynomial-like;
- renormalization of one-dimensional dynamical systems an area of Dynamics to which Welington de Melo made some fundamental contributions. (Here, we focus on a specific class of one-dimensional systems, namely unimodal maps.)

• Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.

- Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.
- Let $f: U \to \widehat{\mathbb{C}}$ be continuous, and let r > 1.

- Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.
- Let $f: U \to \widehat{\mathbb{C}}$ be continuous, and let r > 1.
- Also, let $\Lambda \subset U$ be compact with $f(\Lambda) \subseteq \Lambda$

Definition

We say that f is **asymptotically holomorphic** of order r **near** Λ if:

- Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.
- Let $f: U \to \widehat{\mathbb{C}}$ be continuous, and let r > 1.
- Also, let $\Lambda \subset U$ be compact with $f(\Lambda) \subseteq \Lambda$

Definition

We say that f is **asymptotically holomorphic** of order r **near** Λ if:

(i) $f \in C^r$;

- Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.
- Let $f: U \to \widehat{\mathbb{C}}$ be continuous, and let r > 1.
- Also, let $\Lambda \subset U$ be compact with $f(\Lambda) \subseteq \Lambda$

Definition

We say that f is **asymptotically holomorphic** of order r **near** Λ if:

- (i) $f \in C^r$;
- (ii) f is a quasi-regular map;

- Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.
- Let $f: U \to \widehat{\mathbb{C}}$ be continuous, and let r > 1.
- Also, let $\Lambda \subset U$ be compact with $f(\Lambda) \subseteq \Lambda$

Definition

We say that f is **asymptotically holomorphic** of order r **near** Λ if:

- (i) $f \in C^r$;
- (ii) f is a quasi-regular map;
- (iii) For all $z \in U$, we have

$$|\mu_f(z)| \leq C \operatorname{dist}(z, \Lambda)^{r-1}$$
.

- Let $U \subseteq \widehat{\mathbb{C}}$ be a non-empty open set.
- Let $f: U \to \widehat{\mathbb{C}}$ be continuous, and let r > 1.
- Also, let $\Lambda \subset U$ be compact with $f(\Lambda) \subseteq \Lambda$

Definition

We say that f is **asymptotically holomorphic** of order r **near** Λ if:

- (i) $f \in C^r$;
- (ii) f is a quasi-regular map;
- (iii) For all $z \in U$, we have

$$|\mu_f(z)| \leq C \operatorname{dist}(z, \Lambda)^{r-1}$$
.

Here, $\mu_f(z) = \frac{\overline{\partial} f(z)}{\partial f(z)}$ is the **complex dilatation** of f at $z \in U$.

Definition

Let $U, V \subset \mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f: U \to V$ be a proper C^r map $(r \ge 3)$.

Definition

Let $U,V\subset\mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f:U\to V$ be a proper C^r map $(r\geq 3)$. Let

$$\Lambda\subseteq\mathcal{K}_f=\bigcap_{n\geq0}f^{-n}(V)$$

be a forward invariant compact set contained in the filled-in Julia set \mathcal{K}_f .

Definition

Let $U, V \subset \mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f: U \to V$ be a proper C^r map $(r \ge 3)$. Let

$$\Lambda\subseteq\mathcal{K}_f=\bigcap_{n\geq 0}f^{-n}(V)$$

be a forward invariant compact set contained in the *filled-in Julia set* \mathcal{K}_f . We say that f is an **asymptotically holomorphic polynomial-like map** (near Λ), or simply an **AHPL-map**, if

Definition

Let $U, V \subset \mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f: U \to V$ be a proper C^r map $(r \ge 3)$. Let

$$\Lambda\subseteq\mathcal{K}_f=\bigcap_{n\geq0}f^{-n}(V)$$

be a forward invariant compact set contained in the *filled-in Julia set* \mathcal{K}_f . We say that f is an **asymptotically holomorphic polynomial-like map** (near Λ), or simply an **AHPL-map**, if

(i) f is a degree $d \ge 2$ branched covering map of U onto V, branched at a unique critical point $c \in \Lambda$ of criticality given by d;

Definition

Let $U,V\subset\mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f:U\to V$ be a proper C^r map $(r\geq 3)$. Let

$$\Lambda\subseteq\mathcal{K}_f=\bigcap_{n\geq0}f^{-n}(V)$$

be a forward invariant compact set contained in the *filled-in Julia set* \mathcal{K}_f . We say that f is an **asymptotically holomorphic polynomial-like map** (near Λ), or simply an **AHPL-map**, if

- (i) f is a degree $d \ge 2$ branched covering map of U onto V, branched at a unique critical point $c \in \Lambda$ of criticality given by d;
- (ii) f is asymptotically holomorphic of order r near Λ .

Definition

Let $U, V \subset \mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f: U \to V$ be a proper C^r map $(r \ge 3)$. Let

$$\Lambda\subseteq\mathcal{K}_f=\bigcap_{n\geq0}f^{-n}(V)$$

be a forward invariant compact set contained in the *filled-in Julia set* \mathcal{K}_f . We say that f is an **asymptotically holomorphic polynomial-like map** (near Λ), or simply an **AHPL-map**, if

- (i) f is a degree $d \ge 2$ branched covering map of U onto V, branched at a unique critical point $c \in \Lambda$ of criticality given by d;
- (ii) f is asymptotically holomorphic of order r near Λ .

Note that Λ contains the **post-critical set of** f.

Definition

Let $U, V \subset \mathbb{C}$ be Jordan domains, with U compactly contained in V, and let $f: U \to V$ be a proper C^r map $(r \ge 3)$. Let

$$\Lambda\subseteq\mathcal{K}_f=\bigcap_{n\geq0}f^{-n}(V)$$

be a forward invariant compact set contained in the *filled-in Julia set* \mathcal{K}_f . We say that f is an **asymptotically holomorphic polynomial-like map** (near Λ), or simply an **AHPL-map**, if

- (i) f is a degree $d \ge 2$ branched covering map of U onto V, branched at a unique critical point $c \in \Lambda$ of criticality given by d;
- (ii) f is asymptotically holomorphic of order r near Λ .

