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1 Introduction

The establishment of dependence between two or more random variables is an
important goal, and copulas can be useful in order to accomplish this task.
In many situations the marginals are known (or can be estimated) and the
joint distribution is unknown, or may be difficult to estimate. A copula is a
function that links marginals to their joint distribution.

There have been many applications of copulas to finance. One important
problem in financial econometrics is to model asset returns with the purpose
of computing measures of risk, such as the value-at-risk (VaR). One common
assumption that is often used is that the returns are Gaussian, but it is well
known that they have heavy tails and present high kurtosis. Moreover, to
compute these risk measures it is necessary to compute the covariance matrix of
a portfolio containing a large number of assets, so modeling a vector of returns
is a real challenge. These difficulties led to the use of copulas in finance. Some
recent references are Embrechts et al. (1997), Bouyé et al. (2000), Cherubini
and Luciano (2001), Embrechts et al. (2003), Patton (2001a,b), Fermanian
and Scaillet (2003), Fermanian and Wegkamp (2004) and Fermanian et al.
(2004).

Concerning the estimation of copulas, several approaches have been used:
parametric methods (maximum likelihood estimates and method of moments),
non-parametric methods (empirical copulas and kernel estimation) and semi-
parametric methods. Also simulation techniques have had an important role,
especially to investigate properties of an estimator. For details see Genest et
al. (1995), Deheuvels (1979, 1981) and Shih and Louis (1995).

Most of the work done on the estimation of copulas refers to independent
samples of a vector of random variables. Therefore some care should be taken
to apply these procedures to time series data. See Morettin et al. (2010) for
some considerations on this issue. Fermanian and Scaillet (2003) consider the
case of time series and propose estimators of copulas based on kernels. For
the case of estimators using wavelets and i.i.d. data, see Genest et al. (2009),
Autin et al. (2010) and Gayraud and Tribouley (2010).

In this paper we propose to estimate copulas for time series using wavelets.
The basic idea is to consider a wavelet expansion of a function of interest and
set some coefficients in this series equal zero. This can be done in basically
two ways: the first is to consider a finite number of terms in this expansion,
starting from some scale, leading to a linear estimator or smoother. The second
is to use some threshold, for example keep only those coefficients with absolute
value larger than the threshold, leading to a nonlinear estimator.
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the problem of estimating copulas for time series nonparametrically, in their
case, using kernels. Our approach uses wavelets, basically following the same
route as in their paper, first estimating densities, then distribution functions
and quantiles and finally estimating the copula. A more direct approach, using
smoothed empirical copula estimators, is given by Morettin et al. (2010).
Basically, this approach is also used by Genest et al. (2009) for the i.i.d. case
using ranks and wavelets to estimate the copula density.

One purpose of this paper is to show that wavelets are viable tools to use in
conjunction with the problem of copula estimation, since it compares favorably
with kernels estimators. This will be seen through some simulations. We also
present empirical applications. It will also be seen that the nonparametric
approach avoids the usual procedure of first fitting univariate or bivariate
GARCH-type models and then fitting some parametric copula to the residual
series. Finally, wavelets are known to be suitable for the analysis of functions,
in our case density functions, belonging to some function spaces, like Sobolev,
Hölder and Besov. We will be interested in deriving some properties of the
estimators such as their covariance structure and consistency. Wavelets and
kernel based estimators are generally close competitors and it is worthwhile to
compare them in some situations, and this is one of our purposes.

The plan of the article is as follows. In Section 2 we introduce the back-
ground on copulas, wavelets and density estimation. In Section 3 we discuss
the cases of i.i.d data and time series data. Section 4 introduces the proposed
wavelet estimators. In Section 5 we derive some statistical properties of the es-
timators and in Section 6 we present some simulations. Empirical applications
are given in Section 7 and the paper ends in Section 8 with some concluding
remarks. Proofs of the theorems are deferred to the Appendix.

2 Background

In this section we give the necessary concepts on copulas, wavelets and density
estimation.

2.1 Copulas

The concept of copula was introduced by Sklar (1959) and since then the
theory and applications have developed in a quick pace.

Definition. A d−dimensional copula is a function C from [0, 1]d to the interval
[0, 1], with the properties:

To our knowledge only the paper of Fermanian and Scaillet (2003) considers
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(i) C is grounded: for every u = (u1, . . . , ud) ∈ [0, 1]d, C(u) = 0 if at least
one coordinate ui is equal to 0, i = 1, . . . , d;

(ii) C is d-increasing: for every u and v in [0, 1]d, with u ≤ v, the C-volume
VC([u,v]) of the box [u,v] is non-negative;

(iii) C(1, . . . , 1, ui, 1, . . . , 1) = ui, for all ui ∈ [0, 1], i = 1, . . . , d.

See Nelsen (2006) for the definition of C-volume and further details on
copulas. The following important theorem links the definition of copula with
an n-dimensional distribution function and its marginal distributions. Denote
by RanF the range of the d.f. F .

Theorem (Sklar). Let F be a d-dimensional distribution function with mar-
gins F1, . . . , Fd. Then there exists a d-copula C such that for all x = (x1, . . . , xd)
∈ [−∞,∞]d, we have

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

Conversely, if C is a d-copula and F1, . . . , Fd are distribution functions,
the function F defined by (1) is a d-dimensional distribution function with
margins F1, . . . , Fd. Moreover, if the margins are all continuous, then C is
unique. Otherwise, C is uniquely determined on RanF1 × . . .× RanFd.

Therefore, given Sklar’s theorem, it is easy to construct the copula associ-
ated to a cumulative distribution, namely

C(u1, . . . , ud) = F (F−11 (u1), . . . , F
−1
d (ud)), (2)

where F−1i (ui) = inf{xi | Fi(xi) ≥ ui}, i = 1, . . . , d, is the quasi-inverse of Fi.
Observe that copulas are multivariate distribution functions with uniform

one-dimensional margins.

