Lógica de Predicados

Prof. Dr. Silvio do Lago Pereira

Departamento de Tecnologia da Informação

Faculdade de Tecnologia de São Paulo

Motivação

Há vários argumentos que não podem ser adequadamente formalizados e validados em lógica proposicional.

Exemplo

Sócrates é homem.

Todo homem é mortal.

Logo, Sócrates é mortal

- intuitivamente, podemos ver que este argumento é válido
- sua formalização em lógica proposicional resulta em {p, q} ⊨ r
- porém, não há como mostrar que {p, q} ⊨ r é válido
- a validade deste argumento depende do significado da palavra "todo"
- para tratar este tipo de argumento precisamos da lógica de predicados

Linguagem formal: elementos básicos

A linguagem formal da lógica de predicados é mais expressiva que aquela da lógica proposicional.

Esta maior expressividade decorre do fato de as fórmulas da lógica de predicados serem compostas pelos seguintes elementos básicos:

- objetos
- predicados
- conectivos
- variáveis
- quantificadores

Objeto

é qualquer coisa a respeito da qual precisamos dizer algo

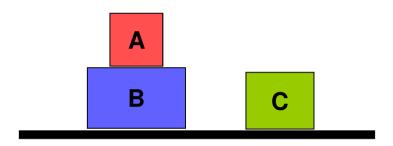
Na lógica de predicados, a noção de objeto é usada num sentido bastante amplo. Objetos podem ser:

- concretos: a bíblia, a lua, ...
- abstratos: o conjunto vazio, a paz, ...
- fictícios: unicórnio, Saci-Pererê, ...
- atômicos ou compostos: um teclado é composto de teclas

Nomes de objetos devem iniciar com letra minúscula!

Predicado

denota uma relação entre objetos num determinado contexto



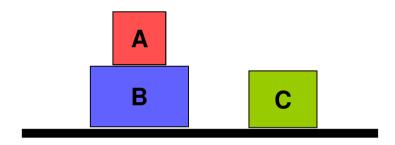
- sobre(a,b): o bloco A está sobre o bloco B
- cor(b,azul): o bloco B tem cor azul
- maior(a,c): o bloco A é maior que o bloco C

proposições atômicas!

Nomes de predicados também devem iniciar com letra minúscula!

Conectivo

forma proposições compostas, a partir de proposições atômicas



- sobre(a,b) \land sobre(b,m): A está sobre B e B está sobre a mesa
- ¬ cor(b,azul): a cor de B não é azul
- maior(b,c) v maior(c,b): o bloco B é maior que C ou C é maior que B

Variável

permite estabelecer fatos sobre objetos, sem nomeá-los explicitamente

- **bloco(x)** : *X* é um bloco
- mesa(Y): Yé uma mesa
- sobre(X,Y): X está sobre Y

não são proposições atômicas!

Note que proposições atômicas são sentenças que podem ter valor verdadeiro ou falso; mas não podemos dizer se bloco(x) é verdadeiro ou falso até que a variável x tenha sido substituída ou quantificada.

Nomes de variáveis devem iniciar com letra maiúscula!

Quantificador

permite estabelecer fatos sobre objetos, sem enumerá-los explicitamente

Há dois quantificadores:

Universal....: ∀x[bloco(x)] estabelece que todo objeto X é um bloco

Existencial..: ∃Y[mesa(Y)] estabelece que algum objeto Y é uma mesa

Estes quantificadores podem ser combinados numa mesma fórmula

Todo bloco está sobre alguma coisa que é um bloco ou uma mesa

```
\forall X[bloco(X) \rightarrow \exists Y[sobre(X,Y) \land (bloco(Y) \lor mesa(Y))]]
```

Linguagem formal: semântica

Interpretação

- um conjunto não-vazio D
- um mapeamento que associa cada objeto a um elemento fixo de ${\mathcal D}$
- ullet um mapeamento que associa cada predicado a uma relação sobre ${\mathcal D}$

O quantificador universal denota conjunção

```
Por exemplo, para \mathcal{D} = \{a, b, c, m\}
A fórmula \forall x[bloco(x)] equivale a bloco(a) \land bloco(b) \land bloco(c) \land bloco(m)
```

O quantificador existencial denota disjunção

```
Por exemplo, para \mathcal{D} = \{a, b, c, m\}
A fórmula \exists y [mesa(y)] equivale a mesa(a) \lor mesa(b) \lor mesa(c) \lor mesa(m)
```