Note that Λ contains the **post-critical set of** f.

AHPL-Maps (cont.)

• Stoilow factorization: Every AHPL-map $f:U\to V$ can be written as $f=\phi\circ g$, where $g:U\to V$ is a holomorphic branched covering map and $\phi:V\to V$ is an asymptotically holomorphic homeomorphism.

AHPL-Maps (cont.)

- Stoilow factorization: Every AHPL-map $f:U\to V$ can be written as $f=\phi\circ g$, where $g:U\to V$ is a holomorphic branched covering map and $\phi:V\to V$ is an asymptotically holomorphic homeomorphism.
- Warning: In general, an AHPL-map is **not** uniformly quasi-regular. In particular, it is in general not quasi-conformally conjugate to a bona-fide polynomial-like map.

AHPL-Maps (cont.)

- Stoilow factorization: Every AHPL-map $f:U\to V$ can be written as $f=\phi\circ g$, where $g:U\to V$ is a holomorphic branched covering map and $\phi:V\to V$ is an asymptotically holomorphic homeomorphism.
- Warning: In general, an AHPL-map is **not** uniformly quasi-regular. In particular, it is in general not quasi-conformally conjugate to a bona-fide polynomial-like map.
- Also, in general such a map is **not** uniformly asymptotically conformal (UAC) in the sense of Gardiner and Sullivan.

But why study AHPL-maps?

 There is a beautiful theory of renormalization of real-analytic unimodal maps (with seminal contributions by Sullivan, Douady-Hubbard, McMullen, Lyubich, Avila-Lyubich,...).

- There is a beautiful theory of renormalization of real-analytic unimodal maps (with seminal contributions by Sullivan, Douady-Hubbard, McMullen, Lyubich, Avila-Lyubich,...).
- There is also a theory of renormalization of C^r unimodal maps (for finite r) that unfortunately relies on heavy techniques from non-linear analysis (initiated by Davie).

- There is a beautiful theory of renormalization of real-analytic unimodal maps (with seminal contributions by Sullivan, Douady-Hubbard, McMullen, Lyubich, Avila-Lyubich,...).
- There is also a theory of renormalization of C^r unimodal maps (for finite r) that unfortunately relies on heavy techniques from non-linear analysis (initiated by Davie).
- Our goal is to use AHPL-maps to develop a more direct approach that unifies the real-analytic and C^r cases.

- There is a beautiful theory of renormalization of real-analytic unimodal maps (with seminal contributions by Sullivan, Douady-Hubbard, McMullen, Lyubich, Avila-Lyubich,...).
- There is also a theory of renormalization of C^r unimodal maps (for finite r) that unfortunately relies on heavy techniques from non-linear analysis (initiated by Davie).
- Our goal is to use AHPL-maps to develop a more direct approach that unifies the real-analytic and C^r cases.

Simple analogy with the case of holomorphic polynomial-like maps yields natural questions to be asked about AHPL-maps and their Julia sets, to wit:

(1) Are the (expanding) periodic points dense in J_f ?

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?
- (3) What is the classification of stable components of $\mathcal{K}_f \setminus J_f$?

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?
- (3) What is the classification of stable components of $K_f \setminus J_f$?
- (4) Can f have non-wandering domains?

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?
- (3) What is the classification of stable components of $K_f \setminus J_f$?
- (4) Can f have non-wandering domains?
- (5) Is there a (topological) pull-back argument for AHPL-maps?

Simple analogy with the case of holomorphic polynomial-like maps yields natural questions to be asked about AHPL-maps and their Julia sets, to wit:

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?
- (3) What is the classification of stable components of $\mathcal{K}_f \setminus J_f$?
- (4) Can f have non-wandering domains?
- (5) Is there a (topological) pull-back argument for AHPL-maps?

These questions do not have obvious answers.

Simple analogy with the case of holomorphic polynomial-like maps yields natural questions to be asked about AHPL-maps and their Julia sets, to wit:

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?
- (3) What is the classification of stable components of $K_f \setminus J_f$?
- (4) Can f have non-wandering domains?
- (5) Is there a (topological) pull-back argument for AHPL-maps?

These questions do not have obvious answers.

But if f happens to be a **deep renormalization** of an infinitely renormalizable asymptotically holomorphic map of bounded type, then we can answer these questions.

Basic questions about AHPL-maps

Simple analogy with the case of holomorphic polynomial-like maps yields natural questions to be asked about AHPL-maps and their Julia sets, to wit:

- (1) Are the (expanding) periodic points dense in J_f ?
- (2) When is J_f locally connected?
- (3) What is the classification of stable components of $\mathcal{K}_f \setminus J_f$?
- (4) Can f have non-wandering domains?
- (5) Is there a (topological) pull-back argument for AHPL-maps?

These questions do not have obvious answers.

But if f happens to be a **deep renormalization** of an infinitely renormalizable asymptotically holomorphic map of bounded type, then we can answer these questions.

Let $f \in C^{3+\alpha}$ ($\alpha > 0$) be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d.

Let $f \in C^{3+\alpha}$ $(\alpha > 0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates g with the following properties.

• The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.

- **1** The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.

- **1** The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **3** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.

- The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **3** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.
- The map G is topologically conjugate to a polynomial mapping in a neighbourhood of its Julia set. In particular, G has no wandering domains.

- **1** The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **3** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.
- The map G is topologically conjugate to a polynomial mapping in a neighbourhood of its Julia set. In particular, G has no wandering domains.
- **5** The Julia set \mathcal{J}_G is locally connected.

