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1. Introduction

Comparison of time series has been a problem of interest in many studies. For

different purposes, it is very important to know if there are similarities or differences

1



July 11, 2007 10:37 WSPC/WS-IJWMIP ws-ijwmip

2 Salcedo, Sato, Morettin and Toloi

between two or more time series. Several techniques have been proposed in order to

identify these similarities for both stationary and non-stationary series. For example,

if two series come from the same process, we can obtain better estimators by pooling

the data sets 1,11. As a classification problem, group of series can be discriminated

in different clusters according to the degree of similarity, see for example Ref. 19,

14, 15, 16 and 2. If the focus of a study is monitoring some geophysical variable,

as salinity in different deep sea levels, and these time series are similar, it will be

enough to take samples in only one level, reducing time and costs of the study 22.

As a financial application, Maharaj 17,18 compared interest rates patterns among

various countries.

Most of the existing techniques for comparing time series are applicable to sta-

tionary time series or to non-stationary ones that can be transformed to stationary

by some transformation as differencing. On the other hand, these procedures are

basically based on comparing either the spectral densities of pair of time series 3,9,

or the coefficients of an autoregressive(AR) model 11,14,16.

Since many phenomena in applied sciences show a non-stationary behavior, for

example, the second order structure changes over time, realizations of these pro-

cesses are not easily transformable to stationarity. In order to evaluate the similar-

ity among time series that are non-stationary in variance, Maharaj 17,18 compared

the evolutionary spectra and the sums of squared wavelet coefficients at different

times or scales, respectively, using randomization tests. Huang et al. 13 using the

SLEX (smooth localized complex exponentials) model developed an approach for

discrimination and classification of non-stationary time series and for Dahlhaus lo-

cally stationary series, Sakiyama and Taniguchi 21 and Shumway 24 discussed the

problem of discrimination.

On the other hand, since locally stationary series can be represented by autore-

gressive models with time-varying coefficients 6, in this paper we propose a new

approach to evaluate the similarity among two locally stationary series comparing

their autoregressive parameters. Further, this new approach includes the case where

the variance and covariances of the innovations also change over time.

The remainder of the paper is organized as follows. In section 2, a brief des-

cription about both locally stationary processes and approximation theory of func-

tions is presented. In section 3, the novel testing procedure is described. Some

simulation results are presented in section 4 and an application to financial time

series is illustrated in section 5. Finally, in section 6, some conclusions are given.

2. Background

Autoregressive models form a very important class of stationary models, due

to the fact that they can model a wide variety of phenomena, they are easy to

estimate and interprete and the asymptotic properties of autoregressive estimators

are well understood. In the context of locally stationary processes, we consider

the autoregressive model with varying-time coefficients. It is given by the following
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difference equation:
p∑

i=0

ai

(
t

T

) (
Xt−i,T − µ

(
t− i

T

))
= σ

(
t

T

)
εt, t ∈ Z, (2.1)

where a0 ≡ 1 and {εt, t = 1, . . . , T} are independent random variables with mean

zero and variance one. We assume that the functions σ(u) and ai(u), where u = t
T ,

are continuous on R with σ(u) = σ(0), ai(u) = ai(0) for u < 0, σ(u) = σ(1), ai(u) =

ai(1) for u > 1, and differentiable for u ∈ (0, 1) with bounded derivatives. Here, Z
denotes the set of all integers and R the set of all real numbers.

2.1. Locally Stationary Processes

Stationarity has always been a main assumption in the theoretical treatment of

time series. For example, the well-known ARMA models and the classical Cramér

spectral representation are different ways to represent a stationary time series. Nev-

ertheless, many phenomena in the applied science show a non-stationary behavior

(e.g. economics, oceanography, medicine), the second order structure of these pro-

cesses is no longer time-shift invariant but changes over time. Priestley 20 considered

processes having a time-varying spectral representation

Xt =

∫ π

−π

eiωtAt(ω)dξ(ω), t ∈ Z,

with an orthogonal increment process ξ(ω) and a time-varying transfer function

At(ω). But, within the approach of Priestley, asymptotic considerations are not

possible.