2.2 Wavelets

Wavelet expansions of functions of interest is now a well established subject
in Statistics and other areas. For details see Daubechies (1992) and Meyer
(1993). From a mother wavelet ψ and a father wavelet φ (or scaling function)
bases of L2(IR) can be obtained using the dilated and shifted versions of ψ and
φ, namely, φj,k(x) = 2j/2φ(2jx− k) and ψj,k(x) = 2j/2ψ(2jx− k), where j and
k are integers. An orthonormal basis for L2(IR) is generated by taking φl,k(x)
and ψj,k(x), with j ≥ l and k ∈ ZZ, for some coarse, or lower, scale l. Hence,
for any f ∈ L2(IR) we may write, uniquely,

3

Morettin et al.: Wavelet Estimation of Copulas

Published by De Gruyter, 2011



f(x) =
∑
k

αkφl,k(x) +
∑
j≥l

∑
k

βj,kψj,k(x), (3)

where the wavelet coefficients are given by

αk =

∫
f(x)φl,k(x)dx, (4)

βj,k =

∫
f(x)ψj,k(x)dx. (5)

We now introduce a notation that will make further derivations easier. The
idea is to use a single sum in place of (3).

Let a ∈ ZZ, b ∈ ZZ, a ≤ b. Denote aZZ the set of all integers z with z ≥ a and

aZZb the set of all integers z such that a ≤ z ≤ b. Let Ze(l) = ZZ ∪ (lZZ × ZZ)
and Ze(l)J = ZZ∪ (lZZJ ×ZZ). Now define ψη, η ∈ Ze(l) by ψη = φl,η, if η ∈ ZZ,
and ψη = ψj,k, if η = (j, k) ∈ lZZ× ZZ.

Given an unknown function f we can now write its wavelet expansion as

f =
∑

η∈Ze(l)

βηψη, (6)

where {ψη, η ∈ Ze(l)} is a compactly supported wavelet basis. From now on
we will denote by ` the Lebesgue measure. The wavelet coefficients are given
by

βη =

∫
fψηd`. (7)

Our interest in what follows will be in the case that f is a density, sup-
posed to belong to L2(IR) or L2(IR

d). In the case of f(x), for x = (x1, . . . , xd)
′
,

wavelet expansions similar to (3) for f will hold, where the wavelets are ob-
tained as products of one-dimensional wavelets. See Vidakovic (1999) for de-
tails. We illustrate here two possibilities of wavelet expansions for the case
d = 2.

One possibility is to consider a basis with a single scale. Define the bivari-
ate scaling function as Φ(x1, x2) = φ(x1)φ(x2) and the wavelets by Ψh(x1, x2) =
φ(x1)ψ(x2), Ψv(x1, x2) = ψ(x1)φ(x2) and Ψd(x1, x2) =
= ψ(x1)ψ(x2). Let k = (k1, k2). Then a wavelet expansion for f(x1, x2)
is

f(x1, x2) =
∑
k

ckΦl,k(x1, x2) +
∞∑
j=l

∑
k

∑
µ=h,v,d

dµj,kΨµ
j,k(x1, x2), (8)
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where Φl,k(x1, x2) = φl,k1(x1)φl,k2(x2), Ψh
j,k(x1, x2) = φj,k1(x1)ψj,k2(x2),

Ψv
j,k(x1, x2) = ψj,k1(x1)φj,k2(x2) and Ψd

j,k(x1, x2) = ψj,k1(x1)ψj,k2(x2), with the
wavelet coefficients given by

ck =

∫ ∫
f(x1, x2)Φl,k(x1, x2)dx1dx2, (9)

dµj,k =

∫ ∫
f(x1, x2)Ψ

µ
j,k(x1, x2)dx1dx2.

Another possibility is to build a basis as the tensor product of two one-
dimensional bases with combinations of all scales from each dimension. Here,
if j = (j1, j2),k = (k1, k2), we have

f(x1, x2) =
∑
k

ckφl,k1(x1)φl,k2(x2) +
∑
j1≥l

∑
k

αj1,kψj1,k1(x1)φl,k2(x2)+ (10)

∑
j2≥l

∑
k

βj2,kφl,k1(x1)ψj2,k2(x2) +
∑
j1,j2≥l

∑
k

dj,kψj1,k1(x1)ψj2,k2(x2),

and the wavelet coefficients obtained similarly as in the previous case. The two
bases imply different tilings of the time-scale plane. In this work, see Section
4, we consider an extension of the expansion (10) to the d-dimensional case.
We have used (8) in Morettin et al. (2010); see Section 3.

There are several possible choices for the wavelets to be used: Haar, com-
pactly supported Daubechies wavelets, Shannon, Meyer, Mexican hat or Mor-
let wavelet. The latter is often used in physical sciences problems. We will
not discuss here the issues concerning the particular choice of a wavelet family.
Another possibility is to use B-splines, as in Cosma et al. (2007). We have
used the Haar wavelet for the simulations and the empirical applications in
this paper.

2.3 Density estimation

In order to estimate a copula it will be necessary to estimate a density function
first. There is a huge literature now on nonparametric estimation of probability
density functions. See for example Silverman (1986). One popular class of
estimators is that of projection estimators (Cencov, 1962) that use orthogonal
bases (Fourier, for example).
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Concerning wavelet estimators of densities, the literature is also large. We
may consider linear or nonlinear wavelet estimators, as we mentioned before
for the case of copulas. For a general overview on density estimators via
wavelets, see Vidakovic (1999, ch.7) and Härdle et al. (1998). For linear
wavelet estimators, some references are Antoniadis and Carmona (1991) and
Walter (1992).

Nonlinear wavelet estimators, that use thresholding and shrinking rules,
were developed in a series of papers by Donoho and co-authors. See for exam-
ple, Donoho et al. (1995, 1996), Delyon and Juditsky (1996) and Härdle et al
(1998).

In this paper we consider linear wavelet estimators for the marginals and
joint densities involved in the determination of a copula.

3 Estimation for i.i.d. and time series data

In this section we briefly discuss the main existing trends in copula estimators
for the i.i.d. and time series data.

As we mentioned in Section 1, if a copula belongs to a parametric family
of copulas, ML methods can be used. These are all well known and will not
be discussed further here. The software S+FinMetrics, a module of S-Plus,
implements at least one of these procedures. See Zivot and Wang (2006) for
further details.

3.1 Estimation for i.i.d. data

Kernel estimators

Suppose that we have data (Xi, Yi), i = 1, . . . , n. Fermanian et al. (2004)
proposed to use

F̂n(x, y) =
1

n

n∑
i=1

Kn(x−Xi, y − Yi), (11)

as a smoothed empirical distribution function estimator. Here Kn(x, y) =
K(a−1n x, a−1n y) and

K(x, y) =

∫ x

−∞

∫ y

−∞
k(u, v)dudv,
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for some bivariate kernel function k : IR2 → IR,
∫ ∫

k(x, y)dxdy = 1, and a
sequence of bandwidths an ↓ 0, as n→∞. It is proved that for small enough
bandwidths an, under mild conditions,

√
n sup

x,y
|F̂n(x, y)− Fn(x, y)| P→ 0.