- **1** The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **3** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.
- The map G is topologically conjugate to a polynomial mapping in a neighbourhood of its Julia set. In particular, G has no wandering domains.
- **5** The Julia set \mathcal{J}_G is locally connected.

• A unimodal map $f:[-1,1] \to [-1,1]$ is said to be *renormalizable* if there exist p = p(f) > 1 and $\lambda = \lambda(f) = f^p(0)$ such that $f^p[[-|\lambda|, |\lambda|]]$ is unimodal and maps $[-|\lambda|, |\lambda|]$ into itself.

- A unimodal map $f:[-1,1] \to [-1,1]$ is said to be *renormalizable* if there exist p=p(f)>1 and $\lambda=\lambda(f)=f^p(0)$ such that $f^p[[-|\lambda|,|\lambda|]$ is unimodal and maps $[-|\lambda|,|\lambda|]$ into itself.
- With p smallest possible, the *first renormalization* of f is the map $Rf: [-1,1] \to [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x) \tag{1}$$

- A unimodal map $f:[-1,1] \to [-1,1]$ is said to be *renormalizable* if there exist p=p(f)>1 and $\lambda=\lambda(f)=f^p(0)$ such that $f^p[[-|\lambda|,|\lambda|]$ is unimodal and maps $[-|\lambda|,|\lambda|]$ into itself.
- With p smallest possible, the *first renormalization* of f is the map $Rf: [-1,1] \to [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x) \tag{1}$$

• $\Delta_j = f^j([-|\lambda|, |\lambda|])$, for $0 \le j \le p-1$, are pairwise disjoint and their relative order inside [-1, 1] determines a *unimodal* permutation θ of $\{0, 1, \ldots, p-1\}$.

- A unimodal map $f:[-1,1] \to [-1,1]$ is said to be *renormalizable* if there exist p=p(f)>1 and $\lambda=\lambda(f)=f^p(0)$ such that $f^p[[-|\lambda|,|\lambda|]$ is unimodal and maps $[-|\lambda|,|\lambda|]$ into itself.
- With p smallest possible, the *first renormalization* of f is the map $Rf: [-1,1] \to [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x) \tag{1}$$

- $\Delta_j = f^j([-|\lambda|, |\lambda|])$, for $0 \le j \le p-1$, are pairwise disjoint and their relative order inside [-1, 1] determines a *unimodal* permutation θ of $\{0, 1, \ldots, p-1\}$.
- If Rf is itselt renormalizable, we may define $R^2f = R(Rf)$, etc.

- A unimodal map $f:[-1,1] \to [-1,1]$ is said to be *renormalizable* if there exist p=p(f)>1 and $\lambda=\lambda(f)=f^p(0)$ such that $f^p[[-|\lambda|,|\lambda|]$ is unimodal and maps $[-|\lambda|,|\lambda|]$ into itself.
- With p smallest possible, the *first renormalization* of f is the map $Rf: [-1,1] \to [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x) \tag{1}$$

- $\Delta_j = f^j([-|\lambda|, |\lambda|])$, for $0 \le j \le p-1$, are pairwise disjoint and their relative order inside [-1, 1] determines a *unimodal* permutation θ of $\{0, 1, \ldots, p-1\}$.
- If Rf is itselt renormalizable, we may define $R^2f = R(Rf)$, etc.
- If $R^n f$ is defined for all $n \ge 1$, we say that f is *infinitely renormalizable*.

Let $f: I \to I$ be an infinitely renormalizable unimodal map (where I = [-1, 1]).

Let $f: I \rightarrow I$ be an infinitely renormalizable unimodal map (where I = [-1, 1]).

• For each $n \ge 0$, we write

$$R^n f(x) = \frac{1}{\lambda_n} \cdot f^{q_n}(\lambda_n x) ,$$

where $q_0 = 1$, $\lambda_0 = 1$, $q_n = \prod_{i=0}^{n-1} p(R^i f)$ and $\lambda_n = f^{q_n}(0)$.

Let $f: I \rightarrow I$ be an infinitely renormalizable unimodal map (where I = [-1, 1]).

• For each $n \ge 0$, we write

$$R^n f(x) = \frac{1}{\lambda_n} \cdot f^{q_n}(\lambda_n x) ,$$

where $q_0 = 1$, $\lambda_0 = 1$, $q_n = \prod_{i=0}^{n-1} p(R^i f)$ and $\lambda_n = f^{q_n}(0)$.

• The positive integers $a_i = p(R^i f) \ge 2$ are the renormalization periods of f, and the q_n 's are the closest return times of the orbit of the critical point c = 0.

Let $f:I\to I$ be an infinitely renormalizable unimodal map (where I=[-1,1]).

• For each $n \ge 0$, we write

$$R^n f(x) = \frac{1}{\lambda_n} \cdot f^{q_n}(\lambda_n x) ,$$

where $q_0 = 1$, $\lambda_0 = 1$, $q_n = \prod_{i=0}^{n-1} p(R^i f)$ and $\lambda_n = f^{q_n}(0)$.

- The positive integers $a_i = p(R^i f) \ge 2$ are the renormalization periods of f, and the q_n 's are the closest return times of the orbit of the critical point c = 0.
- We write $\Delta_{0,n} = [-|\lambda_n|, |\lambda_n|]$, and $\Delta_{i,n} = f^i(\Delta_{0,n})$ for $0 \le i \le q_n 1$. These are the renormalization intervals of f at level n, collectively denoted by \mathcal{C}_n .

Let $f: I \to I$ be an infinitely renormalizable unimodal map (where I = [-1, 1]).

• For each $n \ge 0$, we write

$$R^n f(x) = \frac{1}{\lambda_n} \cdot f^{q_n}(\lambda_n x) ,$$

where $q_0 = 1$, $\lambda_0 = 1$, $q_n = \prod_{i=0}^{n-1} p(R^i f)$ and $\lambda_n = f^{q_n}(0)$.

