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Abstract – We discuss the connection between information and copula theories by showing that
a copula can be employed to decompose the information content of a multivariate distribution
into marginal and dependence components, with the latter quantified by the mutual information.
We define the information excess as a measure of deviation from a maximum-entropy distribution.
The idea of marginal invariant dependence measures is also discussed and used to show that
empirical linear correlation underestimates the amplitude of the actual correlation in the case
of non-Gaussian marginals. The mutual information is shown to provide an upper bound for the
asymptotic empirical log-likelihood of a copula. An analytical expression for the information excess
of T-copulas is provided, allowing for simple model identification within this family. We illustrate
the framework in a financial data set.
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Introduction. – Modeling statistical dependence has
a pervasive role in science. Information theory provides
a unifying framework for ideas from areas as diverse
as differential geometry [1], physics [2–4], statistics and
telecommunications [5]. From the information-theoretic
point of view dependence can be quantified by measur-
ing the distance between a given model defined by a joint
probability density φ(x) and a mean-field model defined

by φ0 =
∏N
j=1 fj(xj), where fj(xj) are marginal densi-

ties fj(xj) =
∫ ∏

k !=j dxk φ(x) [6]. The relative entropy
given by

S [φ || φ0] =
∫ N∏

j=1

dxj φ(x) log

(
φ(x)

∏N
j=1 fj(xj)

)

(1)

defines a premetric in the space of distributions that can be
employed to quantify the degree of dependence in a model,
this particular measure is also known as the total corre-
lation or, in the bivariate case, as the mutual information.
The copula theory has been proposed in statistics

as an approach for modeling general dependences in

(a)E-mail: rvicente@usp.br

multivariate data. A theorem due to Sklar [7] assures that,
under very general conditions, for any joint cumulative

distribution function (CDF) F (x) =
∏N
j=1

∫ xj
−∞ dxj φ(x)

there is a function C(u) (known as the copula function)
such that the joint CDF can be written as a function of the
marginal CDFs in the form F (x) =C[F1(x1), . . . FN (xN )].
The converse is also true: this function couples any set of
marginal CDFs to form a multivariate CDF. This provides
a convenient picture of the marginals as being responsible
for the idiossincratic properties of each variable and
the copula function as a description of the dependence
between them.
A complete articulation of these two concepts is,

however, curiously absent in the literature. In this short
contribution we seek to survey the basic ideas connecting
these two threads emphasizing the information-theoretic
interpretation.
We have organized this letter as follows. In the next

section we briefly discuss the idea of measures of depen-
dence that are marginal invariant. We then connect
copula theory with mutual information by introducing the
concept of copula information and present an analytical
prescription to identify a model for bivariate non-Gaussian
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dependences within the T-copula family by estimating the
mutual information. We briefly comment on general conse-
quences and perspectives in a final section.

Mutual information and copulas. – From
this point on we restrict our discussion to bivariate
distributions, the multivariate case follows after straight-
forward adaptations.
Two random variables X and Y are said to be statis-

tically dependent if, and only if, their joint probability
density function (PDF) cannot be written as a product
of marginal PDFs, that is, if φ(x, y) != fx(x)fy(y), where
fx(x) and fy(y) are marginal densities. A convenient way
to quantify statistical dependencies is by evaluating the
mutual information defined by

I(X,Y ) =

∫
dxdy φ(x, y) log

(
φ(x, y)

fx(x)fy(y)

)
. (2)

This quantity is a premetric, to say, it is positive and
only vanishes in the case of independent variables. By
defining the entropy of the distribution of X as S[fx] =∫
dx fx(x) log fx(x) and the average conditional entropy as
S[fx|y] =

∫
dy fy(y)

