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Abstract
This paper discusses a realization of object persistence
in a CORBA-based distributed system. In our approach,
persistence of CORBA objects is accomplished by the in-
tegration of the ORB with an ODBMS. This approach is
not limited to pure object-oriented database systems, as
the ODBMS may be a combination of a relational DBMS
and an object-relational mapper. The design and im-
plementation of an Object Database Adapter that inte-
grates an ORB and an ODBMS with C++ bindings is
presented. The ODA uses delegation (rather than inher-
itance) to connect user-provided implementation classes
and IDL-generated classes. Only the user-defined parts
of CORBA objects are actually stored in a database.
Their IDL-generated parts are dynamically instantiated,
in transient memory, by the ODA. Persistent relation-
ships between CORBA objects within a server are not re-
alized at the CORBA level, but at the level of implementa-
tion objects. Database traversals and queries can there-
fore be executed at ODBMS speeds. The paper discusses
in some detail a number of implementation issues, such
as caching. ODA support to local transactions, ODA in-
terfaces, and CORBA server organization are also exam-
ined.

1 Introduction

In spite of its remarkable successes in promoting stan-
dards for distributed object systems [14], the Object
Management Group (OMG) has not yet settled the is-
sue of object persistence in the Object Request Broker
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(ORB) environment. The Common Object Request Bro-
ker Architecture (CORBA) specification [7] briefly men-
tions an Object-Oriented Database Adapter that makes
objects stored in an object-oriented database accessible
through the ORB. This idea is pursued in the Appendix B
of the ODMG standard [2], which identifies a number
of issues involved in using an Object Database Manage-
ment System (ODBMS) in a CORBA environment, and
proposes an Object Database Adapter (ODA) to realize
the integration of the ORB with the ODBMS.

Possibly because this proposal was perceived by many
as biased towards object-oriented databases, and hence
distant from the mainstream database world, no further
OMG specifications have contemplated the ODA ap-
proach. Instead, a Persistence Object Service (POS),
designed to accommodate the widest possible variety of
data stores, was introduced in [8]. So far POS failed to
deliver its promise. In response to this fact, the OMG
recently issued a request for proposals for POS version
2.0:

“While the industry posses many products
from OMG members that could be considered
to be in this space, it is clear that virtually
none have compliant POS implementations in
their product roadmaps. Most have taken the
route of point integrations with ORB prod-
ucts.” ([11], page 20)

Meanwhile, recognition that the ODA approach is
not exclusive to object-oriented databases seems to have
grown in the industry. Object-relational mappers —
systems that map C++ classes/objects into relational ta-
bles/tuples — have been employed to make relational
databases appear as object-oriented ones. Because such
mappers implement an ODBMS interface on top of a re-
lational system, they extend to relational databases the
applicability of the ODA approach.

The benefits of integrating ORBs and ODBMSs in-
clude:

Database Heterogeneity. ORB/ODBMS integration al-



lows the construction of distributed object data-
bases that can be heterogeneous even with respect to
the DBMS software running on the database server
nodes.

“IDL views”. Access to database objects through IDL
interfaces does not require knowledge of the data-
base schema: changes in the schema are transpar-
ent to IDL clients. Interfaces can be defined to ex-
pose only data items that certain users are permit-
ted to read or update. IDL interfaces to database
objects can therefore play a role analogous to re-
lational views, both for data independence and for
authorization purposes.

Language Heterogeneity. Databases can be accessed
by CORBA clients written in any language for
which a mapping from IDL is defined.

Security. The ORB’s remote method invocation mecha-
nism requires much less trust in the client than the
data-shipping approach employed by pure object-
oriented DBMSs.

This paper discusses the design and implementation
of an ODA that integrates an ORB and an ODBMS with
C++ bindings. For our purposes, an ODBMS is a system
with programming interfaces similar to the ones speci-
fied in [2]: it may be a pure object-oriented DBMS (an
OODBMS), or a combination of a relational DBMS and
an object-relational mapper.