In the representation (2.1), if T → ∞, it means that we have in the sample

X1,T , X2,T , . . . , XT,T more and more “observations” for the local structure of ai(·)
at each time point.

Dahlhaus 7 defined the following class of non-stationary processes having a time-

varying spectral representation.

Definition: A sequence of stochastic processes {Xt,T , t = 1, . . . , T, } is

called locally stationary with transfer function A0 and trend µ if there exists a

representation

Xt,T = µ

(
t

T

)
+

∫ π

−π

eiωtA0
t,T (ω)dξ(ω), (2.2)

where:

• ξ(ω) is a stochastic process on [−π, π] with ξ(ω) = ξ(−ω), E(ξ(ω)) = 0,

with orthonormal increments, i.e.

Cov[dξ(ω), dξ(ω′)] = δ(ω − ω′)

such that

Cum{dξ(ω1), . . . , dξ(ωk)} = η




k∑

j=1

ωj



 gk(ω1, . . . , ωk−1)dω1 . . . dωk,
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where Cum{. . .} denotes the cumulant of k−th order, g1(ω) = 0, g2(ω) =

1, |gk(ω1, . . . , ωk−1)| ≤ constk for all k and η(ω) =
∑∞

j=−∞ δ(ω + 2πj) is

the period 2π extension of the Dirac delta function.

• There exists a constant K and a 2π-periodic function A : [0, 1] × R → C
with A(u,−ω) = A(u, ω), and

sup
t,ω

|A0
t,T (ω) −A

(
t

T
, ω

)
| ≤ KT−1

for all t, where C denotes the set of complex numbers.

The functions A(u, ω) and µ(ω) are assumed to be continuous in u, in order

to guarantee that the process has a locally stationary behavior. The evolutionary

spectrum of Xt,T is defined as fx(u, ω) = |A(u, ω)|2.
Dahlhaus 6 proved that in (2.1), Xt,T has the representation (2.2) with

A(u, ω) =
σ(u)√

2π


1 +

p∑

j=1

aj(u)e
−ijω




−1

,

where

εt =
1√
2π

∫ π

−π

eiωtdξ(ω), t ∈ Z.

For simplicity, in the sequel we assume that µ(u) = 0.

2.2. Function Expansions

In most of the approximation theory of functions, the purpose is to expand

any function belonging to a specified space by linear combinations of some basis

functions which generally form an orthonormal basis for that space. For example,

sines and cosines form a basis for L2[0, 2π], B-splines and wavelets form a basis

for L2(R). In order to approximate a smooth function f ∈ L2[0, 1], as will be our

interest, we introduce two appropriate methods, polynomial splines and wavelets.

2.2.1. Splines

A real function s(x) is called a spline function (or simply “spline”) of degree

r ≥ 0 on an interval χ with knot points x0 < x1 < . . . < xM+1, where x0 and xM+1

are the two end points of χ, if

• s(x) is a polynomial of degree not greater than r on each of the intervals

[xm, xm+1], m = 0, 1, . . . ,M, with the polynomial pieces joining smoothly

at the knot points;
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• s(x) globally has r − 1 continuous derivatives for r ≥ 1.

A piecewise constant function, linear spline, quadratic spline and cubic spline

correspond to r = 0, 1, 2, 3 respectively.

The collection Sr(x1, . . . , xM ) whose elements are spline functions of degree r

and knot sequence {x1, . . . , xM}, forms a linear function space and it is called spline

space. It can be demonstrated that B-splines form a basis of spline spaces with the

advantage that they are splines which have the smallest possible support, i.e. B-

splines are zero on a large set (Schumaker, 1981).

Thus, if f(x) is a smooth function, it can be well approximated by a spline

function f∗(x) in the sense that supx∈χ|f(x) − f∗(x)| → 0 as the number of knots

of the spline tends to infinity. Hence, there is a set of basis functions ψk(·) (e.g.

