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Functional magnetic resonance imaging (fMRI) is widely used to

identify neural correlates of cognitive tasks. Nevertheless, the analysis

of functional connectivity is crucial to understanding neural dynam-

ics. Although many studies of cerebral circuitry have revealed

adaptative behavior, which can change during the course of the

experiment, most of contemporary connectivity studies are based on

correlations or structural equations analysis, assuming a time-

invariant connectivity structure. In this paper, a novel method of

continuous time-varying connectivity analysis is proposed, based on

the wavelet expansion of functions and vector autoregressive model

(wavelet dynamic vector autoregressive-DVAR). The model also

allows identification of the direction of information flow between

brain areas, extending the Granger causality concept to locally

stationary processes. Simulation results show a good performance of

this approach even using short time intervals. The application of this

new approach is illustrated with fMRI data from a simple AB motor

task experiment.

D 2005 Elsevier Inc. All rights reserved.

Keywords: fMRI; Connectivity; Dynamic; Time-varying; Wavelets
N 60
61
62
63
64
65
66
67
68
UIntroduction

Functional neuroimaging using the BOLD (Blood Oxygen

Level Dependent) effect has received considerable attention in the

last decade and has become a powerful tool in cognitive

neuroscience. Impressive methodological progress has been made

since the first description of the effect (Ogawa et al., 1990) and a
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EDlarge number of statistical methods for data analysis have been

proposed, although most of them in somewhat ad hoc fashion. So

far, image analysis reports in the literature are mainly dedicated to

addressing the detection of brain activation. Such approaches

(‘‘brain mapping’’), though very useful, are unable to address the

more fundamental principles that characterize brain dynamics by

probing the connectivity information obtainable from the BOLD

signal.

Inferring the dynamics of interaction between different neural

structures is a crucial step toward understanding neural organi-

zation (Sameshima and Baccala, 1999; Friston, 2002). At

conceptual level, there is active interest in the formulation of

connectivity analysis. Friston has introduced the concept of

dynamic causal models (DCM, Friston, 1995; Friston et al.,

2003), based on nonlinear input-state-output systems, and a

bilinear approximation to dynamic interactions. However, the

DCM results rely on the prior connectivity specifications and also

on stationarity conditions. A potentially promising approach to

addressing some of these issues is the Granger causality concept

(Granger, 1969; Sameshima and Baccala, 1999; Baccala and

Sameshima, 2001; Roebroeck et al., 2005) which is borrowed

from econometrics and based on the notion of the predictability

of one signal by another, subject to the time constraint that the

effect cannot precede the cause. It is specially suited to study

partially ordered linear dependencies in multivariate contexts

without assuming any prior connectivity structure. Recently,

significant developments have occurred in the analysis of cerebral

connectivity. Buchel and Friston (1997) introduced covariance

structural equation modeling in fMRI applications. Subsequently,

Goebel et al. (2003) and Roebroeck et al. (2005) have proposed

the use of vector autoregressive models and shown their utility in

the analysis of fMRI experiments. Nevertheless, Granger causal-

ity alone is not sufficient to infer effective causal relations, as it is

based only on predictive power. Recent developments in

http://www.sciencedirect.com
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graphical models have worked towards the identification of

effective causal links. Eichler (2005) suggested a graphical

representation of multivariate data that allows the inference of

effective connectivity, even in the presence of latent variables.

In its original form, Granger causality was defined for linear

stationary multichannel signals but, as with most biological signals,

there is no unique model for fMRI data and no strong theoretical or

experimental basis for the assumptions of stationarity of processes.

It is widely recognized that incorrect use of these assumptions can

lead to incorrect inferences.

Here, we propose a new method: the wavelet dynamic vector

autoregressive (DVAR) process, which can be seen as a

generalization of vector autoregressive model (VAR). This

approach does not require assumptions about the direction of

influence. The DVAR model is a multivariate version of the one

proposed by Chang and Morettin (2005) and Dahlhaus et al.

(1999). Its novel feature lies in directly modeling time-varying

coefficients through wavelet bases with a balance between

model complexity and interpretability. Wavelet analysis is an

area of intense research in statistical signal analysis because of

its wide applicability to model nonstationary signals and its deep

relationship to time-frequency representation of a signal.