∫
dx fx|y(x) log fx|y(x), where fx|y(x)

denotes the conditional probability of X given Y , the
identity

I(X,Y ) = S[fx]−S[fx|y] (3)

provides an interpretation for the mutual information
as the average reduction in the uncertainty in X given
knowledge of Y . Alternatively, the mutual information can
be regarded as a distance to statistical independence in the
space of distributions measured by the relative entropy
between the actual joint distribution and the product of
marginals I(X,Y ) = S[φ ‖ fxfy].
Sklar’s theorem asserts that there exists a copula func-

tion such that the joint CDF can be written as F (x, y) =
C[Fx(x), Fy(y)]. We may also regard a copula function as
the joint CDF of two uniformly distributed variables u
and v, both in the [0, 1] interval. Such a pair (u, v) can
always be found from any pair of random variables with
the substitution u= Fx(x) and v= Fy(y).
To exemplify we can build a joint standard Gaussian

with correlation ρ by plugging Gaussian marginal
distributions Φ(x) =

∫ x
−∞

du√
2π
e−

1
2u
2

into the Gaussian

copula defined as

C[u, v] =Φρ
(
Φ−1(u),Φ−1(v)

)
, (4)

where Φρ(x, y) =
∫ x
−∞

∫ y
−∞

du dv√
4π2(1−ρ2)

e
−u

2+v2−2uvρ
2(1−ρ2) .

Clearly X and Y are dependent if, and only if, C[u, v] !=
uv. Introducing the copula density as c[u, v] = ∂2

∂u∂vC[u, v],
we can decompose the joint probability density as

φ(x, y) = c[Fx(x), Fy(y)]fx(x)fy(y) (5)

and observe that statistical dependence would simply
imply that c[u, v] != 1.

Marginal invariant measures. – Two close
concepts in statistics are dependence and concordance.
While dependence relates only to the functional rela-
tionship between two variables, concordance measures
whether positive or negative comovement of variables
is present. Measures of dependence and concordance
are plenty. However, a good dependence (respectively,
concordance) measure should [7,8]:

1. be invariant under reparametrizations: (x, y)→
(q(x), w(y)), if q(x) and w(y) are monotonous func-
tions (changing sign if one of the reparametrizations
is a monotonically decreasing function, in the case of
concordance measures),

2. have a unique minimum (a unique zero, in the case of
concordance), that can be set to zero with no loss of
generality, at φ(x, y) = fx(x)fy(y).

Some authors would also require that a measure of depen-
dence (concordance) should be restricted to the [0, 1]
([−1, 1]) interval. We do not require it here since any real
number can be trivially mapped into any interval. Good
measures of concordance on the other hand must have a
unique zero if X and Y are statistically independent, be
invariant under monotonically increasing reparametriza-
tions and change sign if one of the functions of the repara-
metrization is monotonically decreasing.
With the concept of copula density at hand, these

desiderata can be concisely restated as: a measure of
dependence must be a functional of the copula density
alone (i.e. must be independent of marginal densities),
with a unique minimum at c[u, v] = 1.
The linear correlation for standardized variables

ρ(X,Y ) =
∫
dxdy xy φ(x, y) is widely used as a measure

of concordance and its absolute value as a measure of
dependence. The correlation may be rewritten in terms
of copula densities as

ρ(X,Y ) =

∫

[0,1]2
du dv c[u, v]F−1x (u)F

−1
y (v). (6)

If X and Y are independent, c[u, v] = 1 and consequently
ρ(X,Y ) = 0. However, it is clear that a copula may be
chosen such that the linear correlation vanishes even
though c[u, v] != 1. Moreover, ρ(X,Y ) is obviously depen-
dent on marginal distributions.
A better alternative for measuring concordance would

be the rank correlation, also known as Spearman’s ρ
defined as

ρrank(X,Y ) = 12

∫

[0,1]2
du dv c[u, v]uv− 3. (7)

This measure strictly fulfills concordance measures
desiderata. For a Gaussian bivariate distribution, the rank
correlation is related to the correlation parameter as:

ρrank[Φρ] =
6

π
sin−1

(ρ
2

)
, (8)
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where ρ is the correlation parameter of the Gaussian
copula, which is identical to the usual linear correlation
only if the marginals are also Gaussian. Another measure
of dependence that is marginal independent is Kendall’s
tau defined as

τ(X,Y ) = 4

∫

[0,1]2
dC [u, v]C[u, v]− 1. (9)

In the case of meta-elliptical distributions [9], that
includes Gaussian and T-copulas, Kendall’s tau is also
related to the the correlation parameter as

τ =
2

π
sin−1(ρ). (10)

In the next section we show that the mutual information
also fulfils good dependency measures desiderata, since it
is always non-negative, it only vanishes for independent
variables and it is a functional of the copula density alone.