Similar smoothed estimators F̂1n and F̂2n of the marginal distributions can
be proposed, using univariate kernels. A kernel smoothed empirical copula
estimator is then obtained from (2), namely

Ĉn(u, v) = F̂n(F̂−11n (u), F̂−12n (v)), 0 ≤ u, v ≤ 1. (12)

Fermanian et al. (2004) proved that the smoothed empirical copula process

Ẑn(x, y) =
√
n(Ĉn − C)(x, y), 0 ≤ x, y ≤ 1,

converges to a Gaussian process in L∞([0, 1]2).

Wavelet estimators

Morettin et al. (2010) proposed a wavelet smoothed empirical copula esti-
mator. Since the copula C(u, v) belongs to L2([0, 1]2), consider its wavelet
expansion, see (8),

C(u, v) =
∑
k

ckΦl,k(u, v) +
∞∑
j=l

∑
k

∑
µ=h,v,d

dµj,kΨµ
j,k(u, v), (13)

with the wavelet coefficients given by

ck =

∫ ∫
C(u, v)Φl,k(u, v)dudv, dµj,k =

∫ ∫
C(u, v)Ψµ

j,k(u, v)dudv. (14)

As estimates of the wavelet coefficients take the empirical wavelet coeffi-
cients,

d̂µj,k =

∫
Cn(u, v)Ψµ

j,k(u, v)dudv, (15)

and a similar expression for ck, where Cn is the empirical copula function,
which is defined similarly to (12), with the kernel estimators of the distribution
functions replaced by the empirical distribution function estimators.
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Ĉ(u, v) =
∑
k

ĉkΦl,k(u, v) +
∞∑
j=l

∑
k

∑
µ

δ(d̂µj,k, λ)Ψµ
j,k(u, v), (16)

where δ(·, λ) is a threshold. Hard and soft thresholds are often used. See the
above mentioned paper for details and applications.

3.2 Estimation for time series data

As remarked in Section 1, most of the results available in the literature of cop-
ulas apply to i.i.d. samples (Xi, Yi), i = 1, . . . , T, from a distribution function
F .

In this section we discuss copula estimation techniques in the presence of
time series data. One approach often used is to apply directly the methods
available for i.i.d. data (mostly using parametric copula models), which may
be misleading.

Fitting univariate and multivariate models

This method, used for example by Dias and Embrechts (2009, 2010) and Pat-
ton (2006), consists in estimating the copula for the standardized residuals
after fitting linear and/or non-linear univariate or multivariate models to the
series. For the use of semiparametric models, see Fan and Chen (2004).

Nonparametric estimation

Let {Xt, t ∈ ZZ} be a d-dimensional stochastic process, and suppose we have
observations {Xt, t = 1, . . . , T}. In what follows, let d = 2 for simplicity.
Assume first that the process is strictly stationary, and let F (x) be the distri-
bution function (d.f.) of Xt = (X1t, X2t)

′
at x = (x1, x2)

′
.

Let Fj(xj), j = 1, 2, denote the marginal d.f.’s and fj(xj) the corresponding
probability density functions (p.d.f.). By (2), to estimate the copula C we
need to estimate the marginal d.f.’s F1, F2, the quantiles F−11 (u), F−12 (v) and
the joint distribution function F .

Fermanian and Scaillet (2003) (FS from here on) use kernel estimates for
C. First estimate the marginals by

f̂j(xj) = (Thj)
−1

T∑
t=1

kj

(
xj −Xjt

hj

)
, (17)

Thus the corresponding estimator for C(u, v) is
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for some kernel function kj and associated bandwidth hj, j = 1, 2. Then
estimate f(x) by

f̂(x) = (T |h|)−1
T∑
t=1

k(x−Xt;h), (18)

where k(x) =
∏2

j=1 kj(xj), h = diag{h1, h2} and |h| = h1h2. Next, estimate
Fj by

F̂j(xj) =

∫ xj

−∞
f̂j(x)dx, (19)

and F by

F̂ (x) =

∫ x1

−∞

∫ x2

−∞
f̂(x)dx. (20)

Finally, estimate the copula C by

Ĉ(u) = F̂ (ξ̂), (21)

where ξ̂ = (ξ̂1, ξ̂2)
′

and ξ̂j is the kernel estimator of the quantile of Xjt with
probability uj. FS prove some asymptotic results for the various estimators,
assuming that the process is strongly mixing and further conditions on Fj, hj
and h.

Doukham et al. (2009) deals with a special form of weakly dependent
sequences, which in principle is easier to be fulfilled than the strong mixing.

4 Wavelet estimators

Of course the estimator (16) can be used for time series data. See Morettin et
al. (2010) for details. In this section we propose another wavelet estimator,
following the same steps as FS.

From here on we will always assume the following:

Assumption 1. The d-dimensional process {Xt, t ∈ ZZ}, is such that for all t,
Xt = (X1t, . . . , Xdt)

′
has a density function ft(x) and these density functions

are t−invariant, i.e., for all t ∈ ZZ, and all x ∈ IRd, ft(x) = f(x). Moreover,
f ∈ L2(IR

d) ∩ L∞(IRd) and there exists, for all i, 1 ≤ i ≤ d, the marginal
density function fi(xi) which is also assumed to belong to L2(IR).

Hence we do not assume stationarity but consider a larger class of pro-
cesses. Clearly, this implies that the distribution functions of Xt as well
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as the marginals are t−invariant. We write Ft(x) = F (x), and, for all i,
Fi,t(xi) = Fi(xi) for all t ∈ ZZ.

Suppose we know X1, . . . ,XT . As mentioned above, the marginal proba-
bility density functions (p.d.f.’s) and d.f.’s of each component Xit at xi, i =
1, . . . , d, will be written fi(xi) and Fi(xi), respectively. Our purpose will be to
estimate F , Fi and C in (2) using wavelet methods.

We first introduce some additional notation to the one introduced in Sec-
tion 2 for wavelet expansions.