Bullmore et al. (2003, 2004) have demonstrated the value of

wavelet analysis applied to the BOLD signal as a means of

retaining the colored-noise characteristics of the time series

during permutation testing of statistical significance, thus

highlighting the use of wavelet techniques in fMRI. Our aim

was to combine wavelet analysis and the Granger causality

concept given by VAR models to extend the methodology

available for the study of brain connectivity. Fitting time-varying

coefficients using a wavelet basis allowed us to model

nonstationary (locally stationary) and nonlinear (locally linear)

multichannel signals using Granger causal (VAR) approaches

and make inferences about temporal dynamics of neural

interactions. Thus, we can infer the connectivity structure of

brain regions in a time-varying way.

In this article, a review of Granger causality theory and

connectivity is presented, followed by the methodology under-

lying the new approach. Simulation results are presented and the

usefulness of the method is illustrated in an application involving

real fMRI data, in a simple sensorimotor experiment.
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Granger causality and dynamic connectivity

Granger causality (Granger, 1969) is a concept that

originated in the area of econometrics, focusing on understand-

ing the relationships between two time series. Granger (1969)

defined the causality in terms of predictability, based on the

fact that the effect cannot come before the cause. Subsequently,

Goebel et al. (2003) applied Granger causality to the

description of interregional connectivity in fMRI data and to

detection of the direction of information flow between brain

regions.

Formally, consider a k-dimensional multivariate time series yt

yt ¼ y1t y2t; . . . ; ykt½ �V;

composed by k time series measured on time t. The Granger

causality identification is based on the improvement in predictions

of future values of the series yt, using the information of a

collection of p past values of the series (yt � 1, yt � 2, . . ., yt � p).
ED P
ROOF

Hence, consider a k-dimensional vector autoregressive model

(VAR) of order p, defined by

yt ¼ vþ A1yt � 1 þ A2yt � 2 þ N þ Apyt � p þ ut;

where ut is an error vector of random variables with zero mean and

covariance matrix � given by

X
¼

r2
11 r21 > rk1

r12 r2
22 > rk2

r13 r23 > rk3

s s G s
r1k r2k > r2

kk

3
77775

2
66664 ;

and v and Ai (i = 1,2, . . ., p) are coefficient matrices given by

v ¼

v1
v2
s
vk

3
775

2
664 Ai ¼

a11i a21i > akl1
a12i a22i > ak2i
a13i a23i > ak3i
s s G s
a1ki a2ki > akki

3
77775

2
66664 :

The VAR model allows an easy way of identifying Granger

causality. An important result of the VAR model, is that the series

yjt noncauses ylt, if and only if, the coefficient ajli = 0 for any i.

In other words, the past values of yjt aid the prediction of future

values of ylt. Hence, Granger causalities can be identified simply

looking for the VAR representation, and the direction of causality

can be interpreted as the direction of information flow.

Furthermore, Granger causality relationship is not necessarily

reciprocal, for example, yjt may Granger cause the signal ylt,

without any implication that ylt Granger causes yjt.

This approach can be extended to the analysis of time series of

BOLD signals in functional magnetic resonance imaging data

(Goebel et al., 2003). Let k-dimensional time series represent the

regions of interest BOLD signal. Using the concept of Granger

causality, the VAR modeling makes possible the identification of

functional connectivity between brain areas by simply testing the

significance of the estimates of the components of the matrix At.

However, as the Granger causality is defined in terms of

predictability, the VAR modeling can indicate only functional

relationships. In other words, this approach points out the links

between signals, but does not, per se, indicate neurophysiologic

mechanisms (effective connectivity).

There are two widely used approaches to assigning significance

to the elements of matrices Ai. The first is based on a Wald test for

the statistical significance of the causality coefficients of a VAR

model (Lütkepohl, 1993). The second one is based on the

computation of F statistics by considering the ratio of residual

variances and is described in detail by Geweke (1982).

According to Roebroeck et al. (2005), there are two main

obstacles to the application of Granger causality mapping in fMRI.

The first obstacle is that the BOLD response is not a direct measure

of neural activity, and then, the connectivity relationships cannot be

identified due to hemodynamic blurring. Furthermore, the low

temporal resolution of fMRI may not provide enough information

for inferring connectivity. Despite these apparent problems, the

above authors were able to show by simulations that the Granger

causality can be useful for inferring brain functional connectivity.