Copula information. – Mutual information and
copula densities can be connected by plugging eq. (5) into
eq. (2), and by performing the simple change of variables
u= Fx(x) and v= Fy(y), to conclude that

I(X,Y ) =

∫

[0,1]2
du dv c[u, v] log(c[u, v]) =−S[c], (11)

where S[c] is the differential entropy associated with the
c[u, v] distribution, which we will (following [10]) conve-
niently name the copula entropy. Notice that S[c]! 0,
as can be shown by considering eq. (5) together with
Jensen’s inequality, since −log(x) is a convex function.
This simple result shows that mutual information is invari-
ant under arbitrary choices of marginal densities fx(x) and
fy(y). It is also implied by this connection that using a
maximum-entropy principle to choose a copula function
given constraints is analogous to assuming the least infor-
mative dependence (minimum mutual information) which
explains the constraints, which is actually a reasonable
principle [11]. This provides yet another interpretation for
mutual information: it quantifies the information content
of the coupling (copula) functional. From the identity
S[φ] = S[fx] +S[fy]− I(X,Y ) and eq. (11), we have

S[φ] = S[fx] +S[fy] +S[c]. (12)

In words: the total information content can be uniquely
decomposed into the information content in each vari-
able plus the information content on the dependence
between them.

Information excess. – When quantifying depen-
dence, it is a common practice to start by measuring
linear correlation. In the language we have introduced
that is analogous to assuming a Gaussian copula described
by a single parameter ρ. However, the notion that this
parameter can be measured by the usual linear correlation
relies upon the additional assumption that marginals
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Fig. 1: Linear correlation is underestimated in the case of non-
Gaussian marginals. If both marginals and copula are Gaussian
the joint distribution can be placed over the lower bound for the
mutual information. A change in marginals keeping the copula
fixed, preserves the mutual information, however correlation
estimates are displaced inwards.

are also Gaussian, as the linear correlation is a measure
that also depends on marginals. This particular copula
is a very special case as it assumes that the information
contained in the dependence between variables is minimal
given ρ. This minimal mutual information content in a
Gaussian copula is given by [5]

IGauss(ρ) =−
1

2
log(1− ρ2), (13)

which can also be written as a function of the observ-
able rank correlation using eq. (8). If this assumption
of minimal dependence given the parameter ρ fails, an
excess of information in the dependence with respect to
the Gaussian Iexcess = I(X,Y )− IGauss(ρ) is observed. An
algorithm for efficient estimation of the mutual informa-
tion I(X,Y ) has been proposed in [12] which, together
with a good estimate for ρ, provides a diagnostic tool
for information excess. The observation of excess means
that the dependence cannot be specified by the linear
correlation alone even after the identification of non-
Gaussian marginals.
If marginals are non-Gaussian neither the mutual infor-