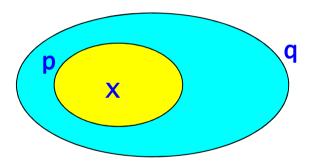
Equivalências

```
\neg \forall X [\alpha(X)] \equiv \exists X [\neg \alpha(X)]
\neg \exists X [\alpha(X)] \equiv \forall X [\neg \alpha(X)]
```


- Para facilitar a formalização se sentenças na lógica de predicados, destacamos quatro tipos de sentenças de especial interesse, denominadas enunciados categóricos:
 - Universal afirmativo: <u>Todos</u> os homens são mortais.
 - Universal negativo: <u>Nenhum</u> homem é extra-terrestre.
 - Particular afirmativo: <u>Alguns</u> homens são cultos.
 - Particular negativo: <u>Alguns</u> homens <u>não</u> são cultos.

Enunciado universal afirmativo

- é da forma $\forall x[p(x) \rightarrow q(x)]$
- estabelece que p é um subconjunto de q



Exemplo:

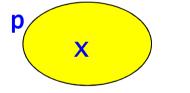
Sentença...: Todos os homens são mortais

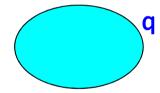
• Sintaxe.....: $\forall x[h(x) \rightarrow m(x)]$

• Semântica..: para todo x, se x∈ h então x∈ m

Enunciado universal negativo

- é da forma $\forall x[p(x) \rightarrow \neg q(x)]$
- estabelece que os conjuntos p e q são disjuntos





Exemplo:

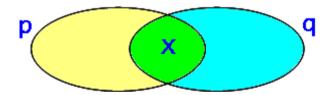
• Sentença...: Nenhum homem é extra-terrestre

• Sintaxe.....: $\forall x[h(x) \rightarrow \neg e(x)]$

• Semântica..: para todo x, se x∈ h então x∉ e

Enunciado particular afirmativo

- é da forma $\exists x[p(x) \land q(x)]$
- estabelece que os conjuntos p e q têm intersecção não-vazia



Exemplo:

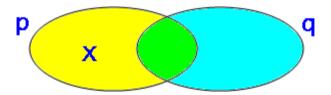
• Sentença...: Alguns homens são cultos

• Sintaxe.....: $\exists x[h(x) \land c(x)]$

Semântica..: existe x tal que x∈ h e x∈ c

Enunciado particular negativo

- é da forma $\exists x[p(x) \land \neg q(x)]$
- estabelece que existem elementos em p que não estão em q



Exemplo:

Sentença...: Alguns homens não são cultos

• Sintaxe.....: $\exists x[h(x) \land \neg c(x)]$

Semântica..: existe x tal que x∈ h e x∉ c

Exercício 1. Formalize as sentenças a seguir usando lógica de predicados

- Toda cobra é venenosa.
- Nenhuma bruxa é bela.
- Algumas plantas são carnívoras.
- Há aves que não voam.
- Tudo que sobe, desce.
- Existem políticos não são honestos.
- Não existe bêbado feliz.
- Pedras preciosas são caras.
- Ninguém gosta de impostos.
- Vegetarianos não gostam de açougueiros.
- Toda mãe ama seus filhos.

Equivalência entre sentenças

- Há sentenças que podem ser escritas em mais de uma forma.
- Exemplo
 - Sentenças

Nem tudo que brilha é ouro.

Existe algo que brilha e não é ouro.

Fórmulas

```
\neg \forall X[b(X) \rightarrow o(X)]
\exists X[b(X) \land \neg o(X)]
```

Equivalência

```
\neg \forall X[b(X) \rightarrow o(X)]
\equiv \neg \forall X [\neg b(X) \lor o(X)]
\equiv \exists X \neg [\neg b(X) \lor o(X)]
\equiv \exists X [b(X) \land \neg o(X)]
```


Exercício 2. Verifique se os pares de sentenças são equivalentes

- Nem toda estrada é perigosa.
- Algumas estradas não são perigosas.
- Nem todo bêbado é fumante.
- Alguns bêbados são fumantes.
- Nem todo ator americano é famoso.
- Alguns atores americanos não são famosos.

Validação de argumentos

Exemplo

Sócrates é homem.