An ODA based on the ideas presented here was de-
veloped as part of the Sunrise Project1 at the Los Alamos
National Laboratory (LANL). This adapter has been used
by the TeleMed system [4] since mid 1995, and is cur-
rently employed by other LANL projects as well. We
have implemented it for two ORBs, Orbix and VisiBro-
ker for C++, with ObjectStore as the underlying ODBMS
in both cases. Even though these implementations were
aimed at a non ODMG-compliant ODBMS, we report
our experience in ODMG terms whenever possible.

1.1 The Case for an ODA

ODBMSs integrate database capabilities with an object-
oriented programming language. They implement per-
sistent memory, a single-level store abstraction of the
memory hierarchy. An ODBMS with C++ bindings pro-
vides a persistent address space for C++ objects, with
heap-style allocation/deallocation. ODBMS program-
mers manipulate persistent C++ objects in the same way
they manipulate objects in the transient heap.

Nevertheless, a CORBA server implemented in C++
cannot simply place in persistent memory the objects

1See http://www.acl.lanl.gov/sunrise/sunrise.html.

it implements. To have the status of a CORBA object,
a C++ object must be registered with the ORB, which
keeps a per-server-process table of active objects. The
details of how C++ objects are registered as CORBA
objects are not fully specified by the current release of
CORBA.2 In existing ORBs, CORBA objects are regis-
tered upon creation. The following approaches are cur-
rently used by ORB implementations:

1. A server may create CORBA objects only via calls
to the ORB, usually to the function BOA::create.

2. A server can instantiate CORBA objects directly.
The constructor of a CORBA object executes IDL-
generated code that registers the object with the
ORB.

On the other hand, the ODBMS provides its own over-
loaded form of operator new. It requires persistent ob-
jects to be created by this operator. If the ORB enforces
approach 1 above, then there is clearly no way of placing
a CORBA object in persistent memory. If the ORB sup-
ports approach 2, one could naively use the overloaded
form of operator new to instantiate “persistent CORBA
objects”. This would not work, because the construc-
tor of a persistent object is invoked only when the object
is added to the database: “persistent CORBA objects”
stored by other processes (including previous runs of the
same server program) would not be registered with the
ORB. As far as the ORB is concerned, these objects
would not be active — no requests would be delivered
to them.3

To make the ORB and the ODBMS work together, an
additional component is necessary. Driven by incoming
requests, such a component should activate objects that
lie dormant in persistent memory. To allow on-demand
activation of dormant objects, it must ensure that object
references handed out to CORBA clients contain infor-
mation on the location of the corresponding objects in
persistent memory. Hence this component has to be re-
sponsible for the generation and interpretation of refer-
ences to persistent objects. In the OMG ORB architec-
ture these responsibilities belong to an Object Adapter.

1.2 The Role of the ODA

The primary role of the ODA is to provide CORBA
servers with an application-independent way of making
CORBA objects persistent. This includes ensuring that
references to persistent objects are themselves persistent.
In CORBA, persistence of object references means that

2The underspecification of a number of server-side issues led to
server portability problems [9], which the OMG is about to solve [1].

3CORBA distinguishes object activation (activation of individual
objects within a server) from implementation activation (server activa-
tion, usually performed by ORB-provided daemons).



“a client that has an object reference can use it at any
time without warning, even if the (object) implementa-
tion has been deactivated or the (server) system has been
restarted” [7].

With persistence of object references, it makes perfect
sense for a client to store an object reference for later use.
References to persistent CORBA objects implemented
by server X can be stored by server Y (a client of server
X), thereby enabling the construction of ORB-connected
multidatabases. In such a multidatabase, references to
remote objects are used to express relationships between
CORBA objects implemented by different servers.

Distributed transactions, in an ORB-connected multi-
database, should be supported by a TP monitor that im-
plements the Object Transaction Service (OTS) specified
by the OMG [8]. In the absence of this service, the ODA
has the additional role of ensuring that operations on per-
sistent objects are encompassed by local transactions.4 It
interacts with the ODBMS to start and commit (or abort)
database transactions.

1.3 Organization of this Paper

The next section motivates and presents the general de-
sign of the ODA. Section 3 discusses implementation is-
sues; Section 4 considers transactions; Section 5 exam-
ines the ODA interfaces and their typical usage; Section
6 mentions related work; and Section 7 presents conclud-
ing remarks.