B-splines) and constants ck, k = 1, . . . ,K, such that

f(x) ≈ f∗(x) =

K∑

k=1

ckψk(x), (2.3)

where K depends on the number of knots and the order of the B-splines.25

2.2.2. Wavelets

Suppose we have a scaling function φ(x) and a wavelet ψ(x) such that, defining

the following translated and scaled transformations,

φ̃j,k(x) = 2j/2φ(2jx− k), ψ̃j,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z

we can obtain the collection {φ̃j,k} ∪ {ψ̃j,k}j≥l;k∈Z which forms an orthonormal

basis of L2(R), for some coarse scale l. Daubechies 10 describes the way to construct

compactly supported φ and ψ that generate an orthonormal system and have space-

frequency localization.

Since we are interested in functions that are defined on the compact interval

[0, 1], it is necessary to consider an orthonormal system that spans L2[0, 1]. The

main idea is to periodize on [0, 1] the above wavelets defined on L2(R) as given by

Cohen et al.5 where

φj,k(x) =
∑

n

φ̃j,k(x − n), ψj,k(x) =
∑

n

ψ̃j,k(x − n)

are the periodized wavelets and generate a multiresolution level ladder V0 ⊂ V1 ⊂
. . . , in which the spaces Vj are generated by the φ̃j,k. From now on we use φj,k and

ψj,k instead of φ̃j,k and ψ̃j,k, respectively.

Accordingly, we can expand any function f ∈ L2[0, 1] in an orthogonal series

f(x) = α0,0φ(x) +

∞∑

j=0

2j−1∑

k=0

cj,kψj,k(x) (2.4)
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where

α0,0 =

∫ 1

0

f(x)φ(x)dx, cj,k =

∫ 1

0

f(x)ψj,k(x)dx

are called the wavelet coefficients.

In practice, we approximate the expansion in (2.4) by the finite sumation

f(x) = α0,0φ(x) +

J∑

j=0

2j−1∑

k=0

cj,kψj,k(x), (2.5)

where J is an arbitrary smoothing parameter. The choice of J is based on the ex-

pected smoothing degree of the function f , and how much of details can be ignored.

In general, J is the highest resolution level such that 2J ≤
√
T ≤ 2J+1. In fact,

as in all non-parametric smoothing, the variance of the approximation increases

monotonically as a function of J . Nevertheless, low values of J lead to a highly

biased approximation. See Ref. 12 for details.

3. Hypothesis Testing Procedure

Let {Xt,T , t = 1, . . . , T} and {Yt,T , t = 1, . . . , T} be two locally stationary time

series with zero mean, which come from a time-varying AR process with the same

order p, i.e. they can be represented as

Xt,T =

p∑

i=1

ai

(
t

T

)
Xt−i,T + εx

t ,

Yt,T =

p∑

i=1

bi

(
t

T

)
Yt−i,T + εy

t , (3.1)

with the corresponding assumptions for {εx
t }, {εy

t }, ai(u), bi(u) with u = t
T , i =

0, 1, . . . , p, described in section 2.1. The processes {Xt,T , t = 1, . . . , T} and {Yt,T , t =

1, . . . , T} can be correlated or not.

Our aim is to decide if the two series were generated by the same time-varying

AR process, i.e. the hypotheses to be tested are

H0 : ai(u) = bi(u) for all i = 1, . . . , p, u ∈ (0, 1)

H1 : ai(u) 6= bi(u) for either some i = 1, . . . , p, or some u ∈ (0, 1). (3.2)

The procedure proposed by Maharaj 16 to compare two stationary AR processes

cannot be extended directly due to the fact that in this case we have a number of

parameters that is much larger than number of observations. To overcome this

problem, we can expand the functions ai(u) and bi(u), i = 1, . . . , p, from (3.1)

using (2.3) or (2.5). To illustrate the procedure, we will use wavelets. We obtain the

following equations,
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Xt,T =

p∑

i=1



α0,0φ

(
t

T

)
+

J∑

j=0

2j−1∑

k=0

c
(i)
j,kψj,k

(
t

T

)

Xt−i,T + εx
t + sx

t ,

Yt,T =

p∑

i=1



δ0,0φ

(
t

T

)
+

J∑

j=0

2j
−1∑

k=0

d
(i)
j,kψj,k

(
t

T

)

Yt−i,T + εy
t + sy

t (3.3)

where {α(i)
0,0, c

(i)
j,k} and {δ(i)0,0, d

(i)
j,k}, 0 ≤ j ≤ J, 0 ≤ k ≤ 2j − 1, are the coefficients

for the corresponding functions ai(u) and bi(u), i = 1, . . . , p; εx
t , ε

y
t as before

and sx
t , s

y
t are errors due to the functional approximation (truncated expansions).