Todo homem é mortal.

Logo, Sócrates é mortal

- Formalização: $\{h(s), \forall x[h(x) \rightarrow m(x)]\} \neq m(s)$
- Normalização: $\{h(s), \forall x[\neg h(x) \lor m(x)]\} \in m(s)$
- Refutação
 - (1) h(s)

- (2) $\neg h(X) \lor m(X)$

- $(3) \neg m(s)$
- Hipótese

 $(4) \neg h(s)$

 $RES(3,2) / {X=s}$

(5)

RES(4,1)

instanciação

de variável

Exemplo

Sócrates é homem.

Todo homem é mortal.

Consulta: Quem é mortal?

- Formalização: $\{h(s), \forall x[h(x) \rightarrow m(x)]\} \models \exists y[m(y)]$
- Normalização: $\{h(s), \forall x[\neg h(x) \lor m(x)]\} \models \exists Y[m(Y)]$
- Refutação
 - (1) h(s)
 - (2) $\neg h(X) \lor m(X)$

- $(3) \neg m(Y)$
- $(4) \neg h(Y)$
- (5)

Hipótesé

RES(3,2) / {X=Y} RES(4,1) / {Y=s}

 $\neg \exists Y [m(Y)] \equiv \forall Y [\neg m(Y)]$

resposta da consulta

Instanciação de variáveis universais

Apenas variáveis universais podem ser corretamente instanciadas.

Variável universal: "Todo cão é fiel a alguém"

- Fórmula.....: $\forall x [cão(x) \rightarrow \exists y [fiel(x,y)]]$
- Instância....: $cão(rex) \rightarrow \exists Y[fiel(rex,Y)] / \{X=rex\}$
- Significado.: Se Rex é um cão, então Rex é fiel a alguém.
- Conclusão..: a fórmula e sua instância têm significados coerentes

Variável existencial: "Todo cão é fiel a alguém"

- Fórmula.....: $\forall x[cão(x) \rightarrow \exists y[fiel(x,y)]]$
- **Instância....**: $\forall x[cão(x) \rightarrow fiel(x,ana)] / \{Y=ana\}$
- Significado.: Todo cão é fiel a Ana.
- Conclusão..: a fórmula e sua instância não têm significados coerentes

Skolemização de variáveis existenciais

Supomos a existência de uma função que dá o valor correto para a variável.

Variável existencial: "Todo cão é fiel a alguém"

- Fórmula.....: $\forall x[cão(x) \rightarrow \exists y[fiel(x,y)]]$
- **Instância....**: $\forall x [cão(x) \rightarrow fiel(x, dono(x))] / \{y=dono(x)\}$
- Significado.: Todo cão é fiel a seu dono.
- Conclusão..: a fórmula e sua instância têm significados coerentes
- A suposição destas funções foi originalmente proposta por Thoralf Skolem.
- A função deve ter como argumentos todas as variáveis que são globais a ela.
- Se não houver variáveis globais, em vez de função, podemos usar uma constante.
- Daqui em diante vamos considerar apenas variáveis universais.

Unificação

é o processo de encontrar um conjunto minimal de substituições que torna duas fórmulas idênticas (a fim de que possamos usar resolução).

Algoritmo de unificação

Para unificar duas fórmulas atômicas (sem variáveis em comum):

- Compare as fórmulas até achar uma discrepância ou atingir o final de ambas.
- Ao encontrar uma discrepância:
 - Se nenhum dos elementos envolvidos for uma variável, finalize com fracasso.
 - Caso contrário, substitua todas as ocorrências da variável pelo outro elemento e continue a comparação das fórmulas.
- Ao atingir o final de ambas as fórmulas atômicas, finalize com sucesso.

Prolog implementa unificação por meio do predicado predefinido =/2.

Exercício 3. Usando Prolog, verifique se os pares de fórmulas podem ser unificados

```
?- gosta(ana,X) = gosta(Y,Z).
?- primo(X,Y) = prima(A,B).
?- igual(X,X) = igual(bola,bala).
?- ama(deus,Y) = ama(X,filho(X)).
?- cor(sapato(X),branco) = cor(sapato(suspeito),Y).
?- mora(X,casa(mãe(X))) = mora(joana,Y).
?- p(X) = p(f(X)).
?- p(f(Y),Y,X) = p(X,f(a),f(Z)).
```

Fim