mation nor the parameter ρ are affected, however, the
linear correlation estimate ρ(X,Y ) consistently underes-
timates |ρ|. That can be seen by considering the I(X,Y )-
vs.-ρ plane in which the curve described by eq. (13)
represents a lower bound for the mutual information as
depicted in fig. 1. For a Gaussian copula the parameter
ρ is measured by the linear correlation only if marginals
are also Gaussian, in this case we can locate a particular
joint probability density over the curve of minimal mutual
information with a given ρ. Suppose that marginals are
changed into non-Gaussian densities. As the copula for
the variables is unaltered the mutual information is also
unchanged, however, the linear correlation can change. As
the curve represents a lower bound for the mutual infor-
mation given ρ, it is only possible for the linear correlation
to change inwards, hence underestimating |ρ|. In order
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Fig. 2: (Colour on-line) Mutual Information estimates follow-
ing [12] vs. Kendall’s tau for pairs of series of daily log-
returns (log[Pclose/Popen], where Pclose and Popen are, respec-
tively, close and open prices) of 150 stocks composing the
S&P500 index over the period from January 2, 1990 to Septem-
ber 16, 2008 (around 4700 samples per series). Bootstrap error
bars represent a 90% confidence interval. Note that within this
confidence interval a great number of the pairs display a non-
zero information excess with respect to the Gaussian copula.

to find ρ correctly we have first to estimate a measure
that is marginal invariant, as the rank correlation given by
eq. (7), and then employ an inversion relation as eq. (8).
As an applied example, fig. 2 shows estimates for the

mutual information obtained by the Kraskov-Stogbauer-
Grassberger (KSG) method [12] against Kendall’s tau for
pairs of series with daily log-returns rt = log[Pclose/Popen]
(where Pclose and Popen are, respectively, close and open
prices) of 150 stocks composing the Standard & Poors
500 index (S&P500) over the period from January 2,
1990 to September 16, 2008 (around 4700 points in each
series). The error bars have been obtained employing the
bootstrap technique [13]. The information excess observed
can be traced to time-varying cross-correlations [14] and
to dependences between cross-correlations and returns [15]
that jointly yield non-Gaussian copulas. Here we have used
Kendall’s tau as a marginal invariant measure. In the next
section we show that this particular marginal invariant
plane defined by mutual information and Kendall’s tau is
sufficient to identify the best T-copula representing non-
Gaussian dependences shown by the data.

Copula identification. – Given a data set
{(xt, yt)}Tt=1 independently sampled from an unknown
joint density φ(x, y), the best approximation φθ(x, y)
within a manifold F , parameterized by θ, can be found by
minimizing a sample estimate of the relative entropy [6]:

S[φ ‖ φθ] =
∫
dxdy φ(x, y) log

[
φ(x, y)

φθ(x, y)

]
. (14)

By considering eq. (5) and performing appropriate
variable changes we can write

S[φ ‖ φθ] = S[c ‖ cθc ] +S[fx ‖ fθxx ] +S[fy ‖ fθyy ], (15)

which is just the decomposition (12) in terms of relative
entropies. Thus it is reasonably clear that the inference

procedure can be implemented by independently minimiz-
ing the relative entropy for empirical marginals and copula
density. By employing relationship (11), the contribution
from the copula in eq. (15) can be further rewritten as

S[c ‖ cθc ] =−L∞(θc)− I(X,Y )" 0, (16)

where L∞(θc) =
∫
[0,1]2 du dv c[u, v] log(cθc [u, v]) is the

asymptotic copula log-likelihood. Notice that Jensen’s
inequality implies that −L∞(θc)" I(X,Y )" 0. Conse-
quently, minimizing S[c ‖ cθc ] is equivalent to maximizing
the likelihood with the mutual information I(X,Y )
as a bound.
The estimation of I(X,Y ) can be employed to measure

the quality of a fit within the chosen family F . In
particular, suppose we choose a family such that L∞(θc)
is known analytically. If we additionally find a family
that contains a distribution that saturates the bound, we
can use an efficient estimator for the mutual information
as [12] to identify the best copula θc within F right away.
In this procedure the identification of the copula is from

the start disentangled from the choice of marginals. The
T-copula is an interesting choice as the mutual information
can be analytically evaluated. The T-copula density is
defined in two dimensions as

cν,ρ[u, v] =
Γ(ν+22 )Γ(

ν
2 )[

Γ(ν+12 )
]2√

1− ρ2

×

[
1+ qρ(t

−1
ν (u),t

−1
ν (v))