However, VAR modeling is an adequate approach only in cases

of stationary time series, i.e., the autoregressive coefficients and

error matrix covariance are time-invariant. In fact, most connec-

tivity studies of fMRI data to date have used correlation analysis or

structural equations models, assuming stationarity conditions. In
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EC

order to overcome this limitation, we propose a new approach

using dynamic VAR (DVAR), defined by

yt ¼ v tð Þ þ A1 tð Þyt � 1 þ A2 tð Þyt � 2 þ N þ Ap tð Þyt � p þ ut ;

where ut is an error vector of random variables with zero mean and

covariance matrix �(t) given by

X
¼

r2
11ðtÞ r21ðtÞ > rk1ðtÞ

r12ðtÞ r2
22ðtÞ > rk2ðtÞ

r13ðtÞ r23ðtÞ > rk3ðtÞ
s s G s

r1kðtÞ r2kðtÞ > r2
kkðtÞ

3
777775

2
666664

;

and v(t) and Ai(t) (i = 1,2, . . . ,p) are coefficient matrices given by

v tð Þ ¼

v1 tð Þ
v2 tð Þ
s

vk tð Þ

3
775

2
664 Ai tð Þ ¼

a11i tð Þ a21i tð Þ > akl1 tð Þ
a12i tð Þ a22i tð Þ > ak2i tð Þ
a13i tð Þ a23i tð Þ > ak3i tð Þ

s s G s
a1ki tð Þ a2ki tð Þ > akki tð Þ

3
77775

2
66664 :

In other words, in this case, we allow a time-variant structure

for the intercept, autoregression coefficients and covariance matrix.

Time-varying autoregressive models have previously been esti-

mated using adaptative filters or windowed models. However,

these approaches are suitable only in the context of time-series with

many sample points. Many (probably most) fMRI data do not

satisfy this criterion. Furthermore, the classical windowed models

do not allow efficient estimation in cases of replications of

conditions, as the AB periodic experiments. Here, a wavelet-based

dynamic multivariate autoregression estimation is proposed, and its

usefulness illustrated by simulations and an application to a real

fMRI experiment.
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A wavelet approach

Firstly, let an orthonormal basis generated by a mother wavelet

function w(t),

wj;k tð Þ ¼ 2j=2w 2jt � k
� 	

; j;k a Z;

and assume the following properties:

(i)

Z V

�V

w tð Þdt ¼ 0

(ii)

Z V

�V

jw tð Þjdt < V

(iii)

Z V

�V

jW xð Þj2dx
jxj < V, where the function c(N) is the

Fouriertransform of w(t).

(iv)

Z V

�V

t jw tð Þdt ¼ 0, j = 0,1, . . . ,r � 1 for r 	 1 and

Z V

�V

t jw tð Þdt ¼ 0:
ED P
ROOF

An important result is that any function f(t) with
R V

�V
f 2 tð Þdt <

V can be expanded as

f tð Þ ¼
XV

j ¼ �V

XV
k ¼ �V

cj;kwj;k tð Þ:

In other words, the function f(t) can be represented by a linear

combination of functions wj,k(t). Therefore, considering the time-

varying VAR model, the autoregressive coefficient functions almi(t)

can be expanded as

almi tð Þ ¼
XV

j ¼ �V

XV
k ¼ �V

c
ið Þ
j;kwj;k tð Þ:

In practice, we use a truncated wavelet expansion, given by

almi tð Þ ¼ c
ið Þ
�1;0u tð Þ þ

XJ
j ¼ 0

X2j�1

k ¼ 0

c
ið Þ
j;kwj;k tð Þ:

where the time series extension T is a power of two, /(t) is

called the scale function and cj ,k(i) ( j = �1,0,1, . . . T � 1; k =

0,1,2, . . . , 2 j �1; i = 1,2, . . . p) are the wavelet coefficients for

the i-th autoregressive coefficient function almi(t). As the basis

functions /(t) and wjk(t) are known, the task of estimating the

dynamic autoregressive parameters consists of the estimation of

each of the wavelet coefficients cj ,k
(i) for all the autoregressive

functions in the matrices Ai(t) (i = 1,2, . . . ,p), the intercept

functions in v(t) and the covariance functions in �(t).

