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Abstract

This paper presents some results on semi-parametric regression using

wavelet methods in the presence of autocorrelated stationary Gaussian

errors, and when the explanatory variable follows a uniform distribution

or comes from a stochastic sampling like the jittered sampling scheme.

The aim is to estimate the signal globally with low risk. It is shown that

in these special cases the samples can be treated as if they were equispaced

and with correlated noise; i.e., the estimator achieves an almost optimal

convergence rate. Some simulation studies compare the cases with and

without equal spacings in finite samples. Daily volatility estimatives of a

low-traded stock illustrate the usefulness of the method.
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1 Introduction

A mathematical problem of considerable interest is to approximate a continu-
ous function f(t), t ∈ [0, 1], based upon samples f(ti), i = 1, . . . , n. We do not
observe f(ti) directly, but only in the presence of correlated zero mean noise
{ǫ(t1), . . . , ǫ(tn)}, which we assume throughout to obey a multivariate Gaus-
sian distribution. The data consist of points {(t1, y(t1)), . . . , (tn, y(tn))}, where
y(ti) = f(ti) + ǫ(ti), for i = 1, . . . , n, and our objective is to extract the signal

f from the data using an estimator f̂ with low integrated mean squared error
(IMSE), defined as

R(f̂ , f) = E||f̂ − f ||22 =

∫ 1

0

E(f̂(x) − f(x))2dx.
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Wavelet shrinkage methods have been very successful in signal extraction and
nonparametric regression, but most are focused on equispaced samples (i.e.,
over a regular grid ti = i/n) with independent and identically distributed (IID)
errors. The equispaced assumption has been relaxed to handle unequally spaced
samples with a fixed design [17], a uniformly distributed design [8] and a general
random design [16, 18], but these extensions are restricted to IID errors. Wavelet
shrinkage methods have also been adapted to handle correlated errors, but only
in the context of equispaced samples [9] and of unequally spaced samples with
a fixed design [20].

In this paper, we investigate wavelet shrinkage for certain unequally sampled
designs in the presence of correlated errors. We consider stochastic sampling
schemes where either the sample points ti are uniformly distributed in [0, 1]
or they come from a jittering; i.e., ti = (2i − 1)/(2n) + ji, where ji are IID
uniform [−1/(2n), 1/(2n)] random variables. Stochastic sampling techniques are
of interest because they can overcome certain aliasing problems associated with
sampling on a regular grid [2]. We show that under our assumptions the samples
can be treated as if they were equispaced with correlated noise [9], and hence
we can apply the VisuShrink procedure [7] with level-dependent thresholds.

The paper is organized as follows. In Section 2 we review some basic prop-
erties of wavelets along with earlier research on wavelet shrinkage. Our new
results on wavelet shrinkage for stochastic sampling schemes with correlated
errors are given in Section 3, after which we present some simulation results in
Section 4 and a financial application in Section 5. We state our conclusions in
Section 6 and devote Section 7 to proofs.

2 Wavelets and wavelet shrinkage

An orthonormal wavelet basis is generated from dilation and translation of a
“father” wavelet φ (or scaling function) and a “mother” wavelet ψ. We assume
that both functions are compactly supported in [0, N ] and that

∫
φ = 1. We

recall that a wavelet is r-regular if it has r vanishing moments and r continuous
derivatives. Let

φj,k(t) = 2j/2φ(2jt− k) and ψj,k(t) = 2j/2ψ(2jt− k)

so that ψj,k has support [2−jk, 2−j(N + k)]. For t ∈ [0, 1], let

φp
j,k(t) =

∑

l∈ZZ

φj,k(t− l) and ψp
j,k(t) =

∑

l∈ZZ

ψj,k(t− l)

denote the periodized wavelets, which we use henceforth, but with the super-
script “p” suppressed. For some coarse scale j0 ≥ 0 the collection

φj0,k, k = 0, . . . , 2j0 − 1, and ψj,k, j ≥ j0, k = 0, . . . , 2j − 1,

constitutes an orthonormal basis of L2[0, 1].
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Denote the inner product by 〈·, ·〉. For a given square-integrable function f
on [0, 1], let

cj,k = 〈f, φj,k〉 and dj,k = 〈f, ψj,k〉 .
The function f can be expanded into a wavelet series as

f(x) =

2j0−1∑

k=0

cj0,kφj0,k(x) +

∞∑

j=j0

2j−1∑

k=0

dj,kψj,k(x).

This expansion decomposes f into components with different resolutions. The
coefficients cj0,k at the coarsest level capture the gross structure of the function
f . The detail coefficients dj,k represent finer and finer structures in f as the
resolution level j increases.

2.1 Regular design with IID errors

Suppose that we have data sampled on a regular grid that obeys the model

yi = f

(
i

n

)
+ ei, i = 1, . . . , n, (1)

where the noise ei is drawn from some stochastic process, and our task is to
formulate an estimator f̂ of f with small IMSE. In practice, we do this by
transforming yi into empirical wavelet coefficients and then defining f̂ in terms
of the inverse transform of wavelet coefficients that have been denoised using
wavelet shrinkage. The most widely used shrinkage method is the VisuShrink
procedure [7] described as follows.

An orthonormal wavelet basis has an associated exact orthogonal discrete
wavelet transform W that transforms sampled data into discrete wavelet coef-
ficients. Let y = (y1, . . . , yn)T be the vector of observations, where n = 2J for
some J ∈ IN, and let

θ̃ = Wy = (c̃j0,0, . . . , c̃j0,2j0−1, d̃j0,0, . . . , d̃j0,2j0−1, . . . , d̃J−1,0, . . . , d̃J−1,2J−1−1)
T

be the coefficients of the discrete wavelet transform. Define the soft threshold
function by

ηS(d, λ) = sgn(d)(|d| − λ)+,

for some threshold λ (the theoretical results of this paper focus on soft thresh-
olding, but the results remain valid for hard thresholding funcion ηH(d, λ) =
dI(|d| ≥ λ)). If the errors ei, i = 1, . . . , n are IID N(0, σ2) random variables
with known σ2, the VisuShrink estimator of {f(i/n), i = 1, . . . , n} is constructed

by thresholding the wavelet coefficients d̃j,k at threshold λ = σ
√
n−12 log n and

then transforming back. Thus we define

d̂j,k = ηS(d̃j,k, λ)

and the estimator
f̂ = WT θ̂,
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where

θ̂ = (c̃j0,0, . . . , c̃j0,2j0−1, d̂j0,0, . . . , d̂j0,2j0−1, . . . , d̂J−1,0, . . . , d̂J−1,2J−1−1)
T . (2)

In practice the transform W and its inverse WT are carried out by a fast O(n)
algorithm. Note that thresholding is restricted to levels j above some user-
specified primary resolution level j0. It is supposed that signal predominates
over noise in levels below j0.