2 Design Decisions

Our perspective is the one of a third-party implemen-
tor, with no access to ORB and ODBMS internal inter-
faces. Accordingly, our ODA is an add-on to the ORB’s
native Object Adapter (OA), rather than a replacement
for it. Figure 1 shows how it fits into the integrated
ORB/ODBMS environment.

Note that the ODBMS is depicted as a separate en-
tity holding persistent objects. This representation ex-
poses the three-tiered nature of the ORB/ODBMS envi-
ronment: an object implementation — the middle tier —
is at the same time a client of the ODBMS and a server
to CORBA clients. For simplicity, in a subsequent fig-
ure we omit the ODBMS and represent persistent objects
within the CORBA server. The reader should keep in
mind that “persistence within an object implementation”
is a simplified representation of the architecture in Fig-
ure 1.

4Several OODBMSs, including ObjectStore, do not yet support the
resource manager interface required by OTS. This service might also be
absent simply because a particular application does not need distributed
transactions.

2.1 What to Place in Persistent Memory

A CORBA object has two parts: an IDL skeleton and
an user-defined part.5 The skeleton consists of ORB-
specific data members and member functions, all of them
mechanically generated from an IDL specification. It is
an instance of a skeleton class, a server-side dispatcher
generated by the IDL translator. The user-defined part is
the implementation object, an instance of an implementa-
tion class provided by the server writer. The implemen-
tation object encompasses the data members and member
functions actually defined by the object implementor.6

The data members in the user-defined part of a
CORBA object are relevant to the application, the ones
in the skeleton part are relevant to the ORB only. If we
employ an ODBMS to make CORBA objects persistent,
we should certainly keep their implementation objects in
persistent memory. Should we also place their skeleton
parts in persistent memory? An obvious reason for not
doing so is waste of database space, specially in the case
of fine-grained objects.7 Stronger reasons are:

ORB independence. Keeping ORB-specific data mem-
bers in persistent memory ties the database to a
particular ORB implementation. As ORB products
evolve, these data members may change with ORB
releases. Databases with ORB-specific information
would then have to go through a schema evolution
process.

Performance. Assuming that CORBA objects are ref-
erence counted,8 the skeleton part of a CORBA
object holds its reference count, which is updated
by the primitives duplicate and release. Plac-
ing reference counts in persistent memory means
encompassing these primitives by update transac-
tions. Every operation that receives or returns a ref-
erence to a persistent object would then require an
update transaction, because parameter passing in-
volves duplicate and release calls.

Only the user-defined parts of CORBA objects should
be placed in persistent memory. As the ODA activates

5We are not considering the case of CORBA objects implemented
with the Dynamical Skeleton Interface.

6Terminology could be better here, as implementation object is eas-
ily confused with object implementation. The former is an instance
of an implementation class, the latter is the OMG term for a CORBA
server. We prefer the vocabulary adopted by [5] — servant for im-
plementation object, servant class for implementation class — but re-
frain from using it, because the new Portable Object Adapter specifica-
tion [1] has assigned another meaning to the word servant.

7Besides ORB-specific data members, the skeleton part of a
CORBA object typically has a pair of hidden vbase and vtable point-
ers for each interface class in the object’s inheritance chain up to
CORBA::Object.

8Although CORBA does not specify such implementation details,
most (if not all) ORB implementations keep a reference count per ob-
ject.
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Figure 1: The Object Database Adapter.

and deactivates objects, it should dynamically instanti-
ate and release their skeleton parts, allocated in transient
memory. These observations lead us to a clear choice
with respect to the relationship between skeletons and
implementation objects.

2.2 Delegation, Not Inheritance

Figure 2 shows the alternatives commonly used to con-
nect the parts of a CORBA object. In the inheritance
approach, the object implementor derives implementa-
tion classes from IDL-generated skeleton classes. In the
delegation approach, also known as tie approach, in-
stances of IDL-generated skeleton classes are called tie
objects, or simply ties. Each tie holds a reference to
an implementation object to which it delegates opera-
tions. While inheritance imposes identical lifetimes to
both parts of a CORBA object, delegation allows imple-
mentation objects to outlive their skeleton objects. We
therefore choose delegation as the interface implementa-
tion approach supported by the ODA.