- The positive integers $a_i = p(R^i f) \ge 2$ are the renormalization periods of f, and the q_n 's are the closest return times of the orbit of the critical point c = 0.
- We write $\Delta_{0,n} = [-|\lambda_n|, |\lambda_n|]$, and $\Delta_{i,n} = f^i(\Delta_{0,n})$ for $0 \le i \le q_n 1$. These are the renormalization intervals of f at level n, collectively denoted by \mathcal{C}_n .
- The postcritical set of f is

Sullivan's real bounds

Theorem (Real Bounds)

Let $f: I \to I$ be a C^3 unimodal map as above, and suppose that f is infinitely renormalizable with combinatorial type bounded by N > 1. Then there exist constants $K_f > 0$ and $0 < \alpha_f < \beta_f < 1$ such that the following holds for all $n \in \mathbb{N}$.

- (i) If $\Delta \in \mathcal{C}_{n+1}$, $\Delta^* \in \mathcal{C}_n$ and $\Delta \subset \Delta^*$, then $\alpha_f |\Delta^*| \leq |\Delta| \leq \beta_f |\Delta^*|$.
- (ii) For all $1 \le i < j \le q_n 1$ and each $x \in \Delta_{i,n}$, we have

$$\frac{1}{K_f}\frac{|\Delta_{j,n}|}{|\Delta_{i,n}|} \leq |(f^{j-i})'(x)| \leq K_f\frac{|\Delta_{j,n}|}{|\Delta_{i,n}|}.$$

(iii) We have $||R^n f||_{C^2(I)} \leq K_f$.

Moreover, there exist positive constants K = K(N), $\alpha = \alpha(N)$, $\beta = \beta(N)$, with $0 < \alpha < \beta < 1$, and $n_0 = n_0(f) \in \mathbb{N}$ such that, for all $n \ge n_0$, the constants K_f , α_f and β_f in (i), (ii) and (iii) above can be replaced by K, α and β , respectively.

Meaning

In informal terms, the theorem states three things.

• The post-critical set P(f) is a Cantor set with bounded geometry.

Meaning

In informal terms, the theorem states three things.

- The post-critical set P(f) is a Cantor set with bounded geometry.
- The successive renormalizations of f are uniformly bounded in the C^2 topology.

Meaning

In informal terms, the theorem states three things.

- The post-critical set P(f) is a Cantor set with bounded geometry.
- The successive renormalizations of f are uniformly bounded in the C^2 topology.
- These bounds become universal at sufficiently deep levels (such bounds are called beau by Sullivan).

Complex bounds

 Sullivan also showed that all limits of renormalization are in fact restrictions of nice complex-analytic maps, namely quadratic-like (or polynomial-like) maps – with good bounds.

Complex bounds

- Sullivan also showed that all limits of renormalization are in fact restrictions of nice complex-analytic maps, namely quadratic-like (or polynomial-like) maps – with good bounds.
- These are the so-called **complex bounds**. Just as the real bounds, the complex bounds are **beau**.

Let $f: U \to \mathbb{C}$ be an asymptotically holomorphic map of order $r \geq 3$ (with $U \supset I$) and suppose that $f|_I: I \to I$ is an infinitely renormalizable unimodal map with combinatorial type bounded by N. There exist C = C(N) > 1 and $n_0 = n_0(f) \in \mathbb{N}$ such that the following statements hold true for all $n > n_0$.

Let $f: U \to \mathbb{C}$ be an asymptotically holomorphic map of order $r \geq 3$ (with $U \supset I$) and suppose that $f|_I: I \to I$ is an infinitely renormalizable unimodal map with combinatorial type bounded by N. There exist C = C(N) > 1 and $n_0 = n_0(f) \in \mathbb{N}$ such that the following statements hold true for all $n \geq n_0$.

(i) For each $0 \le i \le q_n - 1$ there exist Jordan domains $U_{i,n}, V_{i,n}$, with piecewise smooth boundaries and symmetric about the real axis, such that $\Delta_{i,n} \subset U_{i,n} \subset V_{i,n}$, the $V_{i,n}$ are pairwise disjoint, and we have the sequence of surjections

$$U_{0,n} \xrightarrow{f} U_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} U_{q_n-1,n} \xrightarrow{f} V_{0,n} \xrightarrow{f} V_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} V_{q_n-1,n}$$

Let $f: U \to \mathbb{C}$ be an asymptotically holomorphic map of order $r \geq 3$ (with $U \supset I$) and suppose that $f|_I: I \to I$ is an infinitely renormalizable unimodal map with combinatorial type bounded by N. There exist C = C(N) > 1 and $n_0 = n_0(f) \in \mathbb{N}$ such that the following statements hold true for all $n \geq n_0$.

(i) For each $0 \le i \le q_n - 1$ there exist Jordan domains $U_{i,n}, V_{i,n}$, with piecewise smooth boundaries and symmetric about the real axis, such that $\Delta_{i,n} \subset U_{i,n} \subset V_{i,n}$, the $V_{i,n}$ are pairwise disjoint, and we have the sequence of surjections

$$U_{0,n} \xrightarrow{f} U_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} U_{q_n-1,n} \xrightarrow{f} V_{0,n} \xrightarrow{f} V_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} V_{q_n-1,n}$$

(ii) For each $0 \le i \le q_n - 1$, $f_{i,n} = f^{q_n}|_{U_{i,n}} : U_{i,n} \to V_{i,n}$ is a well-defined AHPL-map with critical point at $f^i(c)$.

Let $f: U \to \mathbb{C}$ be an asymptotically holomorphic map of order $r \geq 3$ (with $U \supset I$) and suppose that $f|_I: I \to I$ is an infinitely renormalizable unimodal map with combinatorial type bounded by N. There exist C = C(N) > 1 and $n_0 = n_0(f) \in \mathbb{N}$ such that the following statements hold true for all $n \geq n_0$.