2.2 Uniform design with IID errors

Consider the model

y(ti) = f(ti) + ǫi, i = 1, . . . , n,

where ti are IID uniform [0,1] random variables, and ǫi are IIDN(0, σ2) variables
with σ2 known and independent of ti. Let 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1 be
the order statistics of the ti. Changing the labels accordingly to the order of
the ti, the model can be rewritten as

yi = f(t(i)) + ei, i = 1, . . . , n, (3)

where yi ≡ y(t(i)) and ei = y(t(i)) − f(t(i)) (note that the values ei represent a

reordering of the ǫi). The data consists of observed pairs
{
(t(1), y1) , (t(2), y2),

. . ., (t(n), yn)
}
. Because the ti are uniformly distributed on [0, 1], the t(i) are

distributed as Beta(i, n− i+1) and E(t(i)) = i/(n+1) [8]. Hence in expectation
this is a regular sampled design (i/(n+1), yi), and we can apply the VisuShrink
procedure directly to the data y = (y1, . . . , yn)T . To within a logarithmic factor
this procedure achieves the optimal convergence rate over the range of Hölder
classes Λα(M) with 1/2 ≤ α ≤ r, a result that holds for both hard and soft
thresholding [8]. In the case of random uniform design and independent Gaus-
sian errors, the data thus can be treated as if they were sampled in a regular
equispaced design. An isometric argument can be used to justify this practice
for other types of nonuniform sampling [16].

2.3 Regular design with correlated errors

Consider model (1) again, but now suppose that the error vector e = (e1, . . . , en)T

have a multivariate Gaussian distribution with mean 0 and covariance matrix
Γ. Also, assume that the errors are stationary so that Γ has entries γ|r−s|.
Let z = We be the wavelet transform of the error vector and let V = WΓWT

be the covariance matrix of z. Neglecting boundary effects, within each level
zj,k will be a portion of a stationary process with level-dependent variance
σ2

j = Var(zj,k) [9].
The properties of the wavelet transform have two heuristic consequences.

First, for many (but not all) models encountered in practice, the autocorrelation
of the zj,k within each level dies away rapidly. Second, there will tend to be little
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correlation between the wavelet coefficients at different levels [9]. For a process
with positively correlated long-range dependence, the wavelet coefficients form
series with negligible autocorrelation and cross-correlations.

In view of these facts, a natural extension of the VisuShrink procedure is to
apply level-dependent thresholding to the transformed data d̃j,k, j = j0, . . . , J−
1, k = 0, . . . , 2j − 1:

d̂j,k = ηS(d̃j,k, λj), (4)

where λj = σj

√
2 log n, and the estimator is

f̂ = WT θ̂,

with θ̂ given by (2). In practice, the noise variance σ2
j is often estimated from the

coefficients in each level, through a robust estimator like the median absolute
deviation from zero. Note that the number of coefficients at the coarsest level
j0 could be small if j0 is set too small, resulting in dicey estimates of σ2

j0
.

3 Wavelet shrinkage for random design with cor-

related errors

Consider a sample (t1, y(t1)), (t2, y(t2)), . . . , (tn, y(tn)) from some stochastic sam-
pling scheme with respective order statistics 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1
that satisfy

Var
(
t(i)
)
≤ 1

n
and

∣∣∣∣E
(
t(i)
)
− i

n

∣∣∣∣ ≤
1√
n

(5)

for i = 1, . . . , n. Given the data, assume the model

yi = f(t(i)) + ei, (6)

where yi ≡ y(t(i)) and the errors ei = e(t(i)) are such that

Cov
(
e(t(i)), e(t(j))

)
= γ(|i− j|) and lim

n→∞

n−1∑

u=−(n−1)

|γ(u)| <∞. (7)

Let f̂(t) be the estimator of f(t) for all t ∈ [0, 1], where

f̂(t) =

2j0−1∑

k=0

ĉj0,kφj0,k(t) +

J ′−1∑

j=j0

2j−1∑

k=0

d̂j,kψj,k(t); (8)

d̂j,k is given by (4); and J ′ is the largest integer that 2J ′ ≤ K
√
n/ log n for

some chosen constant K > 0. The following theorem states our main result.

Theorem 1 Suppose that model (6) is valid, the conditions (5) are met and
ei = e(t(i)) are stationary Gaussian noise with zero mean satisfying conditions
(7). Suppose also that the mother wavelet ψ has r vanishing moments and
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is compactly supported. Then the estimator f̂ given by (8) achieves within a
logarithmic factor almost the optimal convergence rate over the range of Hölder
classes Λα(M) with α ∈ (0, r] in the sense that

sup
f∈Λα(M)

E||f̂ − f ||22 ≤ C

(
log n

n

)2α/(2+2α)

and

sup
f∈Λα(M)

1

n

∑
E||f̂(tk) − f(tk)||22 ≤ C

(
log n

n

)2α/(2+2α)

,

for all M ∈ (0,∞).

In practice we usually choose the constant K such that J ′ ≥ J , and the wavelet
thresholding is performed on all the levels beginning at the level j0.

Conditions (7) occur in diverse applications (see e.g. [12, 10, 13]), and specific
cases of interest where conditions (5) also occur are given by the following
propositions.

Proposition 1 Let {e(t(i)), i = 1, . . . , n} be a portion of a continuous-time
zero-mean stationary Gaussian process e(t), t ∈ (0, 1), with the random points
being jittered: t(i) = (2i−1)/(2n)+ji, where the ji are IID uniform [−1/(2n), 1/(2n)].

Let Cov(e(t(i)), e(t(j))) = σ2e−(n+1)β|t(i)−t(j)| for some β > 0, 0 < σ2 < ∞ and
fixed i and j. Then the conditions (5) and (7) hold for all i, j = 1, . . . , n.

Proposition 2 Assume the same conditions as in Proposition 1, but now let the
random points be such that t(i) ∼ Beta(i, n− i+ 1), that is, the order statistics
from independent realizations of a uniform [0, 1] randon variable. Then the
conditions (5) and (7) hold for all i, j = 1, . . . , n.

Two remarks are in order here. First, a sufficient condition for conditions
(7) to hold is that Cov(e(t(i)), e(t(j))) ≤ Cσ2e−β|i−j| for some positive constant
C <∞. Second, the covariance we assume in both propositions is similar to that
for a continuous-time first-order autoregressive (AR(1)) process, but not exactly
so. We are essentially mapping a process on the real axis to the (0, 1) interval,
so the correlation between two fixed points in this interval must decrease as the
sample size increases, whereas it would remain fixed for a true AR(1) process.

4 Simulations

We conducted a simulation study to compare the estimator based on unequally
spaced samples (with uniform and jittered samples) with the estimator based
on equispaced samples. The package Wavethresh, implemented in R language,
was used and the programs used can be obtained from us under request.