A very important point is the choice of the maximum

resolution scale parameter J. This task is strongly related to

previous information about the smoothness of the curve to be

estimated. If we desire to capture more details or a high level of

adaptability, a large value of J has to be chosen. However, there

is a trade off to be considered, as large values of J imply large

variances. Hence, we concluded that the maximum scale

parameter has to be chosen according to the expected degree of

smoothness of the connectivity changes.

Maximum likelihood estimation is not efficient in this case, due

to the large number of parameters to be estimated. Dahlhaus et al.

(1999) suggested an estimation approach in the univariate case, and

we have generalized it to multivariate time series. We propose the

use of an interactive generalized least square estimation procedure,

which is composed by a loop of two stages. In the first stage, the

parameters of Ai(t) and v(t) are estimated using a generalized least

square estimation. Then, in the second stage, the covariance

functions in �(t) are estimated using the residuals of the first

stage. These two steps are repeated until the convergence of the

parameters, or until a certain number of maximum interactions is

achieved, as an extension of the Cochrane and Orcutt procedure.

Details of the estimation procedure and asymptotical statistical

results are presented in Appendix A. Statistical tests of the

significance of the coefficients and connectivities were undertaken

using Wald tests, and details are also included in Appendix A. In

this work, we chose the extreme phase daublets 8 wavelet basis

proposed by Daubechies (1988), with periodic boundary con-

ditions, but the results are applicable to any wavelet basis. Optimal

use of wavelets optimal requires a power of 2 time series length.

Simulations

In order to evaluate the DVAR approach to fMRI connectivity

analysis, we simulated 1000 five-dimensional dynamic autore-
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gressive models of order 1. We consider an AB periodic structure

with six cycles of length 16, assuming that each cycle has the

same time-varying connectivity structure. Hence, supposing the

five series are BOLD signals of five different brain areas, we

evaluated the performance and usefulness of the novel method.

The model and theoretical functions of these simulations are

described in Appendix A. The DVAR model estimation procedure

was applied to the signals in each simulation and the results are

shown in Fig. 1.

The simulations show that the average of each of the

estimated curves is close to the theoretical ones. Further, the

estimates do not have a high variability, indicating that the DVAR

approach has good performance. Consider the connectivity

function map shown in Fig. 1 as an illustrative example of a

model to be interpreted. The panel (3->4) indicates the flow of

information from the third series to the fourth, and the flow is

higher in the middle of the cycle. The absolute values of the

connectivity function measure the degree of the flow of

information. If the connectivity function is negative, it can be

interpreted as a negative impact, i.e., an increase in the sender’s

signal is followed by a decrease in the receiver’s signal.

A very important point to be highlighted in these

simulations is the nonprespecification of connectivity structure.

All possible connections are considered without any inclusion

of exogenous variables or subjective assumptions. Thus, if two

areas are disconnected during all the cycle, the connectivity

function is zero for each time point as shown in panel (2->5).

Statistical tests about the parameters of the model can also be
UNCORRECT

Fig. 1. Simulation results of five-dimensional time series. The solid red line is the t

of the estimated curves. The ticked lines are the band of one standard error.
tested using a Wald contrast test, which is described in

Appendix A. Hence, connectivity tests in any time interval

can be performed. We say that an area A is sending

information to another area B, if and only if the connectivity

function from A to B is nonzero. Thus, the Wald test can be

very useful to inferring the connectivity structure at any time

point, as the estimated connectivity functions are linear

combinations of the parameters (contrasts).
ED P
ROOF

Application to fMRI real data

The DVAR approach was applied to two subjects who performed

motor tasks in a simple AB block design. The images were acquired

in a GE 1.5 T Signa MR system equipped with a 23 mT/m gradient

(TE 40 ms, TR 3000 ms, FA 75-, FOV 240 mm, 64 
 64 matrix;

8 slices, thickness 7.0 mm, gap 0.7 mm) oriented in the AC–PC

plane in a single run. Sixty volumes were acquired during three

cycles of rest-task performance (each one with 60 s and 20 images)

and the total imaging time for each run was 3:12 min (which

included 4 TR to achieve steady-state transverse magnetization).