(i) For each $0 \le i \le q_n - 1$ there exist Jordan domains $U_{i,n}, V_{i,n}$, with piecewise smooth boundaries and symmetric about the real axis, such that $\Delta_{i,n} \subset U_{i,n} \subset V_{i,n}$, the $V_{i,n}$ are pairwise disjoint, and we have the sequence of surjections

$$U_{0,n} \xrightarrow{f} U_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} U_{q_n-1,n} \xrightarrow{f} V_{0,n} \xrightarrow{f} V_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} V_{q_n-1,n}$$

- (ii) For each $0 \le i \le q_n 1$, $f_{i,n} = f^{q_n}|_{U_{i,n}} : U_{i,n} \to V_{i,n}$ is a well-defined AHPL-map with critical point at $f^i(c)$.
- (iii) We have $\mod(V_{i,n} \setminus U_{i,n}) \ge C^{-1}$ and $\dim(V_{i,n}) \le C|\Delta_{i,n}|$, for all $0 \le i \le q_n 1$.

Let $f: U \to \mathbb{C}$ be an asymptotically holomorphic map of order $r \geq 3$ (with $U \supset I$) and suppose that $f|_I: I \to I$ is an infinitely renormalizable unimodal map with combinatorial type bounded by N. There exist C = C(N) > 1 and $n_0 = n_0(f) \in \mathbb{N}$ such that the following statements hold true for all $n \geq n_0$.

(i) For each $0 \le i \le q_n - 1$ there exist Jordan domains $U_{i,n}, V_{i,n}$, with piecewise smooth boundaries and symmetric about the real axis, such that $\Delta_{i,n} \subset U_{i,n} \subset V_{i,n}$, the $V_{i,n}$ are pairwise disjoint, and we have the sequence of surjections

$$U_{0,n} \xrightarrow{f} U_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} U_{q_n-1,n} \xrightarrow{f} V_{0,n} \xrightarrow{f} V_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} V_{q_n-1,n}$$

- (ii) For each $0 \le i \le q_n 1$, $f_{i,n} = f^{q_n}|_{U_{i,n}} : U_{i,n} \to V_{i,n}$ is a well-defined AHPL-map with critical point at $f^i(c)$.
- (iii) We have $\mod(V_{i,n} \setminus U_{i,n}) \ge C^{-1}$ and $\dim(V_{i,n}) \le C|\Delta_{i,n}|$, for all $0 \le i \le q_n 1$.
- (iv) The map $f_{i,n}: U_{i,n} \to V_{i,n}$ has a Stoilow decomposition $f_{i,n} = \phi_{i,n} \circ g_{i,n}$ such that $K(\phi_{i,n}) \le 1 + C|\Delta_{0,n}|$, for each $0 \le i \le q_n 1$.

Let $f: U \to \mathbb{C}$ be an asymptotically holomorphic map of order $r \geq 3$ (with $U \supset I$) and suppose that $f|_I: I \to I$ is an infinitely renormalizable unimodal map with combinatorial type bounded by N. There exist C = C(N) > 1 and $n_0 = n_0(f) \in \mathbb{N}$ such that the following statements hold true for all $n \geq n_0$.

(i) For each $0 \le i \le q_n - 1$ there exist Jordan domains $U_{i,n}, V_{i,n}$, with piecewise smooth boundaries and symmetric about the real axis, such that $\Delta_{i,n} \subset U_{i,n} \subset V_{i,n}$, the $V_{i,n}$ are pairwise disjoint, and we have the sequence of surjections

$$U_{0,n} \xrightarrow{f} U_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} U_{q_n-1,n} \xrightarrow{f} V_{0,n} \xrightarrow{f} V_{1,n} \xrightarrow{f} \cdots \xrightarrow{f} V_{q_n-1,n} \ .$$

- (ii) For each $0 \le i \le q_n 1$, $f_{i,n} = f^{q_n}|_{U_{i,n}} : U_{i,n} \to V_{i,n}$ is a well-defined AHPL-map with critical point at $f^i(c)$.
- (iii) We have $\mod(V_{i,n} \setminus U_{i,n}) \ge C^{-1}$ and $\dim(V_{i,n}) \le C|\Delta_{i,n}|$, for all $0 \le i \le q_n 1$.
- (iv) The map $f_{i,n}: U_{i,n} \to V_{i,n}$ has a Stoilow decomposition $f_{i,n} = \phi_{i,n} \circ g_{i,n}$ such that $K(\phi_{i,n}) \le 1 + C|\Delta_{0,n}|$, for each $0 \le i \le q_n 1$.

This theorem is a straightforward consequence of (a special case of) the complex bounds proved by Clark, van Strien & Trejo in [2]:

One can go a bit further and bound also the C^2 norms of such renormalizations.

One can go a bit further and bound also the C^2 norms of such renormalizations.

Theorem

Let $f: U \to V$ be an infinitely renormalizable AHPL-map of bounded combinatorial type bounded by $N \in \mathbb{N}$, and let $R^n f: U_n \to V_n$, $n \ge 1$, be the sequence of renormalizations of f. There exists a constant $C_f > 0$ such that $\|R^n f\|_{C^2(U_n)} \le C_f$. Moreover, there exist C = C(N) > 0 and C = C(N) > 0 and C = C(N) > 0 such that C = C(N) > 0 such that C = C(N) > 0 and C = C(N) > 0 such that C = C(N) > 0 such that C = C(N) > 0 and C = C(N) > 0 such that C = C(N) > 0 and C = C(N) > 0 such that C = C(N) > 0 s

One can go a bit further and bound also the C^2 norms of such renormalizations.