2.3 Pseudopersistence

Our decisions can be summarized as follows:

• The ODA supports persistent CORBA objects im-
plemented with the delegation approach.

• CORBA servers keep only implementation objects
in persistent memory.

• The ODA is responsible for dynamically instantiat-
ing and releasing transient ties to persistent imple-
mentation objects, so that full CORBA objects are
available whenever they are needed.

Even though “persistent CORBA objects” are not fully
kept in persistent memory, to their clients they appear

as long-lived objects. Accordingly, we call this scheme
pseudopersistence. In what follows, a pseudopersistent
tie, or simply p-tie, is a transient tie to a persistent imple-
mentation object.

As any tie, a p-tie has a data member that specifies the
implementation object to which the tie delegates opera-
tions. In a regular tie, this data member is a C++ pointer
or reference. In a p-tie, it must be an ODBMS reference
(d Ref), for it points to an implementation object in per-
sistent memory.

When a p-tie is instantiated, one must initialize its
d Ref data member. To support the instantiation of a
p-tie given a CORBA object reference, the ODA embeds
a d Ref to an implementation object into every CORBA
reference it generates. This embedding takes advantage
of the id (also known as ReferenceData) field of the
object reference. The id, an octet sequence opaque to
the ORB core, contains identification information local
to the server in which the CORBA reference was gener-
ated. References to p-ties are generated and interpreted
by the ODA, which embeds d Refs into their ids.

Figure 3 illustrates the pseudopersistence scheme. A
request to a dormant object arrives through the ORB core
(1), causing an upcall to an ODA-provided object activa-
tion function. The id field of the target object reference
is passed as a parameter to this function. This id con-
tains a stringfied d Ref to a persistent implementation
object. The ODA extracts the d Ref from the id and
passes it as an argument to an instantiation function (2),
which constructs the target CORBA object as a p-tie to
the implementation object specified by the d Ref. The
incoming request then reaches the target object as an up-
call through the IDL skeleton (3). At the end of the op-
eration, another upcall to the ODA (4) causes the target
object to be released.
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In Figure 3, the object activation upcall happens be-
cause the target of an incoming request is a dormant ob-
ject. Upcalls also happen in the case of dormant objects
referenced by request parameters, or by strings passed to
string to object.

Pseudopersistence should be understood in the context
of the architecture in Figure 1. Persistent implementation
objects do not live within a CORBA server, as the sim-
plified representation in Figure 3 may suggest, but in a
database server. Multiple CORBA servers (middle-tier
processes) may be clients of a database server; they may
or may not run in the same node as the database server.
Moreover, a persistent implementation object may be
shared by multiple p-ties, each in the address space of
a different middle-tier process.9

3 Implementation Issues

The ODA is implemented as a library that uses and ex-
tends the services of the native OA. It requires changes
on the IDL translation process, which must become
ODA-aware. These changes, as well as the actions of
the ODA library, are examined below.

3.1 IDL Translation Issues

• Any tie class has a data member that references the
implementation object to which ties delegate oper-
ations. This data member is usually a C++ pointer
or reference. In the case of a p-tie class, however, it
must be a d Ref.

9To exemplify: consider a persistent CORBA object implemented
by an Orbix server whose activation mode is per-client-process, and
suppose that multiple clients are concurrently using this object. Every
client interacts with its own middle-tier process, a distinct execution
of the same server program. Each middle-tier process has a p-tie that
incarnates the persistent CORBA object. All these p-ties share the same
persistent implementation object, which is managed by the ODBMS.

• Code to support the management of p-ties by the
ODA library must be generated within every p-tie
class. In our implementation, p-tie constructors and
destructors perform ODA-related actions. More-
over, each p-tie class makes available to the ODA
library a static function for p-tie instantiation.