However, these errors decay rapidly to zero as the time series length increases 8.

The last T −p observations of the model fitted to {Xt,T , t = 1, . . . , T} series can

be written in the matrix form

X = Ψxc + εx + sx, (3.4)

where

X = (Xp+1,T , Xp+2,T , . . . , XT−1,T , XT,T )′,

c = (α
(1)
0,0, c

(1)
0,0, . . . , c

(1)

J,2J−1
, α

(2)
0,0, c

(2)
0,0, . . . , c

(2)

J,2J−1
, . . . , α

(p)
0,0, c

(p)
0,0, . . . , c

(p)

J,2J−1
)′,

εx =
(
εx

p+1, ε
x
p+2, . . . , ε

x
T

)′
, sx =

(
sx

p+1, s
x
p+2, . . . , s

x
T

)′
,

and the Ψx matrix corresponds to Ψx = (Ψ
(1)
x ,Ψ

(2)
x , . . . ,Ψ

(p)
x ) with

Ψ(i)
x =




φ
(

p+1
T

)
Xp+1−i,T ψ0,0

(
p+1
T

)
Xp+1−i,T . . . ψJ,2J−1

(
p+1
T

)
Xp+1−i,T

φ
(

p+2
T

)
Xp+2−i,T ψ0,0

(
p+2
T

)
Xp+2−i,T . . . ψJ,2J−1

(
p+2
T

)
Xp+2−i,T

...
. . .

...

φ
(

T−1
T

)
XT−1−i,T ψ0,0

(
T−1

T

)
XT−1−i,T . . . ψJ,2J−1

(
T−1

T

)
XT−1−i,T

φ
(

T
T

)
XT−i,T ψ0,0

(
T
T

)
XT−i,T . . . ψJ,2J−1

(
T
T

)
XT−i,T



,

and i = 1, 2, . . . , p.

We can also represent the T − p observations Yp+1,T , Yp+2,T , . . . , YT−1,T , YT,T ,

from (3.3) by

Y = Ψyd + εy + sy, (3.5)

where the quantities Y, Ψy, d, εy and sy are similarly defined. Furthermore,

E(εx) = E(εy) = 0,

E(εxε
′
x) = Diag

(
σ2

x

(
p+ 1

T

)
, σ2

x

(
p+ 2

T

)
, . . . , σ2

x

(
T

T

))
= Σxx,

E(εyε
′
y) = Diag

(
σ2

y

(
p+ 1

T

)
, σ2

y

(
p+ 2

T

)
, . . . , σ2

y

(
T

T

))
= Σyy.
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We will assume further that the innovations of the two models are contempora-

neously correlated in time, i.e.

E(εxε
′
y) = Diag

(
σxy

(
p+ 1

T

)
, σxy

(
p+ 2

T

)
, . . . , σxy

(
T

T

))
= Σxy.

The dimensions of X, εx, sx,Y, εy and sy are (T−p)×1, of c and d are pL×1, of Ψx

and Ψy are (T −p)×pL and of each matrix Σ.. is (T −p)× (T −p), where L = 2J+1

corresponds to the number of wavelet coefficients used in each approximation.

Therefore, joining the models (3.4) and (3.5) we obtain

Z = Ψβ + ε+ s,

where

Z =

[
X

Y

]
, Ψ =

[
Ψx 0

0 Ψy

]
, β =

[
c

d

]
, ε =

[
εx

εy

]
and s =

[
sx

sy

]
,

with E(ε) = 0 and

E(εε′) = Σ =

[
Σxx Σxy

Σxy Σyy

]
.