Theorem

Let $f: U \to V$ be an infinitely renormalizable AHPL-map of bounded combinatorial type bounded by $N \in \mathbb{N}$, and let $R^n f: U_n \to V_n$, $n \ge 1$, be the sequence of renormalizations of f. There exists a constant $C_f > 0$ such that $\|R^n f\|_{C^2(U_n)} \le C_f$. Moreover, there exist C = C(N) > 0 and C = C(N) > 0 and C = C(N) > 0 such that $\|R^n f\|_{C^2(U_n)} \le C$ for all C = C(N) > 0.

The proof uses the real as well as the complex bounds. In fact, the complex bounds are essential even to make sure that the renormalizations $R^n f$ appearing above are well-defined AHPL-maps.

One can go a bit further and bound also the C^2 norms of such renormalizations.

Theorem

Let $f: U \to V$ be an infinitely renormalizable AHPL-map of bounded combinatorial type bounded by $N \in \mathbb{N}$, and let $R^n f: U_n \to V_n$, $n \ge 1$, be the sequence of renormalizations of f. There exists a constant $C_f > 0$ such that $\|R^n f\|_{C^2(U_n)} \le C_f$. Moreover, there exist C = C(N) > 0 and C = C(N) > 0 and C = C(N) > 0 such that $\|R^n f\|_{C^2(U_n)} \le C$ for all C = C(N) > 0.

The proof uses the real as well as the complex bounds. In fact, the complex bounds are essential even to make sure that the renormalizations $R^n f$ appearing above are well-defined AHPL-maps.

The proof also uses the **chain rule for the second derivative of a composition**.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha > 0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha > 0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha > 0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

1 The map $G := F^{q_n} : U_n \to V_n$ is a degree d AHPL-map.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha > 0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

- The map $G := F^{q_n} \colon U_n \to V_n$ is a degree d AHPL-map.
- ② For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha > 0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

- The map $G := F^{q_n} \colon U_n \to V_n$ is a degree d AHPL-map.
- ② For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **3** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha>0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

- The map $G := F^{q_n} \colon U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **3** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.
- The map G is topologically conjugate to a polynomial mapping in a neighbourhood of its Julia set. In particular, G has no wandering domains.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha>0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

- The map $G := F^{q_n} \colon U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **1** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.
- The map G is topologically conjugate to a polynomial mapping in a neighbourhood of its Julia set. In particular, G has no wandering domains.
- **1** The Julia set \mathcal{J}_G is locally connected.

Main Theorem

Let $f \in C^{3+\alpha}$ $(\alpha>0)$ be a unimodal, infinitely renormalizable interval map of bounded type whose critical point has criticality given by an even integer d. Then every $C^{3+\alpha}$ asymptotically holomorphic extension F of f to a map defined on a neighborhood of the interval in the complex plane is such that there exist a sequence of domains $U_n \subset V_n \subset \mathbb{C}$ containing the critical point of f and iterates q_n with the following properties.

- The map $G := F^{q_n} \colon U_n \to V_n$ is a degree d AHPL-map.
- **②** For large enough n, each periodic point in the filled Julia set $\mathcal{K}_G := \{z \in U_n; G^i(z) \in U_n \ \forall i \geq 0\}$ is repelling.
- **1** The Julia $\mathcal{J}_G := \partial \mathcal{K}_G$ and filled-in Julia set of G coincide, i.e., $\mathcal{J}_G = \mathcal{K}_G$.
- The map G is topologically conjugate to a polynomial mapping in a neighbourhood of its Julia set. In particular, G has no wandering domains.
- **1** The Julia set \mathcal{J}_G is locally connected.

The proof uses:

• The real bounds, the C^2 bounds, and the complex bounds.

- The real bounds, the C^2 bounds, and the complex bounds.
- Control of distortion by f of the **hyperbolic metric** of $Y = V \setminus \mathbb{R}$.

- The real bounds, the C^2 bounds, and the complex bounds.
- Control of distortion by f of the **hyperbolic metric** of $Y = V \setminus \mathbb{R}$.
- Control of sizes of puzzle pieces.

- The real bounds, the C^2 bounds, and the complex bounds.
- Control of distortion by f of the **hyperbolic metric** of $Y = V \setminus \mathbb{R}$.
- Control of sizes of puzzle pieces.
- Holomorphic motions (Slodkowski's theorem).

Key to the proof of the Main Theorem

Key to the proof of the Main Theorem

Proposition

If $f: U \to V$ is as in the theorem and $z \in \mathcal{K}_f$ is a point whose forward orbit never lands on the real axis, then for all non-zero tangent vectors $v \in T_z Y$ we have

$$\lim_{n\to\infty}\frac{\|Df^n(z)v\|_Y}{\|v\|_Y} = \infty.$$

Key to the proof of the Main Theorem

Proposition

If $f: U \to V$ is as in the theorem and $z \in \mathcal{K}_f$ is a point whose forward orbit never lands on the real axis, then for all non-zero tangent vectors $v \in T_z Y$ we have

$$\lim_{n\to\infty}\frac{\|Df^n(z)v\|_Y}{\|v\|_Y} = \infty.$$

The idea behind the proof is to use the Stoilow decomposition $f = \phi \circ g$ and show that, as we iterate, the expansion of the hyperbolic metric by g beats the possible contraction by ϕ at each scale.

Bounding expansion

Lemma

Let X, Y be hyperbolic Riemann surfaces with $X \subset Y$, and let $g: X \to Y$ be holomorphic univalent and onto. Then for all $x \in X$ and each tangent vector $v \in T_x X$ we have

$$|Dg(x)v|_Y \ge \Phi(s_{X,Y}(x))^{-1}|v|_Y$$
, (2)

where $s_{X,Y}(x) = d_Y(x, Y \setminus X)$ and $\Phi(\cdot)$ is the universal function given by

$$\Phi(s) = \sinh(s) \log\left(\frac{1 + e^{-s}}{1 - e^{-s}}\right). \tag{3}$$

Bounding expansion

Lemma

Let X, Y be hyperbolic Riemann surfaces with $X \subset Y$, and let $g: X \to Y$ be holomorphic univalent and onto. Then for all $x \in X$ and each tangent vector $v \in T_x X$ we have

$$|Dg(x)v|_Y \ge \Phi(s_{X,Y}(x))^{-1}|v|_Y$$
, (2)

where $s_{X,Y}(x) = d_Y(x, Y \setminus X)$ and $\Phi(\cdot)$ is the universal function given by

$$\Phi(s) = \sinh(s) \log\left(\frac{1 + e^{-s}}{1 - e^{-s}}\right). \tag{3}$$

• This lemma is essentially due to McMullen.