We considered three test functions f(t), representing different degrees of
spatial variability: sine, Heavisine and Doppler. The formulas for the last two
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Table 1: Approximation of the IMSE R(f̂ , f) over 200 replications of the test
functions, calculated across the sampled times for each realization, from the
simulation study. The Daubechies orthonormal compactly supported wavelet
of length L=8 [6], least asymmetric family, was used with soft level-dependent
thresholding beginning at the level j0 indicated.

SNR=5 SNR=7
n j0 Equispaced Jittered Uniform j0 Equispaced Jittered Uniform

Sine

256 2 0.80 0.82 1.17 2 0.41 0.42 0.72
512 2 0.41 0.41 0.64 2 0.21 0.21 0.38
1024 2 0.21 0.20 0.35 2 0.11 0.11 0.21
2048 2 0.12 0.12 0.20 2 0.06 0.06 0.12
Heavisine

256 3 1.96 2.00 2.47 3 1.27 1.30 1.63
512 3 1.40 1.41 1.68 4 0.92 0.93 1.13
1024 3 1.01 1.01 1.18 3 0.74 0.75 0.88
2048 4 0.66 0.67 0.76 4 0.41 0.42 0.50
Doppler

256 5 3.55 3.84 4.50 5 1.87 2.05 2.53
512 5 3.05 3.24 3.92 5 1.61 1.77 2.24
1024 5 2.52 2.59 3.28 6 1.40 1.44 1.79
2048 5 1.97 2.06 2.46 5 0.91 0.94 1.44

functions are in [7]. The sampled functions were normalized such that their
standard deviations are equal to 10. We generated three samples of noise,
one for each type of design, from the process described at Propostion 1 with
β = − log(0.7) and σ2 = 1. For the equispaced design, this corresponds to a
discrete-time AR(1) process with coefficient φ = 0.7. Then, the noise samples
were standardized and added to each respectively sampled function, in order
to compare the estimators at two noise levels, one with signal-to-noise ratio
SNR=5 and another with SNR=7, where

SNR =

√
(n− 1)−1

∑n
i=1

(
f(ti) − f̄

)2
√
V ar(noise)

,

and f̄ = n−1
∑n

i=1 f(ti). We considered sample sizes from n = 256 to 2048.
Table 1 reports the average of the mean-square error (MSE) over 200 repli-

cations of the test functions, calculated across the sampled times for each real-
ization. We take this as an approximation of the IMSE R(f̂ , f). We used the
Daubechies orthonormal compactly supported wavelet of length L=8 [6], least
asymmetric family, and the wavelet coefficients were soft-thresholded from the
indicated level j0 to the greatest one (finest scale). The chosen level j0 was the
level of the equispaced design with less IMSE and the σj values were estimated
using the median absolute deviation around zero. The chosen level j0 happened
to be the one with less average MSE for the other designs in almost all cases.
The constant K = 125 makes J ′ ≥ J in all sample sizes used.

Table 1 shows that the IMSE on random designs is bigger than those on
equispaced design in all the cases. The IMSE for jittering fall between those
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Figure 1: Sine test function and wavelet estimatives based on n = 1024 points
and SNR=7. A Gaussian correlated noise was added to the test function. The
Daubechies orthonormal compactly supported wavelet of length L=8 [6], least
asymmetric family, was used with soft level-dependent thresholding beginning
at the level j0 = 3.

for uniform and equispaced in almost all the cases. However, the jittered sam-
pling yields almost the same results as the equispaced design so that the efect
of small timing errors is small, mainly for bigger sample sizes. Visually, the re-
construction with uniform design is a little more wrinkled than the equispaced
and jittered designs. The jittering is visually almost indistinguishable from the
equispaced design. One realization for the sine, Heavisine and Doppler func-
tions is shown in Figures 1, 2 and 3 respectively, relative to the cases reported
in Table 1, with n = 1024 and SNR=7.

5 Application

The uniform design can sometimes be useful to estimate the trend or the volatil-
ity of financial assets that are not traded every working day, or that are not suffi-
ciently traded. If for a fixed period of time, the trades are uniformly distributed
in this interval, then we can apply level-dependent wavelet shrinkage.
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Figure 2: Heavisine test function and wavelet estimatives based on n = 1024
points and SNR=7. A Gaussian correlated noise was added to the test func-
tion. The Daubechies orthonormal compactly supported wavelet of length L=8
[6], least asymmetric family, was used with soft level-dependent thresholding
beginning at level j0 = 4.
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Figure 3: Doppler test function and wavelet estimatives based on n = 1024
points and SNR=7. A Gaussian correlated noise was added to the test func-
tion. The Daubechies orthonormal compactly supported wavelet of length L=8
[6], least asymmetric family, was used with soft level-dependent thresholding
beginning at level j0 = 7.
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Figure 4: Closing prices simple returns of the Gouverneur Bancorp Inc. stocks
and histogram of the days when they occurred. From August 9th, 1999 to
February 6th, 2007.

One such case is the closing prices of the Gouverneur Bancorp Inc. stocks
from August 9th, 1999 to February 6th, 2007. Its simple returns and an his-
togram of the days when they occurred are shown if Figure 4. These are not
daily returns because the stocks were not traded every day in the period. A
Kolmogorov-Smirnov test does not reject the hypothesis of uniform [0, 1] distri-
bution for the days, at 10% level (p-value=0.1334).

The wavelet empirical coefficients of the squared returns are shown in Figure
5 together with a robust variance estimate for each resolution level considered for
thresholding. Signals with correlated errors generate wavelet coefficients with
different level variances [7]. This seems to be the case here (as can be seen in
the autocorrelation check graphic) and thus, we can shrink the coefficients using
level-dependent thresholds. The soft thresholded coefficients and the estimated
volatility are also shown in this figure.

The returns together with limits of ±2 times the estimated volatility are
shown in Figure 6. This volatility estimate is very rugged and emphasize some
known stylized facts about financial returns. Also, the percentage of returns
that fall beyond those limits is around 6%, which suggests an unconditional
distribution for the returns that has tails a little bit fatter than the Gaussian
distribution.
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Figure 5: Wavelet analysis graphics for the closing prices simple returns of the
Gouverneur Bancorp Inc. stocks of the Figure 4.
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(circles), together with limits (lines) of ±2 times the volatility estimated by
wavelet methods.
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6 Conclusion

In this paper, we have considered the special cases of uniform and jittered sam-
ples from a signal in the presence of Gaussian stationary errors with summable
autocovariances. We proved that in these special cases, the samples can be
treated as if they were equispaced and with correlated noise. That is, discrete
wavelet transform followed by a level-dependent threshold policy give us esti-
mators that adaptively achieve within a logarithmic factor of the optimal con-
vergence rate across a range of Hölder classes. Therefore, for samples based on
uniform design, there are good and fast algorithms for the estimation procedure.