Both subjects were normal, right-handed females. During the MR

imaging, the subjects lay in the dark with a noise-reducing

headphones that were customized for functional MR imaging

experiments and provide isolation from scanner noise. The AB

block design experiment paradigm consisted of alternating (condi-

tion A) rest and (condition B) right hand self-paced finger tapping

movements.
heoretical connectivity function A1(t) and the solid black line is the average
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The volumes were motion corrected and spatially smoothed

(Brammer et al., 1997). The responses at each voxel were

modeled by Poisson functions and activation maps were obtained

using a nonparametric approach (Brammer et al., 1997; Brammer,

1998; Bullmore et al., 1999, 2001, 2003; Breakspear et al., 2004).

The areas detected as active (cluster P value = 0.01) are shown in

Fig. 2.

The first illustration of the use of DVAR to real fMRI data

involved a multiple bivariate approach. In this analysis, we selected

one ROI of 5 
 5 voxels centered in the local maximum of the

primary motor area (M1) in one slice. The three AB cycles

originally composed by 20 volumes were reduced to 16 volumes by

cubic splines interpolation, allowing the use of Daubechies periodic

double extreme phase wavelets. The wavelet DVAR approach of

order 1 was applied to bivariate models using this ROI average

signal and each remaining intracerebral voxel. This is a time-

varying extension of the approach used by Goebel et al. (2003). The

connectivity maps (Figs. 3 and 4) were smoothed using a Gaussian

kernel filter (FWHM 5 mm). The maps show the temporal

information flow intensity changes (from each voxel to the ROI)

during the AB cycle, measured by the connectivity functions (with

threshold in absolute values less than 0.9). The maps can also be

thresholded by computing the value of the estimated connectivity
UNCOR

Fig. 3. Subject one connectivity map. The map shows the voxel to ROI informati
ED P
ROOfor significance at a particular chosen P value, considering the Wald

Test (in Appendix A).

The images show a pattern of bivariate relationships with

signal variation in prefrontal regions initially explaining the M1

time-series variability. This relationship (in the rest phase)

evolves to include parietal areas and premotor regions. This

slice also shows that signal changes in M1 are also highly

predicted by its own previous behavior during both rest and

active epochs.

In the second subject, we have also found that areas with

signal variations explaining the signal change in M1 occur in the

prefrontal cortex during the rest epoch, and proceed to a more

parietal and premotor distribution during the active phase.

Likewise, the M1 signal change is also predicted by its own

history of signal changes, and in this case markedly during the

moments where the subject was finger tapping with the contra

lateral hand.

The DVAR model can also be applied to preselected ROIs, in

a k-dimensional modeling. We preselected five ROIs from the

connectivity maps of subject two, including the local maxima of

the left primary motor cortex in the precentral gyrus (LM1), left

Anterior Cingulate gyrus (ACg), a medial superior medial frontal

gyrus, centered on the Supplementary motor area (SMA), right
on flow intensity, estimated by connectivity functions of the DVAR model.
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anterior back of the precentral gyrus, the right premotor cortex

(RpM1) and superior dorsal aspect of the medial parietal lobe, the

anterior precuneus (ApC). These areas are implied in movement

control (Kermadi et al., 2000; Wenderoth et al., 2005a,b) and are

shown to participate in motor learning skills (Jancke et al., 2000;

Kurata et al., 2000). The DVAR model was modeled to the data

and a Wald test for significant connectivities (see Appendix A)

was carried out. The ROI connectivity diagram showing the

significant links (P value < 0.05) is depicted in Fig. 5.

The analysis of the temporal evolution of the connectivity

between the areas shows an influence of the SMA and ApC in

the LM1 during the rest period, which is reduced during the

movement epoch, with a subtle inversion of this influence at the

first two images of this period. Conversely, the flow of

information from the LM1 to the RpM1 displays a reversed

pattern, with most of the BOLD effect predicted (and in opposite

signal) in the RpM1 during the rest period changing to a positive

influence during the movement period. The relation between ACg

and SMA is somewhat more complex, with an enhanced positive

connectivity in the transitions between rest and movement, and a

negative connectivity in the rest period, which is even more

evident in the movement period.
N
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UDiscussion

The main advantage of the wavelet-based dynamic autoregres-

sive models (DVAR), compared with other connectivity models is

that it avoids stationarity and linearity assumptions. It is well

known that different tasks involve different circuitries, and is

widely believed that the brain exhibits dynamic alterations in

interregional connectivity. Hence, the adoption of probably

unwarranted stationarity assumptions may lead to spurious results.