The constructor of a p-tie class embeds into the p-tie’s
id a stringfied d Ref to the p-tie’s implementation ob-
ject. It also registers the p-tie with the ODA library;
the p-tie will be eventually unregistered by its destruc-
tor. The p-tie instantiation function receives a d Ref to a
persistent implementation object and creates a new p-tie
to this object.

Special translation requirements do not necessarily
mean another IDL translator. Our ODA implementa-
tion actually employs the IDL translator provided by the
ORB, complementing it with macros. The object im-
plementor annotates the server code with ODA-defined
directives, which macro-expand into p-tie class defini-
tions. No changes are made to any files generated by the
IDL translator: ODA directives are placed only in user-
written files, and typically within server headers. In what
follows, an ODA-generated function (ODA-generated
class) is a function (class) defined by the macro expan-
sion of an ODA directive.

3.2 ODA Actions

• The ODA library receives object activation upcalls
from the native OA, forwarding each such upcall to
the appropriate p-tie instantiation function.

• At the end of every operation, after any results were
marshaled into a reply message, the ODA library
issues release calls on all p-ties instantiated while
the current request was being serviced.

Because the number of implementation objects in a
database is potentially very large, a CORBA server can-
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Figure 3: The pseudopersistence scheme.

not keep in-memory ties to all the persistent implementa-
tion objects it touches during its execution. The last item
above addresses the need of releasing p-ties from time
to time. Each p-tie is instantiated with a “net reference
count” of zero — an initial reference count of one, plus
a pending release call, to be performed by the ODA
at the end of the operation. Unless the server code is-
sues duplicate calls on them, p-ties have short lifetime:
they exist while a request is being serviced. Whenever a
discarded p-tie is needed again, an equivalent to it will
be instantiated by an object activation upcall.

3.3 Caching P-ties

Releasing all p-ties at the end of every operation appears
unreasonable, since the ODA only needs to ensure that
these p-ties will be eventually released. Postponing their
destruction would avoid the costs of successive p-tie re-
instantiations. Our ODA implementation actually caches

the last N p-ties it instantiated, where N is a configurable
parameter. At the end of every operation the ODA brings
the number of p-ties down to N + δ, keeping the most
recent ones. (The δ accounts for any duplicate calls
that might have been issued by the server code.)

Caching p-ties makes sense if the ODBMS ensures
that their d Ref data members remain valid across trans-
actions. So far we have ignored database transactions,
this topic will be discussed in Section 4. Let us as-
sume, by now, that transactions are started and commit-
ted (or aborted) by means external to the CORBA server,
and that each operation is encompassed by an individual
transaction.

Does a d Ref from transient to persistent memory re-
tain its validity across transactions? The ODMG stan-
dard leaves the answer to the discretion of the ODBMS
implementor. In most ODBMSs, such a reference cannot
be used in between transactions, but does remain valid
across transactions. This being the case, the ODA should



cache p-ties.
With caching, the CORBA server must have a way

of forcing the removal of objects from the cache. Ac-
cordingly, the ODA provides a function that receives a
CORBA::Object ptr and immediately deletes the corre-
sponding p-tie. This function, ODA::Delete, is intended
to be called by destructors of persistent implementation
objects, with the purpose of avoiding dangling p-ties.

3.4 Converting Implementation Objects to
CORBA Objects

The ODA must provide the server code with the means
for obtaining a CORBA object given its implementation
object. For each association

(interface, implementation class)

there is an ODA-generated function that takes a d Ref to
an implementation object and returns a reference (of type
interface ptr) to the corresponding CORBA object. To
avoid multiple p-ties to an implementation object, this
function is not implemented as a mere call to p-tie in-
stantiate. It first checks it if a p-tie to the implementation
object already exists in the server’s address space, then
it returns a duplicated reference to either an existing
p-tie or a newly instantiated one.

A non-standard bind function, present in various
ORBs, could be used to perform the check mentioned
above. Given a d Ref to an implementation object, one
would convert it to string and obtain an id, which would
then be passed as an argument to bind. The ODA does
not use this approach. Instead, it keeps pairs

(d Ref, p-tie address)

in its own table of active p-ties, which it hashes by
d Refs with a hash function provided by the ODBMS.