A brief simulation study was carried in order to evaluate the numerical
performance of the method. It was shown that the mean-squared error is com-
parable to that from samples with truly equispaced designs, as was the case of
uncorrelated errors [8]. A financial application illustrated the usefullness of the
method.

7 Proofs

7.1 Proof of Theorem 1

We need the following definition.

Definition 1 Let f (m) denote the m-th derivative of a function f , and let ⌊α⌋
denote the largest integer less than α. For any positive real number α, the Hölder
class Λα(M) on [0, 1] consists of functions f such that

1. |f(x) − f(y)| ≤M |x− y|α if 0 < α ≤ 1;

2. |f (⌊α⌋)(x) − f (⌊α⌋)(y)| ≤M |x− y|α−⌊α⌋ and |f (1)(x)| ≤M if α > 1.

Let yi = f(t(i)) + ei, where e1, . . . , en are drawn from a stationary Gaussian
process with E(ei) = 0, Var(ei) = σ2 and Cov(er, es) = γ(|r − s|), for i, r, s =
1, . . . , n. Suppose that

∑∞
u=−∞ |γ(u)| < ∞. Let t(1) < . . . < t(n) be such that

conditions (5) are valid. Let also f ∈ Λα(M) be fixed.
Using Definition 1, |f(x) − f(y)| ≤ M |x − y|s(α), where s(α) = min(α, 1).

Thus, for any f ∈ Λα(M) the approximation error

1

n

n∑

i=1

E

((
f
(
t(i)
)
− f

(
i

n

))2
)

≤ M

n

n∑

i=1

E

((
t(i) −

i

n

)2s(α)
)

≤ M

n

n∑

i=1

[
E

((
t(i) −

i

n

)2
)]s(α)

=
M

n

n∑

i=1

{
Var

(
t(i) −

i

n

)
+

[
E

(
t(i) −

i

n

)]2}s(α)

13



≤ M

n

n∑

i=1

[
1

n
+

(
1√
n

)2
]s(α)

= O(n−s(α)), (9)

by Jensen’s inequality and conditions (5).
Hereafter, C1, C2, . . . , C16 will denote positive constants that do not depend

on n. Let

f̃(x) =

n−1∑

i=0

n−1/2yi+1φJ,i(x); (10)

fn(x) =

n−1∑

i=0

n−1/2f

(
i+ 1

n

)
φJ,i(x); (11)

f(x) =

n−1∑

k=0

cJ,kφJ,k(x) +

∞∑

j=J

2j−1∑

k=0

dj,kψj,k(x), (12)

where cJ,k = 〈f, φJ,k〉, dj,k = 〈f, ψj,k〉, n = 2J , f ∈ Λα as in Definition 1, with
α > 0.

Rewrite

f̃(x) = f(x) + [fn(x) − f(x)] + [f̃(x) − fn(x)]

= f(x) + [fn(x) − f(x)] +

[
n−1∑

i=0

n−1/2
(
f(t(i+1)) + ei+1

)
φJ,i(x) − fn(x)

]

= f(x) +A(x) +B(x) +R(x),

where

A(x) = fn(x) − f(x);

B(x) =

n−1∑

i=0

n−1/2f(t(i+1))φJ,i(x) − fn(x);

R(x) =
n−1∑

i=0

n−1/2ei+1φJ,i(x).

Note that A(x) is not random while B(x) is random, but depends only on
{ti}n

i=1. For some j0 ≥ 0 and some compactly supported wavelet basis {φj0,k, k =
0, . . . , 2j0−1}∪{ψj,k, j ≥ j0, k = 0, . . . , 2j−1}, ψ with r ≥ α vanishing moments,
let

cj0,k = 〈f, φj0,k〉 , ãj0,k = 〈A,φj0,k〉 , b̃j0,k = 〈B,φj0,k〉 , r̃j0,k = 〈R,φj0,k〉 ;

c̃j0,k = cj0,k + ãj0,k + b̃j0,k + r̃j0,k =

∫ 1

0

f̃(x)φj0,k(x)dx;

14



dj,k = 〈f, ψj,k〉 , aj,k = 〈A,ψj,k〉 , bj,k = 〈B,ψj,k〉 , rj,k = 〈R,ψj,k〉 ;

d̃j,k = d′j,k + rj,k, where d′j,k = dj,k + aj,k + bj,k.

This wavelet basis can be different from the one used in equations (10), (11)
and (12). In those equations, we will take the Haar scaling function

φJ,i(x) = 2J/2φ(2Jx− i) =
√
nI ((nx− i) ∈ (0, 1]) , i = 0, . . . , n− 1,

where I(·) denotes the usual indicator function. Then, for k = 1, . . . , n,

f̃(k/n) =
n−1∑

i=0

yi+1/
√
nφJ,i(k/n) =

n−1∑

i=0

yi+1I ((nk/n− i) ∈ (0, 1]) = yk,

so that f̃(x) will be hereafter a piecewise constant approximation to f(x), based
on the observed points y1, . . . , yn. Similarly, we will also have

fn

(
k

n

)
= f

(
k

n

)
, R

(
k

n

)
= ek.

Also let

ˆr̃j0,k =
1

n

n∑

i=1

eiφj0,k(i/n) and r̂j,k =
1

n

n∑

i=1

eiψj,k(i/n)

be estimators of r̃j0,k and rj,k, respectively, as given in [1]. Let

ĉj0,k = cj0,k + ãj0,k + b̃j0,k + ˆr̃j0,k;

ˆ̃
dj,k = d′j,k + r̂j,k, d̂j,k = sgn(

ˆ̃
dj,k)(| ˆ̃

dj,k − λ|)+,

where λ = σj,k

√
2n−1 log n, n−1σ2

j,k = Var(r̂j,k) and

Var(r̂j,k) =
1

n2
Cov

(
n∑

i=1

eiψj,k(i/n),
n∑

t=1

etψj,k(t/n)

)

=
1

n2

n∑

i=1

n∑

t=1

ψj,k(i/n)ψj,k(t/n)Cov(ei, et)

≤ C1||ψ||2∞
2j

n2

n∑

i=1

n∑

t=1

|γ(i− t)|

= C1||ψ||2∞
2j

n2

n−1∑

u=−(n−1)

|γ(u)|(n− |u|)

≤ C1||ψ||2∞
2j

n

n−1∑

u=−(n−1)

|γ(u)|

≤ C22
jn−1.

15



By an analogous argument Var( ˆr̃j0,k) ≤ C32
j0n−1. Observe that

ˆ̃
dj,k ∼ N(d′j,k, n

−1σ2
j,k).