Bounding expansion

Lemma

Let X, Y be hyperbolic Riemann surfaces with $X \subset Y$, and let $g: X \to Y$ be holomorphic univalent and onto. Then for all $x \in X$ and each tangent vector $v \in T_x X$ we have

$$|Dg(x)v|_{Y} \ge \Phi(s_{X,Y}(x))^{-1}|v|_{Y},$$
 (2)

where $s_{X,Y}(x) = d_Y(x, Y \setminus X)$ and $\Phi(\cdot)$ is the universal function given by

$$\Phi(s) = \sinh(s) \log\left(\frac{1 + e^{-s}}{1 - e^{-s}}\right). \tag{3}$$

- This lemma is essentially due to McMullen.
- Note that $\Phi(s)$ is a continuous monotone increasing function with $\Phi(0) = 0$ and $\Phi(\infty) = 1$.

• How much does the derivative of a quasiconformal diffeomorphism $\phi: Y \to Y$ distort the hyperbolic length of tangent vectors?

- How much does the derivative of a quasiconformal diffeomorphism $\phi: Y \to Y$ distort the hyperbolic length of tangent vectors?
- The answer lies in the well-known double inequality

$$\frac{1}{K_{\phi}(z)}J_{\phi}^{h}(z) \leq \left(\frac{|D\phi(z)v|_{Y}}{|v|_{Y}}\right)^{2} \leq K_{\phi}(z)J_{\phi}^{h}(z)$$

- How much does the derivative of a quasiconformal diffeomorphism $\phi: Y \to Y$ distort the hyperbolic length of tangent vectors?
- The answer lies in the well-known double inequality

$$\frac{1}{K_{\phi}(z)}J_{\phi}^{h}(z) \leq \left(\frac{|D\phi(z)v|_{Y}}{|v|_{Y}}\right)^{2} \leq K_{\phi}(z)J_{\phi}^{h}(z)$$

• Hence, to bound the possible contraction of vectors by $D\phi$, it suffices to bound its hyperbolic Jacobian $J_{\phi}^{h}(z)$.

- How much does the derivative of a quasiconformal diffeomorphism $\phi: Y \to Y$ distort the hyperbolic length of tangent vectors?
- The answer lies in the well-known double inequality

$$\frac{1}{K_{\phi}(z)}J_{\phi}^{h}(z) \leq \left(\frac{|D\phi(z)v|_{Y}}{|v|_{Y}}\right)^{2} \leq K_{\phi}(z)J_{\phi}^{h}(z)$$

• Hence, to bound the possible contraction of vectors by $D\phi$, it suffices to bound its hyperbolic Jacobian $J_{\phi}^{h}(z)$.

Bounding contraction (cont.)

Proposition

Let $\alpha > 1$ and $\beta > 1$ be given, and suppose $\phi : \mathbb{D} \to \mathbb{D}$ is a C^2 quasiconformal diffeomorphism. If $z \in \mathbb{D}$ is such that

$$\alpha^{-1} \leq \frac{\rho_{\mathbb{D}}(\phi(z))}{\rho_{\mathbb{D}}(z)} \leq \alpha ,$$

and

$$\sup_{\zeta \in \Delta_z} |\mu_\phi(\zeta)| \le c_0 (1 - |z|)^\beta \ ,$$

then for each $0 < \theta < 1$ we have

$$J_{\phi}^{h}(z) \leq 1 + C_{\theta}(1-|z|)^{\beta(1-\theta)}$$
,

where $C_{\theta} > 0$ depends on α and the C^2 norm of ϕ .

Bounding contraction (cont.)

Proposition

Let $\alpha > 1$ and $\beta > 1$ be given, and suppose $\phi : \mathbb{D} \to \mathbb{D}$ is a C^2 quasiconformal diffeomorphism. If $z \in \mathbb{D}$ is such that

$$\alpha^{-1} \leq \frac{\rho_{\mathbb{D}}(\phi(z))}{\rho_{\mathbb{D}}(z)} \leq \alpha ,$$

and

$$\sup_{\zeta \in \Delta_z} |\mu_\phi(\zeta)| \le c_0 (1 - |z|)^\beta \ ,$$

then for each $0 < \theta < 1$ we have

$$J_{\phi}^{h}(z) \leq 1 + C_{\theta}(1-|z|)^{\beta(1-\theta)}$$
,

where $C_{\theta} > 0$ depends on α and the C^2 norm of ϕ .

In the application, $\beta = r - 1$.

T. Clark, E. de Faria and S. van Strien,

Dynamics of asymptotically holomorphic polynomial-like maps, available in arXiv:1804.06122v1 [math.DS].

T. Clark, S. van Strien and S. Trejo,

Complex bounds for real maps, Commun. Math. Phys. **355** (2017), 1001–1119.

E. de Faria, W. de Melo and A. Pinto,

Global hyperbolicity of renormalization for C^r unimodal mappings, *Ann. of Math.* **164** (2006), 731–824.

P. Guarino and W. de Melo,

Rigidity of smooth critical circle maps.

J. Eur. Math. Soc. 19(6) (2017), 1729-1783.

THANK YOU!

 Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renormalization operator (with hyperbolic fixed-point).

- Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renormalization operator (with hyperbolic fixed-point).
- Lanford (1982): Gave a computer-assisted proof of the existence and hyperbolicity of the fixed-point of the period-doubling operator in a suitable Banach space of real-analytic maps.

- Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renormalization operator (with hyperbolic fixed-point).
- Lanford (1982): Gave a computer-assisted proof of the existence and hyperbolicity of the fixed-point of the period-doubling operator in a suitable Banach space of real-analytic maps.
- Campanino & Epstein (1981): Gave a proof of existence of the fixed-point without essential help from computers.

- Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renormalization operator (with hyperbolic fixed-point).
- Lanford (1982): Gave a computer-assisted proof of the existence and hyperbolicity of the fixed-point of the period-doubling operator in a suitable Banach space of real-analytic maps.
- Campanino & Epstein (1981): Gave a proof of existence of the fixed-point without essential help from computers.

• Davie (1996): Using hard analysis, extended the hyperbolicity picture (local stable and unstable manifolds) for the period-doubling operator from Lanford's Banach space to the space of $C^{2+\epsilon}$ maps.

- Davie (1996): Using hard analysis, extended the hyperbolicity picture (local stable and unstable manifolds) for the period-doubling operator from Lanford's Banach space to the space of $C^{2+\epsilon}$ maps.
- Lanford & others: Realized that the period-doubling operator is the restriction of a much larger renormalization operator and formulated the following.

- Davie (1996): Using hard analysis, extended the hyperbolicity picture (local stable and unstable manifolds) for the period-doubling operator from Lanford's Banach space to the space of $C^{2+\epsilon}$ maps.
- Lanford & others: Realized that the period-doubling operator is the restriction of a much larger renormalization operator and formulated the following.

Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of bounded combinatorial type) is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of symbols.

- Davie (1996): Using hard analysis, extended the hyperbolicity picture (local stable and unstable manifolds) for the period-doubling operator from Lanford's Banach space to the space of $C^{2+\epsilon}$ maps.
- Lanford & others: Realized that the period-doubling operator is the restriction of a much larger renormalization operator and formulated the following.

Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of bounded combinatorial type) is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of symbols.

The challenge: to find a purely conceptual proof of this conjecture.

- Davie (1996): Using hard analysis, extended the hyperbolicity picture (local stable and unstable manifolds) for the period-doubling operator from Lanford's Banach space to the space of $C^{2+\epsilon}$ maps.
- Lanford & others: Realized that the period-doubling operator is the restriction of a much larger renormalization operator and formulated the following.

Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of bounded combinatorial type) is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of symbols.

The challenge: to find a purely conceptual proof of this conjecture.

• Sullivan (1992): Tied the subject to the theory of quadratic-like maps (introduced by Douady and Hubbard). Established real and complex a priori bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the attractor of renormalization), and proved convergence towards the attractor (without a rate).

- Sullivan (1992): Tied the subject to the theory of quadratic-like maps (introduced by Douady and Hubbard). Established real and complex a priori bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the attractor of renormalization), and proved convergence towards the attractor (without a rate).
- McMullen (1996): Proved that the convergence towards the attractor takes place at an exponential rate.

- Sullivan (1992): Tied the subject to the theory of quadratic-like maps (introduced by Douady and Hubbard). Established real and complex a priori bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the attractor of renormalization), and proved convergence towards the attractor (without a rate).
- McMullen (1996): Proved that the convergence towards the attractor takes place at an exponential rate.
- Lyubich (1999): Established the conjecture in the space of quadratic-like germs up to affine equivalence, where the renormalization operator is analytic.

- Sullivan (1992): Tied the subject to the theory of quadratic-like maps (introduced by Douady and Hubbard). Established real and complex a priori bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the attractor of renormalization), and proved convergence towards the attractor (without a rate).
- McMullen (1996): Proved that the convergence towards the attractor takes place at an exponential rate.
- Lyubich (1999): Established the conjecture in the space of quadratic-like germs up to affine equivalence, where the renormalization operator is analytic.

Major Conceptual Breakthroughs (cont.)

• Ávila and Lyubich (2010): Working in the space of polynomial-like germs, they proved exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps with arbitrary (real) combinatorics.

Major Conceptual Breakthroughs (cont.)

- Ávila and Lyubich (2010): Working in the space of polynomial-like germs, they proved exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps with arbitrary (real) combinatorics.
- They deduced that orbits of renormalization are asymptotic to the full renormalization horseshoe.

Major Conceptual Breakthroughs (cont.)

- Ávila and Lyubich (2010): Working in the space of polynomial-like germs, they proved exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps with arbitrary (real) combinatorics.
- They deduced that orbits of renormalization are asymptotic to the full renormalization horseshoe.
- Their methods apply to unicritical polynomial-like maps, and yield a unified approach, valid for all (real) combinatorics and all degrees of criticality.

C^r smoothness

• dF, de Melo, Pinto (2006): Established Lanford's conjecture in the space of C^r quadratic unimodal maps. Here r is any real number $\geq 2+\alpha$, where $\alpha<1$ is the largest of the Hausdorff dimensions of the post-critical sets of maps in the attractor. The proof combines Lyubich's theorem with Davie's tour de force.

C^r smoothness

- dF, de Melo, Pinto (2006): Established Lanford's conjecture in the space of C^r quadratic unimodal maps. Here r is any real number $\geq 2+\alpha$, where $\alpha<1$ is the largest of the Hausdorff dimensions of the post-critical sets of maps in the attractor. The proof combines Lyubich's theorem with Davie's tour de force.
- The authors also went beyond the conjecture, proving that the local stable manifolds of the renormalization operator form a C^0 lamination whose holonomy is $C^{1+\beta}$ for some $\beta>0$. In particular, every smooth curve which is transversal to such lamination intersects it at a set of constant Hausdorff dimension less than one [3].