3.5 Non-standard ORB and ODBMS Fea-
tures Employed

The ODA relies on the delegation approach, which is
mentioned — but not mandated — by the current revi-
sion (2.0) of CORBA. Orbix and VisiBroker are exam-
ples of commercially available ORBs that support dele-
gation. Both admit direct instantiation of ties, automati-
cally registering newly instantiated ties as active CORBA
objects. The new Portable Object Adapter (POA) spec-
ification [1] fully standardizes the delegation approach.
It requires compliant ORB implementations to support
both the inheritance and the delegation approach.

Because CORBA 2.0 describes object activation in
very general terms, existing ORB implementations vary
widely on their support to object activation. The ODA

builds upon the native OA’s object activation capabilities.
Its Orbix implementation uses a LoaderClass instance;
the VisiBroker implementation uses an Activator. The
new POA specification completely defines object activa-
tion. With the POA, future ODA implementations can
employ a standard facility, the InstanceActivator in-
terface.

Various ORBs provide non-standard “event handling”
or “request/reply intercepting” mechanisms. The ODA
needs such a facility both to release p-ties and to man-
age database transactions in the absence of OTS (see
Section 4). Its Orbix implementation uses a Filter;
the VisiBroker implementation uses an EventHandler.
The OMG has recently introduced request level intercep-
tors [10] as an extension to the ORB core, and is actively
working to complete the specification of this facility.

From the ODBMS, the ODA requires a means of
converting d Refs to strings and vice-versa. Although
supported by many ODBMSs, this feature is not in
the ODMG standard. Caching of p-ties requires more:
d Refs must remain valid across transactions.

4 Transactions

Any access to persistent memory has to be performed
within a transaction. Leaving to implementation objects
the responsibility of starting and committing (or abort-
ing) transactions is not an option, because accesses to
persistent memory happen both before and after these
objects’ methods are called:

• In order to delegate an operation to its implementa-
tion object, a p-tie must access persistent memory.
The p-tie must dereference its d Ref data member,
which points to persistent memory.

• Marshaling of operation results into a reply message
may involve accesses to persistent memory.

Usage of OTS [8] would ensure that not just the user-
provided implementation code, but also request dispatch-
ing and parameter marshaling code, would be executed
within transactions. Since OTS interacts directly with
the local resource manager (the ODBMS), transactions
would be started and committed (or aborted) by means
external to the CORBA server.

If OTS is absent, the ODA must take the responsibil-
ity of starting and committing (or aborting) local trans-
actions. Not with the aim of performing distributed two-
phase commit, but just to ensure that a transaction will
be active whenever an operation is dispatched, and will
remain active till the operation results are marshaled into
a reply message. We did not have OTS, so this was our
scenario.



4.1 Support to Local Transactions

The ODA manages local transactions by employing
ORB-specific “event handling” or “request/reply inter-
cepting” facilities. Its default transaction mode is trans-
action per operation: an “incoming request pre-marshal”
handler starts a transaction as soon as a request arrives,
an “outgoing reply post-marshal” handler ends the trans-
action just before the reply is sent. An operation imple-
mentation may specify if the current transaction will be
committed or aborted at the end of the operation. By de-
fault, the ODA commits the transaction. Under control
of the server code, the ODA may also switch to another
transaction mode, which allows multiple operations to be
grouped into a single transaction.

Because ObjectStore requires the transaction type
(read-only or update) to be specified when a transac-
tion starts, update operations must be registered with the
ODA. Registration of update operations is typically done
by the server mainline. By default, the ODA starts read-
only transactions. In the case of operations previously
registered as update operations, it starts update transac-
tions.

5 ODA Interfaces and Usage

The CORBA server interacts with the ODA through a
very small API. Besides ODA-generated functions that
return an interface ptr given a d Ref and vice-versa,
there are just a few static functions available to the server
code:

• ODA::initialize

• ODA::register update ops

• ODA::Delete

• ODA::multi op transaction mode

• ODA::abort transaction

• ODA::commit transaction

Note that there is no specific function to create or activate
a persistent CORBA object: object activation may occur
as a side effect of the conversion of a d Ref into CORBA
object reference.