Now let f̂(x) be an estimator of f(x) for all x ∈ [0, 1], where

f̂(x) =

2j0−1∑

k=0

ĉj0,kφj0,k(x) +

J ′−1∑

j=j0

2j−1∑

k=0

d̂j,kψj,k(x),

and J ′ is the largest integer such that 2J ′ ≤ K
√
n/ log n, for some chosen

constant K > 0. Then, the risk function is

E
(
||f̂ − f ||22

)
= E

(∫ 1

0

[
f̂(x) − f(x)

]2
dx

)

= E



∫ 1

0




2j0−1∑

k=0

ĉj0,kφj0,k(x) +

J ′−1∑

j=j0

2j−1∑

k=0

d̂j,kψj,k(x)

−
2j0−1∑

k=0

cj0,kφj0,k(x) −
J ′−1∑

j=j0

2j−1∑

k=0

dj,kψj,k(x)

−
∞∑

j=J ′

2j−1∑

k=0

dj,kψj,k(x)




2

dx




= E



∫ 1

0




2j0−1∑

k=0

(ĉj0,k − cj0,k)φj0,k(x)

+

J ′−1∑

j=j0

2j−1∑

k=0

(d̂j,k − dj,k)ψj,k(x)

−
∞∑

j=J ′

2j−1∑

k=0

dj,kψj,k(x)




2

dx


 .

By the orthogonality of the wavelet basis, this expression is equal to

E




2j0−1∑

k=0

∫ 1

0

(ĉj0,k − cj0,k)2φ2
j0,k(x)dx+

J ′−1∑

j=j0

2j−1∑

k=0

∫ 1

0

(d̂j,k − dj,k)2ψ2
j,k(x)dx

+

∞∑

j=J ′

2j−1∑

k=0

∫ 1

0

d2
j,kψ

2
j,k(x)dx


 ,

and by the orthonormality of the wavelet basis

E
(
||f̂ − f ||22

)
=

2j0−1∑

k=0

E
(
(ĉj0,k − cj0,k)2

)
+

J ′−1∑

j=j0

2j−1∑

k=0

E
(
(d̂j,k − dj,k)2

)
+

∞∑

j=J ′

2j−1∑

k=0

d2
j,k.

(13)
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By Theorem 2.9.1 in [6] (see also Lemma 1 in [8]),

∞∑

j=J ′

2j−1∑

k=0

d2
j,k ≤ C4

∞∑

j=J ′

2j22(−j(1/2+α)) = C4

∞∑

j=J ′

2−2jα

= C4




∞∑

j=0

2−2jα −
J ′−1∑

j=0

2−2jα




= C4
(2−2α)J ′

1 − 2−2α
≤ C4(2

J ′

)−2α

= C4

(
2J ′+1−1

)−2α

= 22αC4

(
2J ′+1

)−2α

≤ 22αC4

(
K2 n

log n

)−2α/2

= C5

(
log n

n

)α

≤ C5

(
log n

n

) 2α
2+2α

∀α > 0, n ≥ 3.

Throughout all the following text, we will use repeatedly a specific applica-
tion of the (numerical) Hölder inequality: (a+ b)2 ≤ 2a2 + 2b2, a, b ∈ IR. Also
let E1(Y ) = E(Y |t(1), . . . , t(n)) for any random variable Y .

We have

E
(
(ĉj0,k − cj0,k)2

)
= E

(
E1

(
(ĉj0,k − cj0,k)2

))

= E
(
E1

(
( ˆr̃j0,k + ãj0,k + b̃j0,k)2

))

= E( ˆr̃j0,k
2
) + 0 + E

(
E1

(
(ãj0,k + b̃j0,k)2

))

≤ E( ˆr̃j0,k
2
) + E

(
E1

(
2ã2

j0,k + 2b̃2j0,k

))

= E( ˆr̃j0,k
2
) + 2ã2

j0,k + 2E(b̃2j0,k)

≤ C32
j0n−1 + 2ã2

j0,k + 2E(b̃2j0,k),

and then,

2j0−1∑

k=0

E
(
(ĉj0,k − cj0,k)2

)
≤ C32

2j0n−1 + 2
2j0−1∑

k=0

ã2
j0,k + 2

2j0−1∑

k=0

E(b̃2j0,k). (14)

We also have

E
(
(d̂j,k − dj,k)2

)
= E

(
(d̂j,k − d′j,k + aj,k + bj,k)2

)

≤ E
(
2(d̂j,k − d′j,k)2 + 2(aj,k + bj,k)2

)

= E
(
E1

(
2(d̂j,k − d′j,k)2

)
+ 2(aj,k + bj,k)2

)
. (15)

17



Let n−1σ2
j,k;1 = E1(r̂

2
j,k). Denote min(x, y) by x ∧ y. Using Lemma 4 in [8], we

obtain

E1

(
(d̂j,k − d′j,k)2

)
≤ (2(d′j,k)2 + n−2σ2

j,k;1) ∧ (2 log n+ 1)n−1σ2
j,k;1

≤ (2(d′j,k)2 + n−2σ2
j,k;1) ∧ (2 log n+ log n+ 1/n)n−1σ2

j,k;1

≤ (2(d′j,k)2 + n−2σ2
j,k;1) ∧ (3n−1σ2

j,k;1 log n+ n−2σ2
j,k;1)

= 2(d′j,k)2 ∧ 3n−1σ2
j,k;1 log n+ n−2σ2

j,k;1.

Now, use this result in (15):

E1

(
2(d̂j,k − d′j,k)2

)
+ 2(aj,k + bj,k)2

≤ E1

(
2(d̂j,k − d′j,k)2

)
+ 4a2

j,k + 4b2j,k

≤ 2
(
2(d′j,k)2 ∧ 3n−1σ2

j,k;1 log n+ n−2σ2
j,k;1

)
+ 4a2

j,k + 4b2j,k

= 2
(
2(dj,k + aj,k + bj,k)2 ∧ 3n−1σ2

j,k;1 log n+ n−2σ2
j,k;1

)
+ 4a2

j,k + 4b2j,k

≤ 2
(
2(2d2

j,k + 4a2
j,k + 4b2j,k) ∧ 3n−1σ2

j,k;1 log n+ n−2σ2
j,k;1

)
+ 4a2

j,k + 4b2j,k

= 2
(
(4d2

j,k + 8a2
j,k + 8b2j,k) ∧ 3n−1σ2

j,k;1 log n+ n−2σ2
j,k;1

)
+ 4a2

j,k + 4b2j,k

≤ 2
(
4d2

j,k ∧ 3n−1σ2
j,k;1 log n+ 8a2

j,k + 8b2j,k + n−2σ2
j,k;1

)
+ 4a2

j,k + 4b2j,k

= 8d2
j,k ∧ 6n−1σ2

j,k;1 log n+ 20a2
j,k + 20b2j,k + 2n−2σ2

j,k;1,

and thus,

E
(
(d̂j,k − dj,k)2

)

≤ 8d2
j,k ∧ 6n−1E(σ2

j,k;1) log n+ 20a2
j,k + 20E(b2j,k) + 2n−2E(σ2

j,k;1)

= 8d2
j,k ∧ 6n−1σ2

j,k log n+ 20a2
j,k + 20E(b2j,k) + 2n−2σ2

j,k

≤ 8d2
j,k ∧ 6n−12jC2 log n+ 20a2

j,k + 20E(b2j,k) + 2n−22jC2.