ν

]− ν+22

[
1+ (t

−1
ν (u))2

ν

]− ν+12 [
1+ (t

−1
ν (v))2

ν

]− ν+12

(17)

with qρ(x, y) =
x2+y2−2ρxy
1−ρ2 and t−1ν (u) denoting the inverse

of the distribution function of the univariate Student T
density with ν degrees of freedom. It can be shown (see
appendix) that the mutual information of a multivariate
T-copula can be decomposed as

IT(ρ, ν) = IGauss(ρ)+ Iexcess(ν), (18)

where, in two dimensions (2D), IGauss(ρ) is given by
eq. (13). The excess information term only depends on
the number of degrees of freedom ν. In 2D it is given by

Iexcess(ν) = 2 log

(√
ν

2π
B

(
ν

2
,
1

2

))
− 2+ ν

ν

+(1+ ν)

[
ψ

(
ν+1

2

)
−ψ

(ν
2

)]
, (19)

where B(x, y) is the Beta function defined as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (20)

and ψ(x) is the digamma function. Figure 3 shows the
T-copula information excess Iexcess(ν) as provided by
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Fig. 3: (Colour on-line) T-copula information excess. Iexcess(ν)
as provided by eq. (19) (full line). Circles show estimates
for 20 runs with T-copulas with known ν for ρ= 0.1, 0.5, 0.9
and arbitrary marginals. Error bars represent one standard
deviation. Estimates have been computed by employing the
KSG method.

eq. (19). The parameter ρ yields the linear correla-
tion in the purely Gaussian case (ν→∞) but must
be estimated through a marginal independent measure
of concordance/dependence in the general case. For T-
copulas ρrank is a function of both ρ and ν that is not
known in any simple form. However, in order to iden-
tify the appropriate T-copula a simpler alternative is to
employ Kendall’s tau that is a function of ρ given by
eq. (10). We can estimate Kendall’s tau and then employ
the excess of information in relation to a Gaussian copula
to find ν. Figure 3 shows the result of simulations using
data sampled from a joint distribution composed by
a copula density with known parameters and arbitrary
marginals. Going back to fig. 2 the best copula within the
manifold of T-copulas can be immediately identified for
each point in the mutual information vs. Kendall’s tau
plane.

Conclusions. – The literature on information and
copula theories has developed in relative isolation. In this
paper we sought to discuss a couple of consequences yield
by connections between these two threads.
Copula theory can be employed for factorizing a general

joint distribution into marginal fluctuations and a depen-
dence core that is not unique. On the other hand, a
combination of copula and information theories provides
a unique decomposition in terms of global information
content measures. This decomposition yields a simple
test of Gaussianity through the estimate of the informa-
tion excess (a procedure that is simpler than, e.g., [16]
or [17]) and also suggests a method for copula iden-
tification based on information content matching. This
method displays a simple formal equivalence to the usual
maximum-likelihood methods (e.g., [18]).
This approach also clarifies the danger of using linear

correlation as a measure of dependence for, e.g., portfolio
optimization or time series analysis as this measure
is bound to underestimate dependence that would be
better captured by easily estimated marginal invariant

measures [8,12]. Finally, we think that a unified
understanding of information and copula theories
may be a useful source of new fundamental ideas for the
analysis of multivariate data arising from complex
physical phenomena.
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Appendix: information excess for T-copulas. – In
this appendix we present a derivation of the entropy and
mutual information of Student T distributions.
The standard Student T distribution in d dimensions is

given by

pd(t | Σ̂, ν) =
1

Zd(Σ̂, ν)

[

1+
tTΣ̂−1t

ν

]− ν+d2
, (A.1)

where ν is a parameter and Σ̂ is the correlation matrix.
The normalizing prefactor is defined as

1

Zd(Σ̂, ν)
=

Γ(d2 )

B(ν2 ,
d
2 )
√
(πν)d|Σ̂|

(A.2)

with B(x, y) = Γ(x)Γ(y)Γ(x+y) being the Beta function.
For d= 2 this simplifies to read

p2(x, y | ρ, ν) =
Γ(1+ ν2 )

Γ(ν2 )πν
√
1− ρ2

[
1+
qρ(x, y)

ν

]−(1+ ν2 )

(A.3)

with qρ(x, y) =
x2+y2−2ρxy
1−ρ2 .