Given an interface class X and an implementation class
X i to which X delegates operations, the function

X_ptr ODA_X_i_to_X(const d_Ref<X_i>&);

translates a d Ref<X i> into the corresponding X ptr.
This function, defined at the file scope, is generated by

the ODA directive that “ties together” X and X i. A mem-
ber function of the ODA-generated p-tie class performs
the reverse translation (to d Ref<X i>).

The ODA is not an intrusive presence in the pro-
gramming environment. In our experience, the vast ma-
jority of ODA calls is performed to obtain an inter-
face ptr from a d Ref. Except for these, ODA calls
are relatively rare in the server code. ODA::initialize
is called once, by the server’s mainline. Calls to
ODA::register update ops typically appear in the
server’s mainline only, and would not be necessary in the
case of an ODMG-compliant ODBMS. ODA::Delete is
invoked from destructors of persistent implementation
objects. In the default transaction mode, user-provided
methods do not normally call transaction management
functions.

5.1 Server Organization

Persistent relationships between CORBA objects within
a server are actually realized by relationships between
their corresponding implementation objects. When
traversing database relationships or performing a data-
base query, the server code deals only with persis-
tent implementation objects, not with full CORBA ob-
jects. Such a traversal or query is therefore executed at
ODBMS speeds. Consider, for example, the case of an
operation that performs a search for a particular object
within a collection of objects. The whole search is per-
formed at the ODBMS level, without CORBA-activating
any of the objects of the collection. Its result, a d Ref

to particular implementation object, is then converted to
CORBA object reference and passed back to the client.
When the server code calls the ODA to perform such
a conversion, it obtains a duplicated reference to a
CORBA object managed by the ODA. Whether this ob-
ject was just activated or was already in the ODA cache
is irrelevant to the server code, which in either case as-
sumes the responsibility of releasing the reference.

Persistent relationships between CORBA objects in
different servers are realized via stringfied CORBA ref-
erences stored in persistent memory. These references
must be explicitly converted back to its native form for
usage. Note that any database containing CORBA object
references is ORB-dependent, because these references
are ORB-dependent. ORB independence is lost when we
move on to an ORB-connected multidatabase.

5.2 Inheritance Issues

Consider the following IDL interfaces:

interface X { ... };



interface X1 : X {

...

};

interface X2 : X {

...

};

interface Y {

readonly attribute X x;

...

};

Interface X defines operations that are common to both
X1 and X2. Attribute x of Y has interface type X, but its
most derived interface is either X1 or X2.

A natural organization for the corresponding persis-
tence-capable implementation classes10 would be:

class X_i : public d_Object {

// abstract class

...

};

class X1_i : public X_i {

...

};

class X2_i : public X_i {

...

};

class Y_i : public d_Object {

public:

X_ptr x();

...

private:

d_Ref<X_i> x_i;

...

};

X i is an abstract class: any instance of this class is
an instance of either X1 i or X2 i. Class Y i holds an
ODBMS reference to an instance of X i in its private data
member x i. The attribute accessor Y i::x() returns a
CORBA reference to the object whose implementation is
x i.

Note, however, that there is no ODA-generated func-
tion that takes a d Ref<X i> and returns an X ptr. The

10We adopt the convention of naming implementation classes by ap-
pending an “ i” to the corresponding interface names.

ODA provides this conversion function only when the in-
terface skeleton and the implementation class are tied to-
gether by delegation. This is never the case for an inher-
ited implementation class, such as X i. In the example
above, there are ODA-generated conversion functions
from d Ref<X1 i> to X1 ptr and from d Ref<X2 i> to
X2 ptr.

ODA users solve this problem by defining a virtual
member function, say get X ptr(), in class X i. This
function, declared as pure virtual in X i, is redefined by
the derived classes X1 i and X2 i as below:

X_ptr X1_i::get_X_ptr() {

return ODA_X1_i_to_X1(d_Ref<X1_i>(this));

}

X_ptr X2_i::get_X_ptr() {

return ODA_X2_i_to_X2(d_Ref<X2_i>(this));

}

If the inheritance chain were longer, all abstract im-
plementation classes would define get X ptr() as pure
virtual.