Note that

8d2
j,k ∧ 6n−12jC2 log n = 8d2

j,k (16)

⇔ 8d2
j,k ≤ 6n−12jC2 log n

⇔ d2
j,k/2

j ≤ 6/8C2n
−1 log n.

Since by Theorem 2.9.1 in [6] (see also Lemma 1 in [8]),

d2
j,k

2j
≤ C42

−j(1+2α)

2j
= C42

−j(2+2α)

for all j ≥ 0, then if exist such J1 that C42
−j(2+2α) ≤ 6/8C2n

−1 log n for all
j ≥ J1, then d2

j,k/2
j ≤ C42

−j(2+2α) ≤ 6/8C2n
−1 log n and (16) will be true. To

find J1, note that

C42
−j(2+2α) ≤ 6/8C2n

−1 log n

18



⇔ 2−j ≤
(
6C2/(8C4)n

−1 log n
)1/(2+2α)

= C6

(
log n

n

)1/(2+2α)

⇔ 2j ≥ 1/C6

(
n

log n

)1/(2+2α)

.

Thus, let J1 be the smallest integer such that

2J1 ≥ 1/C6

(
n

log n

)1/(2+2α)

.

Then, since J1 ≤ J ′ for sufficiently large n,

J ′−1∑

j=j0

2j−1∑

k=0

E
(
(d̂j,k − dj,k)2

)

≤ 6C2 log n

n

J1−1∑

j=j0

2j−1∑

k=0

2j + 8
J ′−1∑

j=J1

2j−1∑

k=0

d2
j,k + 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k)

+
2C2

n2

J ′−1∑

j=j0

2j−1∑

k=0

2j

≤ 6C2 log n

n

J1−1∑

j=j0

22j + 8C4

J ′−1∑

j=J1

2j2−j(1+2α) + 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k)

+
2C2

n2

J ′−1∑

j=j0

22j

≤ 6C2 log n

n

(
22J1 − 22j0

22 − 1

)
+ 8C4

(
2−2αJ′ − 2−2αJ1

2−2α − 1

)

+ 20
J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k) +

2C2

n2

(
22J ′ − 22j0

22 − 1

)

≤ 6C2 log n

n
22J1 + 8C4

(
2−2αJ′ − 2−2αJ1

2−2α − 1

)
+ 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k)

+
2C2

n2
22J ′

=
6C2 log n

n
22J1 + 22α8C4

(
2−2αJ′ − 2−2αJ1

1 − 22α

)
+ 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k)

+
2C2

n2
22J ′

=
6C2 log n

n
22J1 + C72

−2αJ1 − C72
−2αJ′

+ 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k) +

2C2

n2
22J ′

.
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In the last expression

6C2 log n

n
22J1 =

6C2 log n

n
2222(J1−1) =

24C2 log n

n
(2J1−1)2

≤ 24C2 log n

n

1

C2
6

(
n

log n

) 2
2+2α

= C8

(
log n

n

) 2α
2+2α

,

C72
−2αJ1 ≤ C7

[
1

C6

(
n

log n

) 1
2+2α

]−2α

= C9

(
log n

n

) 2α
2+2α

,

and

2C2

n2
22J ′

=
2C2

n2

Kn

log n
≤ 2C2K

n
≤ 2C2K

n
2α

2+2α

≤ 2C2K

(
log n

n

) 2α
2+2α

.

Thus

J ′−1∑

j=j0

2j−1∑

k=0

E
(
(d̂j,k − dj,k)2

)
(17)

≤ C8

(
log n

n

) 2α
2+2α

+ C9

(
log n

n

) 2α
2+2α

+ 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k) + 2C2K

(
log n

n

) 2α
2+2α

= C10

(
log n

n

) 2α
2+2α

+ 20
J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k + E(b2j,k) (18)

Now, collecting the second terms in the right hand side of the inequalities
(14) and (18),

2

2j0−1∑

k=0

ã2
j0,k + 20

J ′−1∑

j=j0

2j−1∑

k=0

a2
j,k ≤ 20

2j0−1∑

k=0

ã2
j0,k + 20

∞∑

j=j0

2j−1∑

k=0

a2
j,k = 20||A||22,

where

||A||22

=

∫ 1

0

A(x)2dx =

∫ 1

0

[fn(x) − f(x)]2dx

=

∫ 1

0




n−1∑

i=0

n−1/2f

(
i+ 1

n

)
φJ,i(x) −

n−1∑

i=0

cJ,iφJ,i(x) −
∞∑

j=J

2j−1∑

k=0

dj,kψj,k(x)




2

dx

=

∫ 1

0




n−1∑

i=0

(
n−1/2f

(
i+ 1

n

)
− cJ,i

)
φJ,i(x) −

∞∑

j=J

2j−1∑

k=0

dj,kψj,k(x)




2

dx
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≤
∫ 1

0

2

[
n−1∑

i=0

(
n−1/2f

(
i+ 1

n

)
− cJ,i

)
φJ,i(x)

]2

dx+

∫ 1

0

2




∞∑

j=J

2j−1∑

k=0

dj,kψj,k(x)




2

dx

≤ 2

n−1∑

i=0

(
n−1/2f

(
i+ 1

n

)
− cJ,i

)2

+ 2

∞∑

j=J

2j−1∑

k=0

d2
j,k

= 2

n−1∑

i=0

(
n−1/2f

(
i+ 1

n

)
− cJ,i

)2

+O(n−2α) ≤ C11n
−2(1/2+s(α)),

by Lemma 2(i) in [17] and equation (11) in [8].
Similarly, collecting the third terms in the right hand side of the inequalities

(14) and (18),

2j0−1∑

k=0

E(b̃2j0,k) +

J ′−1∑

j=j0

2j−1∑

k=0

E(b2j,k)

≤ E||B||22 = E(E1||B||22)

= E

(
E1

∫ 1

0

B(x)2dx

)

= E


E1

∫ 1

0

[
n−1∑

i=0

n−1/2f
(
t(i+1)

)
φJ,i(x) − fn(x)

]2

dx




= E


E1

∫ 1

0

[
n−1∑

i=0

n−1/2f
(
t(i+1)

)
φJ,i(x) −

n−1∑

i=0

n−1/2f

(
i+ 1

n

)
φJ,i(x)

]2

dx




= E


E1

∫ 1

0

[
n−1∑

i=0

n−1/2

{
f
(
t(i+1)

)
− f

(
i+ 1

n

)}
φJ,i(x)

]2

dx




= E

(
E1

(
n−1∑

i=0

1

n

[
f
(
t(i+1)

)
− f

(
i+ 1

n

)]2))

= E

(
E1

(
1

n

n∑

i=1

[
f
(
t(i)
)
− f

(
i

n

)]2))

≤ C12n
−s(α),

using the orthogonality of the wavelet basis and the result (9).
Finally, from (13) and the calculations that follow it, we have

E
(
||f̂ − f ||22

)
≤ C32

2j0/n+C13/n
2(1/2+s(α))+C14/n

s(α)+C10(log n/n)2α/(2+2α)+C5(log n/n)2α/(2+2α).