Let J = (J1, . . . , Jd) and l = (l1, . . . , ld), where each Ji = Ji(T ), i =
1, . . . , d. Write η = (η1, . . . , ηd) ∈ Ze(l)J :=

∏d
i=1 Ze(li)Ji , ηr = (jr, kr),

or ηr = kr ∈ ZZ, r = 1, . . . , d, and ψη = ψη1 ⊗ · · · ⊗ ψηd . Let j(η) =
(j(η1), . . . , j(ηd)) such that j(ηr) = jr, or j(ηr) = lr, in case ηr is integer,
r = 1, . . . , d. Let |j(η)| =

∑d
i=1 j(ηi). From here on, we will assume, without

loss of generality, that l = (0, ..., 0) ∈ ZZd.

Since each p.d.f. fi(xi) can be expanded as in (3), an estimator is given by

f̂i,Ji(xi) =
∑
k

α̂kφ0,k(xi) +

Ji∑
j≥0

∑
k

β̂j,kψj,k(xi). (22)

Then, we can estimate the d.f. Fi(xi) by

F̂i,Ji(xi) =

∫ xi

−∞
f̂i,Ji(y)dy. (23)

Using the above notation, we can write

f̂i,Ji(xi) =
∑

ηi∈Ze(0)Ji

β̂ηiψηi(xi). (24)

and the estimate for the d.f is written as in (23).
Now, f(x) can be expanded , using the above notation, as

fJ(x) =
∑

η∈Ze(0)

βηψη(x), (25)

As an estimator of f(x) we take

f̂J(x) =
∑

η∈Ze(0)J

β̂ηψη(x), (26)
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and we will simply write f̂J(x) =
∑

η β̂ηψη(x) or even f̂J(x) =
∑
β̂ηψη(x)

where we will always remember that the sum is for η ∈ Ze(0)J . This will be
clear from the context.

This is a linear estimator. We may consider nonlinear estimators by re-
placing β̂η in (26), for example, by δ(β̂η, λ), where δ(·, λ) is a threshold and λ
is a threshold parameter which can be specified in a number of ways. But in
this paper we will consider only linear estimates.

The empirical wavelet coefficients are given by

β̂η =
1

T

T∑
t=1

ψη(Xt) (27)

and if

FT (x) =
1

T

T∑
t=1

I{Xt ≤ x}

is the empirical distribution function, then the estimator (27) can be written
as

β̂η =

∫
IRd

ψη(x)dFT (x).

It follows that these are unbiased estimators of the corresponding coefficients.
As an estimator of the distribution function F of Xt at x we take

F̂J(x) =

∫ x

−∞
f̂J(y)dy. (28)

Let F̂i,Ji be the wavelet estimator of the i-th marginal distribution Fi,
i = 1, . . . , d. By (2), to estimate the copula at some point u = (u1, . . . , ud),
we propose

ĈJ(u) = F̂J(x̂), (29)

where x̂ = (x̂1, . . . , x̂d) and x̂i = inf{yi ∈ IR : F̂i,Ji(yi) ≥ ui}, i = 1, . . . , d, is
the wavelet estimator of the quantile of Xit with probability ui, i = 1, . . . , d.

5 Properties of the estimators

In this section we derive some properties of the wavelet estimators. We first
derive results on the covariance structure of the empirical wavelet coefficients
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estimators and then on estimators of d.f.’s and copulas. These results are
presented in Theorems 1 to 5. Remember that the process will always be
assumed to satisfy Assumption 1.

Let ft,s(x,y) be the joint density of Xt and Xs and f(x) the density of Xt,
for every t, s. Define, for t 6= s,

qt,s(x,y) = ft,s(x,y)− f(x)f(y), (30)

and assume that qt,s has the wavelet expansion

qt,s(x,y) =
∑
µ

∑
ρ

γ(t,s)µ,ρ ψµ ⊗ ψρ(x,y). (31)

The proofs of the results that follow are given in the Appendix. We now set
down some further assumptions and notation. We denote by

∑
1 the sum over

the η such that j(η) ≤ J and by
∑

2 the sum over the complement. In some
instances we will assume that Ji →∞, for all i = 1, . . . , d, as T →∞, but in
such a way that J/T → 0, as T → ∞. This will be clear from the context.
When we write

∑
t6=s we mean that the sum is over s and t in 1, . . . , T , with

t 6= s. Call M the set of all η ∈ Ze(l)J , such that the corresponding wavelets
are products of mother wavelets only, and F = Ze(l)J \ M. We also will
denote scales by s = (s1, . . . , sd) and |s| =

∑d
i=1 si. Let η(s,x) be the only

index η, in scale s, such that
∫ x

−∞ ψηdx is different from zero.

Assumption 2:
∑

t6=s γ
(t,s)
η,ξ = o(T 2), as T →∞, for all η, ξ.

Assumption 3: supη
∑

t6=s γ
(t,s)
η,η = o(T 2), T →∞.

Assumption 4:
∑

η

∑
t6=s γ

(t,s)
η,η = o(T 2), T →∞.

Assumption 5:
∑

η∈F |βη|2−|j(η)|/2 <∞.

Assumption 6: 2
∑
Ji = o(T ), as T →∞.

Assumption 7:
∑

s

∑
s′ 2
−(|s|+|s′ |)/2|

∑
t6=s γ

(t,s)

η(s,x),ξ(s′ ,y)
| = o(T 2), as T →

∞, for all x,y, plus three similar conditions for (s, ξ ∈ F), (η ∈ F , s′), (η ∈
F , ξ ∈ F).

Assumption 8:
∑

s

∑
s′ 2
−[((|s|+|s′ |)+||s|−|s′ ||)/2] = o(T ), as T → ∞, plus three

similar conditions for (s, ξ ∈ F), (η ∈ F , s′), (η ∈ F , ξ ∈ F).
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Assumption 9: F is Lipschitz and for all i, 1 ≤ i ≤ d, Fi is differentiable,
with infx∈S F

′
i (x) > 0, for every bounded interval S ⊂ IR.