Furthermore, the DVAR approach does not require model

prespecification, unlike structural equation modeling (Buchel and

Friston, 1997), and this may be desirable as in the illustrations

above. ROI preselections or prespecification represent particular

cases of the DVAR model.
ED 
Classical dynamic models are based on local fitting using a

moving window. However, the detection of dynamic changes by

this approach may have poorer time-resolution and be less

flexible than that achieved by wavelet-based methods (Dahlhaus

et al., 1999). Further, replications of conditions as an AB

experiments can be easily modeled by periodic wavelets.

The engagement of prefrontal regions observed in our data as

the source of information to the primary motor region is

expected during the initial moments of the active epoch, and is

consistent with previous studies of motor preparation (Lee et al.,

1999; Ohara et al., 2001; Cunnington et al., 2002). The

detection of premotor and supplementary areas as Fpredictors_
of the BOLD signal change of the primary motor region is also

expected, since the involvement of those regions has already

been demonstrated in previous studies relating to motor

preparation (Cui et al., 2000; D’Esposito et al., 2000; Toni et

al., 2001). On the other hand, these regions are constantly

sending information to the primary motor cortex across the

experiment, which may thus represent a monitoring process, and

perhaps could be modulated by habituation, or training,

processes. In fact, the left premotor region is evident in the

connectivity map only in the active epochs, and is not involved

in sending information to the primary motor region in the rest

epoch in subject 2.

In addition, towards the end of the ‘‘rest’’ epoch, we detected

an increased participation of the parietal regions, possibly related

to monitoring of movements (Coull et al., 2000; Hall et al., 2000;

Lutz et al., 2000). The prefrontal regions are possibly modulating

the information flow to the primary motor region the rest period,

especially at the beginning of the epoch. This could be due to an

inhibitory process and attentional load, as this area has been

described as a putative center for top-down control of the

information in the network.

When analyzing the connectivity map from the five predefined

regions, the pattern of connectivity is even more interesting, since

we have more precise information regarding the signal of the

connectivity. It is expected that the BOLD effect in areas

hierarchically organized in movement control can be used to infer
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Fig. 5. Significant ROI connectivities. The connectivity functions are shown in each arrow.
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modulation, or influence, in the BOLD effect in the primary motor

area. The pattern of temporal evolution found in the connectivity

map is clearly very elusive in at least one sense: the information flow

is in agreement to what one can predict from previous studies in

humans and animal models (Stephan et al., 1999; Kermadi et al.,
2000), although at this point not conclusive. The ACg is believed to

mediate the processes involved in integration and bimanual control,

and as well as SMA is involved in both complexity and frequency of

hand movement (Debaere et al., 2004; Wenderoth et al., 2004,

2005a,b). The dorsal anterior precuneus region is believed to be
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involved in the attentional aspect of the motor task (Wenderoth et al.,

2005a,b). In our analysis, the temporal evolution of the connectivity

between this area and the primary motor region suggests that most of

its influence is observed in the rest period, perhaps reflecting

expectation. One may expect this pattern to change during bimanual

tasks (Wenderoth et al., 2005a,b), or even, the fact we are detecting

this area as modulating activity in the primary motor area in the rest

is congruent and complementary to the concept of its participation in

a ‘‘default mode network’’ (Raichle et al., 2001).

Another interesting pattern of connectivity emerging from this

preliminary analysis is the supra-periodicity variation of the flow of

information between the ACg and SMA. The participation of these

areas during the planning of the movement, but not execution of

bimanual movements was described by Viallet et al. (1992).

Furthermore, SMA region is not unique, and pre-SMA neurons are

more active during movement preparation than execution (Matelli et

al., 1991; Luppino et al., 1993; Rizzolatti et al., 1996). In our

analysis, the flow of information between ACg and SMA is

Fswitched on_ during the transitions between conditions, and decays

during the middle of the epochs congruent with the idea of parti-

cipation of these areas in selection of action sets (Rushworth et al.,

2004). This type of information could be used to check the

assumption that ACg has a modulatory influence in SMA activity

in bimanual tasks, as was predicted by the literature (Boecker et al.,

1998; Wenderoth et al., 2005a,b).