The differential entropy of a given set of variables t
distributed as p(t) is given by

S[pd] =−
∫
dnt pd(t) log(pd(t)). (A.4)

The mutual information for d dimensions is

I(X1,X2, . . . , Xd) =

∫
pd(x) log

[
pd(x)∏d
i=1 p1;i(xi)

]

. (A.5)

For variables with identical marginals (for p1;i(x) = p1(x)
for all i= 1, 2, . . . , d) this can be written in terms of
entropies as

I(X1,X2, . . . , Xd) = dS[p1]−S[pd]. (A.6)

We employ a “replica trick” [19] to write

S[pd] =− lim
n→0

d

dn

∫
dnt pd(t)

n+1, (A.7)
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where the limit n→ 0 can be regarded as a analytical
continuation for a sequence of integers that is known
to give sensible results if pd(t) has a unique extremum.
This calculation is not rigorous but is nicely verified by
simulations depicted in fig. 3.
We can always simplify this integral by making the

transformation x= Ût, where Û is the unitary matrix that
diagonalizes Σ̂. Calling I the integral in eq. (A.7), we have

I = 1

Zd(Σ̂, ν)n+1

∫
ddx

[

1+
d∑

i=1

(
1

λiν

)
x2i

]− 12 (n+1)(ν+d)
,

(A.8)

where λi is the eigenvalue of Σ corresponding to the i-th

direction. We can also choose variables ri =

√(
1
λiν

)
xi to

write

I = 2π
d
2

Γ
(
d
2

)

√
νd|Σ̂|

Zd(Σ̂, ν)n+1

∫ ∞

0
dr rd−1

[
1+ r2

]− 12 (n+1)(ν+d) .

(A.9)

The above integral is related to the Beta function yielding:

I = 2π
d
2

Γ
(
d
2

)

√
νd|Σ̂|

2Zd(Σ̂, ν)n+1
B

(
1

2
n(ν+ d)+

ν

2
,
d

2

)
. (A.10)

Plugging it into eq. (A.7) and using our definition (A.2)
for Zd(Σ̂, ν) gives

S[pd] =
1

2
log
[
(πν)d|Σ̂|

]
+ log

B
(
ν
2 ,
d
2

)

Γ
(
d
2

)

+

(
ν+ d

2

)[
ψ

(
ν+ d

2

)
−ψ

(ν
2

)]
, (A.11)

where ψ(x) is the digamma function.
The mutual information of the Student d-dimensional

distribution can be calculated using eq. (A.6) with the
entropy given by eq. (A.11):

Id(Σ̂, ν) = −
1

2
log| Σ̂ |

+ log

{[
B
(
ν
2 ,
1
2

)]d
Γ
(
d
2

)

π
d
2B
(
ν
2 ,
d
2

)

}

− ν(d− 1)
2

ψ
(ν
2

)

+
d(ν+1)

2
ψ

(
ν+1

2

)
− (ν+ d)

2
ψ

(
ν+ d

2

)
.

(A.12)

Notice that the only term depending on the correlation
matrix Σ̂ is the mutual information of a Gaussian distrib-
ution IGauss =− 12 log|Σ̂|. The remaining term is the infor-
mation excess. For d= 2 we have

I2(ρ, ν) = IGauss+ Iexcess, (A.13)

with

IGauss =−
1

2
log
(
1− ρ2

)
(A.14)

and

Iexcess = 2 log

(√
ν

2π
B

(
ν

2
,
1

2

))
− 2+ ν

ν

+(1+ ν)

[
ψ

(
ν+1

2

)
−ψ

(ν
2

)]
, (A.15)

where we used the fact that B(x, 1) = 1x and ψ(x+1)−
ψ(x) = 1x .
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