Assumptions 2, 3 and 4 are forms of mixing conditions, since they involve
dependence between Xt and Xs. Essentially they say that the covariance be-
tween Xt and Xs decreases as |s − t| increases. It would be interesting to
see the connections of these assumptions and other forms of asymptotic in-
dependence, but we will not pursue this here. We observe, however, that
these conditions do not require asymptotic independence but rather asymp-
totic non-correlatedness only. Assumptions 6, 7 and 8 concern the behavior of
the scales, as T →∞. Assumption 5 is related to the behavior of the wavelet
coefficients in the expansion of f . See also Bosq (1998), who uses (27) and
kernel estimators for densities. The assumptions 2 to 5 are, in fact, weaker
than imposing for example that

∑
t,s |γ

(t,s)
η,ξ | < ∞ and

∑
η |βη| < ∞; and as-

sumptions 2 to 8 are weaker than imposing
∑

t,s |γ
(t,s)
η,ξ | < ∞,

∑
η |βη| < ∞

and 22
∑
Ji = o(T ), as T →∞.

The next theorem gives the consistency of the empirical wavelet coefficients
as well as the covariance structure of these coefficients. It also shows that these
empirical coefficients are asymptotically non-correlated.

Theorem 1. (i) E(β̂η) = βη.

(ii) Cov(β̂η, β̂ξ) = 1
T

(
∫
ψη(x)ψξ(x)f(x)dx− βηβξ)+

+ 1
T 2

∑
t6=s γ

(t,s)
η,ξ .

(iii) Under the Assumption 2, the empirical wavelet coefficients are consistent
and asymptotically uncorrelated.

The next result is also of interest.

Theorem 2. Under the Assumptions 4 and 6 we have

E||f̂J(x)− f(x)||22 → 0, T →∞. (32)

As a consequence, we have that E||f̂J(x)− f(x)||2 → 0, as T →∞.

Theorem 1 is used to derive the correlation structure of the wavelet estima-
tor F̂J of the distribution function F (x). It is also shown that this estimator
is consistent and asymptotically non-correlated.

Theorem 3. (i) The covariance structure of F̂J(x) is given by:
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Cov(F̂J(x), F̂J(y)) =
∑
η

∑
ξ

∫ x

−∞

∫ y

−∞
ψη ⊗ ψξd`2Cov(β̂η, β̂ξ),

where the sums are for all scales up to and including scale J .
(ii) Under the Assumptions 5, 7 and 8 the estimators F̂J(·) are consistent and
asymptotically non-correlated, no matter how J →∞, as T →∞.

The result that follows establishes the uniform convergence in probability
of F̂J to F .

Theorem 4. Under the Assumption 3, we have that

sup
x
|F̂J(x)− F (x)| P→ 0, T →∞. (33)

From Theorem 4 we have the following result on the estimated copula.

Theorem 5. Under the Assumptions 3 and 9, for all u ∈ (0, 1)d, we have that

ĈJ(u)
P→ C(u), T →∞. (34)

6 Some simulations

In this section we present simulation examples of the wavelet estimators pro-
posed in the previous section. We use the examples of Fermanian and Scaillet
(2003) and present in the tables their results as well as ours.

The choice of J = (J1, J2) is implemented by an heuristic approach. We
further assume that J1 = J2 = J∗ and for J∗ = 2, 3, 4, 5 we calculated bi-
ases, MSE, minimum and maximum values of these quantities and associated
ranges. Then a value of J∗ was chosen looking at an overall performance of
the estimator according to these measures. For a data driven rule, see the next
section. Using this rule we would find the same value as here.

(1) First, we consider a stationary bivariate autoregressive process of order
one:

Xt = A + BXt−1 + εt, (35)

where Xt = (X1t, X2t), with independent components and thus C(u1, u2) =
u1u2, εt ∼ N(0,Σ), A = (1, 1), vec(B) = (0.25, 0, 0, 0.75) and vec(Σ) =
(0.75, 0, 0, 1.25).

14

Journal of Time Series Econometrics, Vol. 3 [2011], Iss. 3, Art. 4

http://www.bepress.com/jtse/vol3/iss3/art4
DOI: 10.2202/1941-1928.1033



The number of Monte Carlo replications is 1000, while the data length is
T = 210 = 1024.

Table 1 (a) shows the bias, EĈJ −C, and mean squared error (MSE),
E[(ĈJ − C)2], computed for the Haar wavelet using the chosen value J∗ = 4,
as described above. All values (true value of the copula, bias and MSE) are
expressed as multiples of 10−4. Table 1 (b) shows the results of FS. However,
we remark that FS used series of the same length 1,024, but with 5,000 repli-
cations. Figure 1 shows the estimated copula and the corresponding contour
plots. The results may be considered satisfactory and we see that FS estima-
tors have generally larger biases and MSE. As remarked by these authors, of
particular interest are the pairs C(.01, .01) and C(.05, .05), since they measure
dependence of joint extreme losses.

(2) We now turn to the case where the components of Xt are dependent
processes, with A = (1, 1), vec(B) = (0.25, 0.2, 0.2, 0.75) and vec(Σ) =
(0.75, 0.5, 0.5, 1.25).

Since X1t and X2t are positively dependent, we have C(u1, u2) > u1u2.
Based on 1000 Monte Carlo replications with the data length T = 1024, Haar
wavelets, J∗ = 4 (chosen as explained above), the results are reported in
Table 2 (a), and the corresponding results of FS are in Table 2 (b). Figure
2 shows the estimated copula and the corresponding contour plot, using the
Haar wavelet. The values are higher than those for the independent case but
still very satisfactory and also better for most of the cases than those obtained
by Fermanian and Scaillet.

Table 1: Biases and MSE of estimators: independent case

(a) Haar wavelet estimator (1000 replications)

x10−4 C(.01,.01) C(.05,.05) C(.25,.25) C(.50,.50) C(.75,.75) C(.95,.95) C(.99,.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias 0.00 -0.01 -0.04 -0.12 -0.07 -0.03 -0.18
MSE 0.00 0.00 0.00 0.00 0.01 0.01 0.01

(b) FS estimator with product of two Gaussian kernels (5,000 replications)

x10−4 C(.01,.01) C(.05,.05) C(.25,.25) C(.50,.50) C(.75,.75) C(.95,.95) C(.99,.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias -.09 -0.08 0.40 1.12 -0.90 -0.04 4.66
MSE 0.00 0.01 0.25 0.48 0.25 0.01 0.05
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Figure 1: Wavelet estimator for Haar wavelet: independent case.
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Figure 2: Wavelet estimator for Haar wavelet: dependent case.