Clearly, these are preliminary data, but nonetheless they are in

reasonable agreement with current opinion in motor planning and

execution. We have also used only the original epi images as the

source of time-series, instead of using time-series from images

previously transformed to a common space. The reason for our choice

was to avoid the interference from automatic spatial transformation

algorithms, and was based on a high variability of the medial frontal

functional regions among subjects (Stephan et al., 1999). Even so,

caution should be taken when interpreting the connectivity maps

regarding anatomical location of the areas in the model. Although the

distinction between SMA and ACg is not defined, even cytoarchitec-

tonic, we used the definition from Stephan et al. (1999) as these

authors have described the structures in individual subjects based on

anatomical landmarks. Nevertheless, our method does not depend on

the adopted procedure for neuroanatomical region selection, and

could be used with template brains and Talairach coordinates if the

user wishes to (Talairach and Tournoux, 1988).

Although these are very crude observations, it is evident that

the method can produce valuable information about brain function

as probed by BOLD images. We believe that this analysis may

provide useful insights into the investigation of neural networks

using fMRI, free from some of the limitations implicit in much

existing methodology.
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Conclusion

Understanding neural connectivity is widely recognized as being

essential for the understanding of brain function. Nevertheless, the

complexity and time-varying properties of cerebral signals sampled

by techniques such as fMRI are obstacles for the application of

classical stationary models, because different tasks or states demand

different brain circuitries and directions of information flow across

time. Instead of providing only one connectivity structure for the

entire experiment, our technique provides different structures for

each time point. We propose a wavelet-based time-varying
connectivity analysis trying to overcome the constraints of

stationary models, and illustrated its usefulness with plausible

results using real fMRI data sets.
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Appendix A. Estimation algorithm and statistical properties

In this section, the estimation procedure and some useful

statistical results are presented. Let yt, a k-dimensional multivariate

time series with length T, modeled by a time-varying VAR process

of order p. Consider the following matrices

Yt � l ¼

y1; p � l þ 1ð Þ y2; p � l þ 1ð Þ > yk; p � l þ 1ð Þ

y1; p � l þ 2ð Þ y2; p � l þ 2ð Þ > yk; p � l þ 2ð Þ

s s G s

y1; T � lð Þ y2; T � lð Þ > yk; T � lð Þ

3
7775

2
6664 ;

U ¼

u1; p þ 1ð Þ u2; p þ 1ð Þ > uk; p þ 1ð Þ

u1; p þ 2ð Þ u2; p þ 2ð Þ > uk; p þ 2ð Þ

s s G s

u1;T u2; Tð Þ > uk; Tð Þ

3
7775

2
6664

and

Y
¼

w�1;0 pþ 1ð Þ w0;0 pþ 1ð Þ > wJ ;2J�1 pþ 1ð Þ
w�1;0 pþ 2ð Þ w0;0 pþ 2ð Þ > wJ ;2J�1 pþ 2ð Þ

s s G s
w�1;0 Tð Þ w0;0 Tð Þ > wJ ;2J�1 Tð Þ

3
775

2
664 :

Let also the row-Kronecker product defined by

a1
a2
s
an

3
775

2
664 ‘L

b1
b2
s
bn

3
775

2
664 ¼

a1 b1
b2 b2

s
an bn

3
775

2
664 ;

and the following matrices

W ¼
h
lT � P‘

L
Y

Yt � 1‘
L
Y

> Yt � l ‘
L
Yi

;

M ¼ Ik ‘W;

where 1T�p is a column vector of (T � p) ones and Ik is identity

matrix of order k.

Considering that the wavelet expansion of an information flow

function from the series ylt to ymt is given by

almi tð Þ ¼
XV

j ¼ �V

XV
k ¼ �V

c
ið Þ
j;kwj;k tð Þ;

j ¼ �1;0;1; N T� 1; k ¼ 0;1;2; N ;2 j�1; i ¼ 1;2; N ;p
� 	

;
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and hence, assuming that the random errors covariance matrix �(t)

for all t is known and considering the vector

Z ¼ vec Ytð Þ;

the DVAR model can be written as

Z ¼ Mbþ e:

The parameter b is a vector containing all the wavelet

expansion coefficients c(i)j ,k for all the connectivity functions to be

estimated. The error term ( = vec(U) is a vector containing all the

random errors of all the k series. The covariance matrix of ( is

denoted by &, contains all covariance the matrices �(t) (t = p, p +

1, . . . ,T) and is time-invariant.