But
C32

2j0/n ≤ C32
2j0/n2α/(2+2α) ≤ C15(log n/n)2α/(2+2α),

21



and for every α > 0, s(α) = min{α, 1} ≥ 2α/(2 + 2α) and

C14/n
s(α) ≤ C14(log n/n)2α/(2+2α).

Also, since s(α) ≥ 0,

C13/n
2(1/2+s(α)) ≤ C13/n ≤ C13(log n/n)2α/(2+2α).

Thus,

E
(
||f̂ − f ||22

)
≤ C16(log n/n)2α/(2+2α)

for α ≥ 0 and sufficiently large n.

7.2 Proof of Proposition 1

It is straightfoward to prove that conditions (5) hold. Since t(i) = ti = (2i −
1)/(2n) + ji, where ji are IID uniform [−1/(2n), 1/(2n)], then for all n ≥ 1,

E
(
t(i)
)

= E (ti) =
2i− 1

2n
,

such that ∣∣∣∣E
(
t(i)
)
− i

n

∣∣∣∣ =
∣∣∣∣−

1

2n

∣∣∣∣ ≤
1√
n
,

and

Var
(
t(i)
)

= E (ji) =
1

12n2
<

1

n
.

Now let us prove that conditions 7 hold. Since Cov(e(r), e(s)) = σ2e−(n+1)β|r−s|,
for some β > 0, 0 < σ2 <∞ and fixed r and s, then,

Cov(e(t(r)), e(t(s))) = E
(
E
(
e(t(r))e(t(s))|t(1), . . . , t(n)

))
= E

(
σ2e−(n+1)β|t(r)−t(s)|

)

= E

(
σ2exp

(
−(n+ 1)β

∣∣∣∣
r

n+ 1
+ jr −

s

n+ 1
− js

∣∣∣∣
))

= E

(
σ2exp

(
−(n+ 1)β

∣∣∣∣
r − s

n+ 1
+ jr − js

∣∣∣∣
))

= γ(|r − s|).

Replacing the random variables jr and js by their maximum and minimum,
respectively, this expression turns to be less than or equal to

E

(
σ2exp

(
−(n+ 1)β

∣∣∣∣
r − s

n+ 1
+

2

2(n+ 1)

∣∣∣∣
))

= σ2exp

(
−(n+ 1)β

∣∣∣∣
u+ 1

n+ 1

∣∣∣∣
)

= σ2e−β|u+1|,

where u = r − s. Then,

limn→∞

n−1∑

u=−(n−1)

|γ(u)| ≤ σ2e−β limn→∞

n−1∑

u=−(n−1)

e−βu <∞.
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7.3 Proof of Proposition 2

Since {e(t(i)), i = 1, . . . , n} is a portion of a continuous-time zero-mean sta-
tionary Gaussian AR(1)-like process e(t), t ∈ (0, 1) and the random points
0 < t(1) < . . . < t(n) < 1 are such that t(i) ∼ Beta(i, n− i+ 1), then conditions

(5) hold. In fact, E
(
t(i)
)

= 1/(n+ 1) implies that
∣∣∣∣E
(
t(i)
)
− 1

n

∣∣∣∣ =
1

n(n+ 1)
≤ 1√

n
,

and

Var
(
t(i)
)

=
(n+ 1)i− i2

(n+ 1)2(n+ 2)
<

1

n
.

Now, since Cov(e(t(i)), e(t(j))) = σ2e−(n+1)β|t(i)−t(j)|, for some β > 0, 0 <
σ2 <∞ and fixed i and j, then conditions 7 also hold.

To see this, note that ([15], p.217):

E
(
(t(i) − t(j))

k
)

=
Γ(|i− j| + k)Γ(n+ 1)

Γ(|i− j|)Γ(n+ 1 + k)
=

(|i− j| + k − 1)!n!

(|i− j| − 1)!(n+ k)!
.

Then,

Cov(e(t(i)), e(t(j))) = E
(
E
(
e(t(i))e(t(j))|t(1), . . . , t(n)

))
= E

(
σ2e−(n+1)β|t(i)−t(j)|

)

= σ2
∞∑

k=0

(−1)k (n+ 1)kβk

k!
E
(∣∣t(i) − t(j)

∣∣k
)

= σ2
∞∑

k=0

(−1)k (n+ 1)kβk

k!

(|i− j| + k − 1)!n!

(|i− j| − 1)!(n+ k)!
= γ(|i− j|).

To evaluate limn→∞

∑n−1
u=1 |γ(u)|, note first that

|γ(|i− j|)| =
∣∣∣E
(
σ2e−(n+1)β|t(i)−t(j)|

)∣∣∣

= E
(
σ2e−(n+1)β|t(i)−t(j)|

)
= γ(|i− j|).

Note also that

n−1∑

u=1

(u+ k − 1)!

(u− 1)!
=

n−2∑

v=0

(v + k)!

v!

= k!
n−2∑

v=0

(v + k)!

v!k!

= k!

(
k + (n− 2) + 1

k + 1

)
(19)

=
k!(n+ k − 1)!

(k + 1)!(n− 2)!

=
(n+ k − 1)!

(k + 1)(n− 2)!
,
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where (19) comes from the equation 0.151.1 in [19]. Then using these facts,

n−1∑

u=1

|γ(u)| =

n−1∑

u=1

γ(u) =

n−1∑

u=1

σ2
∞∑

k=0

(−1)k (n+ 1)kβk

k!

(u+ k − 1)!n!

(u− 1)!(n+ k)!
(20)

= σ2
∞∑

k=0

(−1)k (n+ 1)kβkn!

k!(n+ k)!

n−1∑

u=1

(u+ k − 1)!

(u− 1)!
(21)

= σ2
∞∑

k=0

(−1)k (n+ 1)kβkn!

k!(n+ k)!

(n+ k − 1)!

(k + 1)(n− 2)!

= σ2
∞∑

k=0

(−1)k (n+ 1)kβk

k!

n(n− 1)

(n+ k)(k + 1)
. (22)

One way to justify the switch of the summations from (20) to (21) is the fol-
lowing. In (20), let

gk(u) = σ2(−1)k (n+ 1)kβk

k!

(u+ k − 1)!n!

(u− 1)!(n+ k)!
,

and note that

|gk(u)| = σ2 (n+ 1)kβk

k!