Table 2: Biases and MSE of estimators: dependent case

(a) Haar wavelet estimator (1000 replications)

x10−4 C(.01,.01) C(.05,.05) C(.25,.25) C(.50,.50) C(.75,.75) C(.95,.95) C(.99,.99)
True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08
Bias 0.38 -2.36 -20.81 -32.75 -16.27 8.30 15.60
MSE 0.02 0.10 0.45 0.70 0.46 0.10 0.05

(b) FS estimator with product of two Gaussian kernels (5,000 replications)

x10−4 C(.01,.01) C(.05,.05) C(.25,.25) C(.50,.50) C(.75,.75) C(.95,.95) C(.99,.99)
True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08
Bias -7.47 -34.88 -130.32 -172.28 -130.53 -35.25 -7.65
MSE 0.01 0.18 1.98 3.36 1.99 0.18 0.01
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7 Empirical applications

In this section we illustrate the estimation procedure proposed considering
two pairs of series. First, we consider daily returns of SP500 and DJIA, as
in FS, recorded from 03/01/1994 to 07/07/2000, i.e. 1,700 observations, but
considered only T = 1, 024 to use a fast wavelet transform. Then, we use again
an example of FS, considering the pair of stock indices CAC40-DAX35, for the
same period as the pair SP500-DJIA and the same number of observations.

We suggest to use a rule of thumb based on Assumption 6. If T = 2p, for
an integer p > 0, it follows that we must have

∑d
i=1 Ji < p. In our case this

results in J1 + J2 < 10; hence J∗ < 5. We have chosen J∗ = 4.

(1) Figure 3 shows the scatterplot of the returns of SP500 and DJIA. There
is a high correlation between both series, specifically the contemporaneous
correlation coefficient is 0.933. The wavelet estimator of the copula, using the
Haar wavelet and J∗ = 4 is presented in Figure 4.
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Figure 3: Scatterplot for the returns of SP500 and DJIA.

We see the expected comonotonic behaviour, due to the large dependence
(two variables are comonotonic if one is almost surely an increasing function of
the other; in this case, the contour curves are formed by two orthogonal lines,
parallel to the axes). The Kendall and Spearman coefficients are τ = 0.7341
and ρS = 0.9009, respectively. The plot is quite similar to the kernel copula
estimator of FS.
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(2) In Figure 5 we have the scatter plot of the returns of the stock indices
CAC40-DAX35, as described above. The contemporaneous correlation coef-
ficient is moderate, 0.67. Figure 6 brings the Haar wavelet estimator of the
copula for the two series. The plot suggests a dependence, but not so strong
as in the case of SP500-DJ. The Kendall τ is 0.4805 and the Spearman ρS is
0.6557.
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Figure 4: Contour plots of Haar wavelet estimated copula

8 Further remarks

In this work we have developed wavelet estimators of copulas for time series
data that are assumed to be generated by a stochastic process. Under appro-
priate assumptions we have derived some statistical properties of estimators of
distribution functions and copulas, including consistency and convergence in
probability. We conjecture that the estimators are also asymptotically Gaus-
sian and this will be pursued further.

We obtained the properties for linear wavelet estimators, considering up-
per scales which depend on the data set size and assuming that the process
satisfies certain regularity conditions. It would be of interest to consider also
thresholded nonlinear estimators and to derive rates of convergence for the
risk of these estimators; this is a plan for future research.

Simulations have shown that the proposed estimators have a good perfor-
mance compared to other nonparametric, namely kernel, estimators. About
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the processes considered, it was not necessary to assume strict stationarity.
Estimators based on empirical copulas may also be considered. See Morettin
et al. (2010) for details.
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Figure 5: Scatter plot of returns of CAC40 and DAX35 series.
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Figure 6: Contour plot of the Haar wavelet estimator for the stock returns of
CAC40 and DAX35.
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The wavelet estimators for densities can be negative (except for the Haar
case). This can also happen to kernel estimators, in case the kernel is nega-
tive in some non null set of its domain of definition. To overcome this diffi-
culty, we can proceed in several ways. One is to truncate the estimators to
non-negative values and divide the result by the integral. Another is to ex-
pand the square root of f , as in Pinheiro and Vidakovic (1997). Walter and
Shen (1999) construct non-negative estimators through a construction of non-
negative scale functions and using a proper bi-orthogonal system. Building on
works of Dechevsky and Penev (1997, 1998) in the univariate and i.i.d. case,
Cosma et al. (2007) consider wavelet-based shape-preserving estimators for
densities and distribution functions in the multivariate case and for dependent
observations. Again, a bi-orthogonal system has to be used. The latter may
be useful to derive shape-preserving estimators for copulas. This research is
under investigation.

Appendix

Proof of Theorem 1. The first item is immediate, the second is

T−2
T∑
s=1

T∑
t=1

Cov{ψη(Xt), ψξ(Xs)}.

Using (30) the covariance becomes

T−2{
∑
t=s

(∫
ψη(x)ψξ(x)f(x)dx− βηβξ

)
+
∑
t6=s

∫ ∫
ψη(x)ψξ(y)qt,s(x,y)dxdy}.

By (31) the second term of the previous equation is

T−2
∑
t6=s

∑
µ

∑
ρ

γ(t,s)µ,ρ

∫ ∫
ψη(x)ψξ(y)ψµ(x)ψρ(y)dxdy

= T−2
∑
t6=s

γ
(t,s)
η,ξ ,

due to the orthonormality of the wavelets. Item (iii) follows from the fact that
the integral in the first term of the covariance is bounded by ||ψη||∞||ψξ||∞,
since f(x) is a density, and the second term tends to zero by Assumption 2.
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Prof of Theorem 2. We can write

E
∑
1

(β̂η − βη)2 +
∑
2

β2
η =

∑
1

Var(β̂η) +
∑
2

β2
η =

=
∑
1

(
T−2

∑
t6=s

γ(t,s)η,η + T−1[

∫
ψ2
η(x)f(x)dx− β2

η ]

)
+
∑
2

β2
η .

Observe that f ∈ L2(IR
n) implies that

∑
η β

2
η < ∞ and this implies that

limJ→∞
∑

2 β
2
η = 0. On the other hand, 0 ≤ T−1

∑
1 β

2
η ≤ T−1||f ||2 → 0, T →

∞, and

0 ≤ T−1
∑
1

∫
ψ2
η(x)f(x)dx ≤ T−1

∑
1

||f ||∞
∫
ψ2
η(x)dx =

= T−1||f ||∞
∑
1

1→ 0, T →∞,

whenever we have #{η : j(η) ≤ J}/T → 0, as T → ∞, which is equivalent
to Assumption 6. Hence the result follows by Assumption 4.