Hence, from Graybill (1976), the generalized least square

estimator for the parameters of the model is given by

b̂b MV&�1M
� 	�1

MV&�1Z:

In practice, the error covariance matrix is unknown and it has

to be estimated. A consistent estimator for the time-varying

variance for each time series can be obtained considering a

wavelet smoothing of the squared residuals (rit
2, i = 1, . . . ,k).

Furthermore, the time-varying covariances can also be obtained

by a wavelet smoothing of the cross-residuals (ritrjt, i = 1, . . . ,k,

j = 1, . . . ,k, i m j).

Hence, we propose an interactive algorithm given by:

(1) Assume & = I, and perform the generalized least square

estimation;

(2) Compute the residuals and obtain an estimate of the errors

time-varying covariance matrix;

(3) Perform the generalized least square estimation considering

the estimated covariance matrix;

(4) Go to step 2 and repeat until the convergence of the

parameters.

Considering the estimation procedure described, it can be

shown (see Hajek-Sidak’s Central Limit Theorem, Sen and Singer,

1980) that the asymptotic distribution of the interactive generalized

least square estimator is given byffiffiffiffiffiffi
kT

p
b̂ ¨ N b;&ð Þ:

Furthermore, the statistical test to the null hypothesis of

Cb ¼ m;

against the hypothesis of inequality can be tested using the Wald

Statistic for contrasts given by

W ¼
Cb̂� m

� �
V MV&�1M½ ��1

Cb̂b � m
� �

rank Cð Þ ;

where C is the contrast matrix.

Hence, we can test many hypothesis of connectivity

significance or time-varying connectivity performing a Wald

test, considering an adequate contrast matrix C. More details

about the Wald test for contrasts can be found in Graybill

(1976). Any statistical test for the connectivity functions can be

performed using the Wald test, as the functions are estimated

by linear combinations of the coefficients. For example, the

statistical test for a link between two regions can be performed
F

considering the hypothesis that all wavelets expansion coef-

ficients for this connectivity function are zero.

In addition, we can also obtain confidence intervals for the

connectivity functions. Let x̂ a vector containing all estimated

coefficients for a wavelet expansion of a function f(t), d(t) a vector
of the respective wavelets functions in time t and � the covariance

matrix of x̂ . A natural estimator of f(t) is given by

f̂f tð Þ ¼ x̂Vd tð Þ

It can be shown, using Hajek-Sidak’s Central Limit Theorem

(Sen and Singer, 1980) that asymptotically

f̂f tð Þ¨ N f ;d�dVð Þ;
and hence, confidence intervals for each connectivity function can

be obtained using this result.
ED P
ROSimulations

In the Simulations section, we consider a DVAR model of order

one, considering the following connectivity matrix

A tð Þ¼

0 0:2 0 cos 2pt
16

þ p
	�
=2 0

sin 2pt
16

þ p
	�
=4 0 0 0:3 0

0 0 0:2 0 sin 2pt
16

þ p
	�
=2

0 0 cos 2pt
16

þ p
	�
=4 0 0:3

sin 2pt
16

þ p
	�
=4 0 0 cos 2pt

16
þ p

	�
=4 0

3
77775

2
66664 ;

intercept vector given by

v tð Þ ¼

sin 2pt
16

þ p
	�
=2

0

cos 2pt
16

þ p
	�
=4

0

0

3
77775

2
66664 ;

and error covariance matrix

X
tð Þ ¼

0:49 0:147 1þ cos 2pt
16

	�
=6

	�
0 0 0

0:147 1þ cos 2pt
16

	�
=6
	�

0:53 1þ cos 2pt
16

	�
=6
	�

0 0 0

0 0 0:49 0 0

0 0 0 0:49 0:0:147
0 0 0 0:147 0:05341

3
77775

2
66664 :
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