6 Related Work

Work recently concluded at the OMG, in the context of
the ORB Portability Enhancement RFP [9], has resulted
in a Portable Object Adapter [1] that will reduce the
ODA dependencies on non-standard ORB features. Ear-
lier ORB portability proposals [5, 3] included a Server
Framework Adapter (SFA) and an ODMG model for
SFA. Our pseudopersistence scheme is essentially a re-
alization of the ODMG model for SFA, as outlined in the
Appendix C of [3].

A number of ORB and ODBMS vendors has an-
nounced plans for the integration of their products; some
of these integrated solutions are already being deliv-
ered. Probably the first one was Iona Technologies’s
Orbix+ObjectStore Adapter (OOSA) [6], whose beta re-
lease became available by late 1995. Since then, Iona has
integrated Orbix with Versant, and has announced plans
for integrating Orbix with O2 and with Persistence.

Iona’s OOSA takes advantage of the particular way
CORBA objects are laid out by the ORB. In Orbix, not all
data encapsulated by a CORBA::Object instance appears
directly in its data members. Instead, a data member of
CORBA::Object points to an auxiliary object. Some of
the “logical” data members of CORBA::Object are actu-
ally in this auxiliary object. The reference count is one
of them.

Unlike the ODA, which stores only implementation
objects, OOSA actually stores CORBA objects in Ob-
jectStore databases. A CORBA object, however, is not



stored in their entirety: to avoid the performance penalty
of having reference counts in persistent memory, OOSA
does not store the auxiliary object in the database. In-
stead, it dynamically instantiates auxiliary objects as per-
sistent CORBA objects are made available in Object-
Store’s client cache. When such an auxiliary object is in-
stantiated, the corresponding CORBA object is inserted
into the per-process table of active objects maintained by
Orbix. This approach allows persistent CORBA objects
to be implemented either by inheritance or by delega-
tion. It also allows object relationships to be expressed
in terms of CORBA objects, not just in terms of imple-
mentation objects. Its disadvantages are some waste of
database space, ORB-dependent databases, and the per-
formance penalty of object activations triggered by data-
base accesses.

7 Concluding Remarks

We have presented the design and implementation of an
ODA that allows execution of database traversals and
queries at the full speed of the underlying ODBMS. Only
what needs to be persistent is kept in persistent memory;
ODA users are not forced to store ORB-specific infor-
mation persistently. Databases are ORB-independent un-
less the user explicitly places ORB-specific data (such as
stringfied object references) in persistent memory. Fi-
nally, the ODA design appears to be general enough
to be applicable to any ODBMS. ObjectStore’s virtual
memory-based architecture makes it different from all
other ODBMSs in many aspects. That the ODA design
can be described in ODMG terms, and yet be imple-
mented for ObjectStore, is strong evidence of its appli-
cability to any ODBMS.

The ODA’s pseudopersistence scheme appears to be an
optimal solution for integrated ORB/ODBMS environ-
ments in which object relationships are mostly confined
within a CORBA server. In such a scenario, there is no
reason to express database relationships at the CORBA
level, as they are much more efficiently realized at the
level of implementation objects.

The motivation for representing database relationships
at the CORBA level might arise in the context of an
ORB-connected multidatabase with many cross-server
references. Expressing persistent relationships between
objects in different servers via stringfied CORBA refer-
ences placed in persistent memory may be inconvenient
in this case. Consider, for example, a situation in which
it would be desirable for a server to have a persistent and
homogeneous collection of object references, whose ele-
ments may refer to either local or remote objects. This is
not possible in the pseudopersistence scheme. Instead of
a uniform collection, two distinct sub-collections must be

used: one with d Refs to local implementation objects,
other with stringfied CORBA references to remote ob-
jects. Intra-server references and inter-server references
could be unified if the Object Adapter provided support
for persistently representing both at the CORBA level.
To be useful, this unification should allow transparent use
of stored CORBA references to invoke methods on pos-
sibly remote objects. Note, however, that incurring the
cost of such a unification — the performance penalty of
expressing intra-server references at the CORBA level —
makes sense only if cross-server references occur much
more than intra-server references.
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