Proof of Theorem 3. (i) is immediate. (ii) Upon substitution of (ii) of
Theorem 1 we obtain that the covariance in question is the sum of three
terms:

T−2
∑

η,ξ

∑
t6=s γ

(t,s)
η,ξ

(∫ x

−∞

∫ y

−∞ ψη ⊗ ψξd`
2
)

+T−1
∑

η,ξ

(∫ x

−∞

∫ y

−∞ ψη ⊗ ψξd`
2
) (∫

ψη(z)ψξ(z)f(z)dz− βηβξ
)

= S1+S2+

S3, say.
For S1 we have that

|S1| = |T−2
∑
η

∑
ξ

∫ x

−∞
ψηd`

∫ y

−∞
ψξd`

∑
t6=s

γ
(t,s)
η,ξ |

and separating the sums in η and ξ into four sums and summing over scales s
and s

′
, we have:

|S11| = |T−2
∑
η∈M

∑
ξ∈M

∫ x

−∞
ψηdl

∫ y

−∞
ψξdl

∑
t6=s

γ
(t,s)
η,ξ |

≤ T−2
∑
s

∑
s′

2−|s|/22−|s
′ |/2M2

1 |
∑
t6=s

γ
(t,s)

η(s,x),ξ(s′ ,y)
|,
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where M1 = maxη:j(η)=0 ||
∫ x

−∞ ψηdl||∞ and η(s,x) is the only index η, in scale

s, such that
∫ x

−∞ ψηdx is different from zero. The above term converges to
zero, as T →∞, by Assumption 7. Next,

|S12| = T−2
∑
η∈M

∑
ξ∈F

|
∫ x

−∞
ψηdl

∫ y

−∞
ψξdl

∑
t6=s

γ
(t,s)
η,ξ |

≤ T−2|
∑
s

∑
ξ∈F

∫ x

−∞
ψη(s,x)dl||

∫ y

−∞
ψξdl||

∑
t6=s

γ
(t,s)
η(s,x),ξ|

≤ T−2
∑
s

M12
−|s|/2

∑
ξ∈F

M12
−|j(ξ)|/2|

∑
t6=s

γ
(t,s)
η(s,x),ξ|

= T−2M2
1

∑
s

2−|s|/2
∑
ξ∈F

2−|j(ξ)|/2|
∑
t6=s

γ
(t,s)
η(s,x),ξ|,

and this converges to zero by Assumption 7. Analogously, we have for the
third sum

|S13| = |T−2
∑
η∈F

∑
ξ∈M

∫ x

−∞
ψηdl

∫ y

−∞
ψξdl

∑
t6=s

γ
(t,s)
η,ξ |

≤ T−2M2
1

∑
s

2−|s|/2
∑
η∈F

2−|j(η)|/2|
∑
t6=s

γη,ξ(s,y)|

and again this converges to zero by Assumption 7. Finally,

|S14| = |T−2
∑
η∈F

∑
ξ∈F

∫ x

−∞
ψηdl

∫ y

−∞
ψξdl

∑
t6=s

γ
(t,s)
η,ξ |

≤ T−2M2
1

∑
η∈F

∑
ξ∈F

2−(|j(η)|+|j(ξ)|)/2|
∑
t6=s

γ
(t,s)
η,ξ(s,y)|,

which also converges to zero for the same reason. We now turn to S2.

|S2| = T−1
∑
η

∑
ξ

∫ x

−∞
ψηdl

∫ y

−∞
ψξdl

∫
ψηψξfdl.

Let M∞ = maxη:j(η)=0 ‖ψη‖∞. Then,

|S2| ≤ T−1
∑
η

∑
ξ

|
∫ x

−∞
ψηd`||

∫ y

−∞
ψξd`|‖f‖∞

∫
|ψηψξ|dl
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≤ ‖f‖∞M
2
1

T

∑
η

∑
ξ

‖ψη‖∞‖ψξ‖∞l(suppψη ∩ suppψξ)

≤ ‖f‖∞M
2
1M

2
∞

T

∑
η

∑
ξ

2−(|j(η)|∨|j(ξ)|)V0,

where l(A) denotes the Lebesgue measure of A and suppψη denotes the support
of ψη. Notice that l(suppψη ∩ suppψξ) ≤ 2−(|j(η)|∨|j(ξ)|).V0, where V0 is the

volume of supp(
⊗d

i=1(φ0,0)i) =
∏d

i=1[0, ai].
Following a similar argument as for S1, separating the sum into four sums,

we can prove that |S2| ≤ |S21|+ . . .+ |S24| → 0, as t→∞, by Assumption 8.
Finally, for S3, a similar argument holds, noticing that since f ∈ L2, there

exists η∗ such that, for all η, |βη| ≤ |βη∗ |, and separating again S3 into four
sums, it is easy to see that each one converges to zero, as T →∞.

We now prove that the estimators are asymptotically unbiased, no matter
how J(T )→∞, as T →∞. Since

E(F̂J(x)) =

∫ x

−∞
E

(∑
1

β̂ηψη(z)

)
dz =

∫ x

−∞

∑
1

βηψη(z)dz,

we have

|F (x)− E(F̂J(x))| = |
∫ x

−∞

∑
2

βηψη(z)dz|

= |
∑
2

βη

∫ x

−∞
ψηd`| ≤

∑
s

|βη(s,x)|
∫
|ψη(s,x)|d`+

∑
η∈F

|βη|
∫
|ψη|d`

≤M1.|βη∗|
∑
s

2−|s|/2 +
∑
η∈F

|βη|2−|j(η)|/2

and the last term tends to 0, as J → ∞, uniformly in x, using Assumption
5. The sums in s above are for scales s in the complement of {s : s ≤ J}.
Therefore, we have ||F (x) − EF̂J(x)||∞ → 0, as J → ∞. Hence the theorem
follows.