(u+ k − 1)!n!

(u− 1)!(n+ k)!

<

∞∑

k=0

σ2 (n+ 1)kβk

k!

(u+ k − 1)!n!

(u− 1)!(n+ k)!

= σ2
∞∑

k=0

(n+ 1)kβk

k!

(|i− (i+ u)| + k − 1)!n!

(|i− (i+ u)| − 1)!(n+ k)!

= σ2
∞∑

k=0

(n+ 1)kβk

k!
E
(∣∣t(i) − t(i+u)

∣∣k
)

= E
(
σ2e(n+1)β|t(i)−t(i+u)|

)

≤ σ2e(n+1)β ,

for u = 1, . . . , n− 1, and for all k ≥ 0. Let u be the counting measure so that

n−1∑

u=1

∞∑

k=0

gk(u) =

n−1∑

u=1

lim
κ→∞

κ∑

k=0

gk(u)

=

∫ n−1

1

lim
κ→∞

κ∑

k=0

gk(u)du

= lim
κ→∞

∫ n−1

1

κ∑

k=0

gk(u)du (23)
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= lim
κ→∞

κ∑

k=0

∫ n−1

1

gk(u)du

=

∞∑

k=0

n−1∑

u=1

gk(u),

where the Dominated Convergence Theorem was used in (23).
Evaluating the summation in (22), we have that

∞∑

k=0

(−1)k(n+ 1)kβk

k!

1

(n+ k)(k + 1)

=
∞∑

k=0

(−1)k(n+ 1)kβk

k!

Γ(n+ k)

Γ(n+ k + 1)

Γ(k + 1)

Γ(k + 2)

=
∞∑

k=0

(−1)k(n+ 1)kβk

k!

Γ(n+k)
Γ(n) Γ(n)

Γ(n+k+1)
Γ(n+1) Γ(n+ 1)

Γ(k+1)
Γ(1) Γ(1)

Γ(k+2)
Γ(2) Γ(2)

=

∞∑

k=0

(−1)k(n+ 1)kβk

k!

(n)k(1)k

(n+ 1)k(2)k

1

n

=
1

n
2F2(n, 1;n+ 1, 2; (−1)(n+ 1)β), (24)

where Γ(n) denotes the gamma function, the Pochhammer symbol (a)k = Γ(a+
k)/Γ(a), and 2F2(a, b; c, d; z) denotes a generalized hypergeometric function.

Denoting the confluent hypergeometric function of the first kind by 1F1(a, b, z),
we have that (http://functions.wolfram.com/07.25.03.0005.01)

1

b− a
(b 1F1(a, a+ 1, z) − a 1F1(b, b+ 1, z))

=
1

b− a

(
b

∞∑

k=0

(a)k

(a+ 1)k

zk

k!
− a

∞∑

k=0

(b)k

(b+ 1)k

zk

k!

)

=
1

b− a

(
b

∞∑

k=0

b+ k

b+ k

(a)k

(a+ 1)k

zk

k!
− a

∞∑

k=0

a+ k

a+ k

(b)k

(b+ 1)k

zk

k!

)

=
1

b− a

(
∞∑

k=0

(b+ k)(b)k

(b+ 1)k

(a)k

(a+ 1)k

zk

k!
−

∞∑

k=0

(a+ k)(a)k

(a+ 1)k

(b)k

(b+ 1)k

zk

k!

)

=
1

b− a

(
b

∞∑

k=0

(b)k

(b+ 1)k

(a)k

(a+ 1)k

zk

k!
− a

∞∑

k=0

(a)k

(a+ 1)k

(b)k

(b+ 1)k

zk

k!

)

=
b− a

b− a

∞∑

k=0

(b)k

(b+ 1)k

(a)k

(a+ 1)k

zk

k!

= 2F2(a, b; a+ 1, b+ 1; z),
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and applying this result to equation (24),

1

n
2F2(n, 1;n+ 1, 2; (−1)(n+ 1)β)

=
1

n

1

1 − n
(1F1(n, n+ 1, (−1)(n+ 1)β) − n 1F1(1, 2, (−1)(n+ 1)β)) .

From equation 9.236.4 in [19], applying

1F1(a, a+ 1, z) = a(−z)−a (Γ(a) − Γ(a,−z)) (25)

to the last expression we have that

∞∑

k=0

(−1)k(n+ 1)kβk

k!

1

(n+ k)(k + 1)

=
1

n

1

1 − n

(
n

[(n+ 1)β]n
[Γ(n) − Γ(n, (n+ 1)β)] − n 1F1(1, 2, (−1)(n+ 1)β)

)

=
1

(n+ 1)(n− 1)

(
1

[(n+ 1)β]n
[−(n+ 1)Γ(n) + (n+ 1)Γ(n, (n+ 1)β)]

)

+
1F1(1, 2, (−1)(n+ 1)β)

n− 1

where Γ(n, a) =
∫∞

a
tn−1e−tdt denotes the incomplete gamma function. Using

(25) we also have that

1F1(1, 2, (−1)(n+ 1)β)

n− 1
=

1

(n+ 1)β(n− 1)
[Γ(1) − Γ(1, β(n+ 1))]

=
1

β(n2 − 1)

[
1 −

∫ ∞

β(n+1)

t1−1e−tdt

]

=
1

β(n2 − 1)

[
1 − e−β(n+1)

]
.

Thus, for n > 1,

∞∑

k=0

(−1)k (n+ 1)kβk

k!(n+ k)(k + 1)
=

[−(n+ 1)Γ(n) + (n+ 1)Γ(n, β(n+ 1))]

(n2 − 1) [β(n+ 1)]
n

+
1 − e−β(n+1)

β(n2 − 1)
,

where the incomplete gamma function

Γ(n, β(n+ 1)) =

∫ ∞

β(n+1)

tn−1e−tdt
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= (n− 1)!e−β(n+1)
n−1∑

k=0

βk(n+ 1)k/k!

≤ (n− 1)!e−β(n+1)
∞∑

k=0

βk(n+ 1)k/k!

= (n− 1)!e−β(n+1)eβ(n+1)

= (n− 1)! = Γ(n),

when n is an integer. Applying these results in (22), we get that for every n > 1,

n−1∑

u=1

|γ(u)| = σ2

{
n(n− 1) [−(n+ 1)Γ(n) + (n+ 1)Γ(n, β(n+ 1))]

(n2 − 1) [β(n+ 1)]
n

+
n

β(n+ 1)
− n(n− 1)e−β(n+1)

β(n2 − 1)

}

≤ σ2

{
n(n− 1) [−(n+ 1)Γ(n) + (n+ 1)Γ(n)]

(n2 − 1) [β(n+ 1)]
n +

1

β

}

=
σ2

β
.

Thus, limn→∞

∑n−1
u=1 |γ(u)| ≤ σ2/β <∞.
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