Proof of Theorem 4. We have that

|F̂J(x)− F (x)| ≤ |
∫ x

−∞

∑
1

(β̂η − βη)ψηd`|+ |
∑
2

βη

∫ x

−∞
ψηd`| = S1 + S2.
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The summation in S2 will be done over all the scales s, as in the proof of
Theorem 3:

∑
s

∑
η:j(η)=s βη

∫ x

−∞ ψηd`, but again there is at most one η for
each scale such that the integral is not zero. Hence we have that

|S2| = |
∑
s

βη(s,x)

∫ x

−∞
ψηd`| ≤

∑
s

|βη(s,x)||
∫ x

−∞
ψηd`|

≤M1

∑
s

sup
η
|βη(s,x)|2−|s|/2,

for a positive constant M1, and the sums in s mean that s is in the complement
of s ≤ J . Hence,

|S2| ≤M1 sup
η
|βη|

∑
s

2−|s|/2 ≤M1 sup
η
|βη|

d∏
i=1

∑
si≥0

2−si/2 = M3 sup
η
|βη|,

and the last term tends to zero as J → ∞. The sums in s, and η in the last
expression are for all s and η such that s and j(η) are not less than or equal
to J .

Let us turn to S1. Again, summing over scale,

|S1| = |
∑
s≤J

∑
η:j(η)=s

(β̂η − βη)
∫ x

−∞
ψηd`|

≤ sup
η:j(η)≤J

|β̂η − βη|
∑
s

M12
−|s|/2 ≤M∗

1 sup
η:j(η)≤J

|β̂η − βη|,

since the sum converges.
Call vη = β̂η − βη; we have E(vη) = 0 and

Var(vη) = T−1
(∫

ψ2
ηfd`− β2

η

)
+ T−2

∑
t6=s

γ(t,s)η,η

≤ T−1
(
‖ f ‖∞

∫
ψ2
ηd`+ β2

η

)
+ T−2

∑
t6=s

γ(t,s)η,η

≤ T−1
(
‖ f ‖∞ + sup

ξ
β2
ξ

)
+ T−2 sup

ξ
|
∑
t6=s

γ
(t,s)
ξ,ξ |

=
M2

T
+ T−2 sup

ξ
|
∑
t,s

γ
(t,s)
ξ,ξ | = g(T ),
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since supξ β
2
ξ < ∞, given that f ∈ L2. Hence, for all η, Var(vη) → 0, as

T →∞, if Assumption 3 holds. Therefore, we can write Var(vη) ≤ g(T ), such
that g(T )→ 0, as T →∞. Let h = supη |vη|. We have

P (h > λ
√
g(T )) = P (∃η : |vη| > λ

√
g(T )) = 1− P (∀η : |vη| ≤ λ

√
g(T )).

Now, on one hand, P (|vη| ≤ λ
√

Var(vη)) ≥ 1 − 1/λ2, and on the other

hand P (|vη| ≤ λ
√
g(T )) = 1− αη, say. But 1− αη ≥ 1− 1/λ2 and so

P (h > λ
√
g(T )) ≤ 1− (1−

∑
η

αη) =
∑
η

αη ≤
∑
η

1/λ2,

and the last sum is #{η : j(η) ≤ J}/λ2. Therefore, it is enough to choose
λ such that 2

∑
Ji/λ2 → 0, as T → ∞ and λ

√
g(T ) → 0, as T → ∞. For

example, λ = 1/(g(T )1/4) and the scales Ji are such that 2
∑
Ji
√
g(T )→ 0, as

T →∞.

Proof of Theorem 5. Write ĈJ(u)−C(u) as F̂J(x̂)− F (x̂) + F (x̂)− F (x),
hence |ĈJ(u) − C(u)| ≤ |F̂J(x̂) − F (x̂)| + |F (x̂) − F (x)|. Using Theorem 4,
it is enough to show that the second term of the r.h.s. converges to zero in
probability as J, T →∞. By Assumption 9,

||F (x̂)− F (x)|| ≤ κ||x̂− x|| ≤ κ.d. max
1≤i≤d

|x̂i − xi|

Now, since F̂J uniformly converges to F in probability, so do the estimated

marginals, i.e., for all i, 1 ≤ i ≤ d, F̂i,Ji
u.P→ Fi.

Denote Si = (xi − 1, xi + 1) and mi = infz∈Si
F ′(z).

Thus, using the uniform convergence in probability of the marginal distri-
bution estimators, we can write

∀δ > 0 ∀ε 0 < ε <
mi

2
∃J∗,i ∀Ji ≥ J∗,i ∀x ∈ IR P (|F̂i,Ji(x)−FJ(x)| < ε) > 1−δ

from which we have

∀xi ∈ IR ∀δ > 0 ∀ε 0 < ε <
mi

2
∃J∗,i ∀Ji ≥ J∗,iP (|x̂i − xi| <

ε

mi

) > 1− δ.

Using Bonferroni’s inequality we get

∀(x1, ..., xd) ∈ IRd ∀δ > 0 ∀ε 0 < ε < min1≤i≤d{
mi

2
}
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∃J∗ = J∗,1 ∨ ... ∨ J∗,d ∀J ≥ J∗ P (∀i 1 ≤ i ≤ d |x̂i − xi| <
ε

mi

) > 1− dδ

Thus, briefly,

P (|F (x̂)− F (x)| < κ max
i:1≤i≤d

(
ε

mi

)) > 1− dδ,

i.e., for all x |F (x̂)− F (x)| P→ 0.
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[4] Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G. and Roncalli, T.
(2000). Copulas for Finance: A Reading Guide and Some Applications.
Groupe de Recherche Opérationelle, Credit Lyonnais, Paris.

[5] Cencov, N.N. (1962). Evaluation of an unknown distribution density from
observations. Doklady, 3, 1559–1562.

[6] Cherubini, U. and Luciano, E. (2001). Value-at-risk trade-off and capital
allocation with copulas. Economic Notes, 30, 235–256.

[7] Cosma, A., Scaillet, O. and von Sachs, R. (2007). Multivariate wavelet-
based shape-preserving estimation for dependent observations. Bernoulli,
13, 301–329.

[8] Daubechies, I. (1992) Ten Lectures on Wavelets. Philadelphia: SIAM.

[9] Dechevsky, L. and Penev, S. (1997). On shape preserving probabilistic
wavelet approximators. Stochastic Analysis and Applications, 15, 187–
215.

[10] Dechevsky, L. and Penev, S. (1998). On shape preserving wavelet estima-
tors of cumulative distribution functions and densities. Stochastic Analysis
and Applications, 16, 423–462.

26

Journal of Time Series Econometrics, Vol. 3 [2011], Iss. 3, Art. 4

http://www.bepress.com/jtse/vol3/iss3/art4
DOI: 10.2202/1941-1928.1033



[11] Deheuvels, P. (1979). La fonction de dépendance empirique et ses pro-
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