Thus, the generalized least squares estimator of β is given by

β̂ =
[
Ψ′Σ−1Ψ

]−1

Ψ′Σ−1Z.

The dimensions of Z, s and ε are 2(T − p) × 1, of β is 2pL × 1 and of Ψ is

2(T − p) × 2pL.

Assuming that the process ε follows a multivariate Normal distribution with

mean 0 and matrix of variances and covariances Σ, this model is a particular case

of Sato et al. 23, and analogously it can be shown that
√
T (β̂ − β) has asymptotic

distribution N(0,Σ∗) where

Σ∗ = limT→∞V ar(
√
T β̂) = plim

(Ψ′Σ−1Ψ

T

)−1

.

Hence, the hypotheses given in (3.2) are equivalent to

H0 : c = d

H1 : c 6= d

or equivalently to

H0 : Cβ = 0

H1 : Cβ 6= 0

with C = [IpL − IpL]. It follows that
√
T (Cβ̂ − Cβ) is asymptotically

NpL(0,CΣ∗C′).

Defining now υ by

υ = [C(Ψ′Σ−1Ψ)−1C′]−
1

2 (Cβ̂ − Cβ),
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it is straightforward that under H0, υ has asymptotically a N(0, IpL). Consequently

under H0, the statistic

W = υ′υ = (Cβ̂)′[C(Ψ′Σ−1Ψ)−1C′]−1(Cβ̂)

has asymptotically a χ2
(pL) distribution. Hence, for a given significance level α, we

reject H0 if P (W > w) < α, where w is the observed value of the W statistic.

Nevertheless, all the procedures described previously assume that the time-

varying variance and covariance structures of εx and εy are known. In practice,

these structures have also to be estimated.

Since we assume that the innovations εx
t have mean zero and variance σ2

x(t/T ),

a reasonable estimator for σ2
x(t/T ) is the squared residual r2x(t/T ) obtained in

the least square estimation procedure. Analogously, an estimator for σ2
y(t/T ) and

σxy(t/T ) are given by r2y(t/T ) and rx(t/T )ry(t/T ) respectively. Thus, to esti-

mate the matrix Σ we initially consider the truncated wavelets expansion for

σ2
x(t/T ), σ2

y(t/T ) and σxy(t/T ) as follows

σ2
x(
t

T
) = αx

0,0φ(
t

T
) +

J∑

j=0

2j−1∑

k=0

cxj,kψj,k(
t

T
),

σ2
y(
t

T
) = αy

0,0φ(
t

T
) +

J∑

j=0

2j−1∑

k=0

cyj,kψj,k(
t

T
),

σxy(
t

T
) = αxy

0,0φ(
t

T
) +

J∑

j=0

2j−1∑

k=0

cxy
j,kψj,k(

t

T
).

The criterion for choosing the maximum scale J is the same described previ-

ously. Then, we apply a linear regression using the truncated wavelet expansion

as explanatory variables and the series r2x(t/T ), r2y(t/T ) and rx(t/T )ry(t/T ) as re-

sponses, in order to obtain consistent estimates of σ2
x(t/T ), σ2

y(t/T ) and σxy(t/T ).

Finally, similar to Ref. 23, we propose a generalization of the Cochrane and

Orcutt 4 procedure given by the following iterative estimation algorithm:

i) Apply the generalized least square estimation considering Σ equal to the

identity matrix;

ii) obtain the residuals rx(t/T ) and ry(t/T ), t = 1, . . . , T ;

iii) smooth the squared and cross residuals considering the wavelet linear

regression obtaining an estimate of Σ;

iv) apply the generalized least square estimation considering the estimated

matrix of Σ;

v) return to 2 until numerical convergence of parameters or a maximum

number of iterations.
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4. Simulations

In this section, the results of some sets of simulations are presented. The simu-

lations were used to evaluate the adequacy of asymptotic null distribution and the

performance of the proposed test. All simulations were performed using the package

splines and wavethresh of the statistical software R. We consider the Haar(D1), D2

and D8 (Double Extreme Phase with periodic boundary condition) wavelets.

The first group of simulations evaluates the estimation procedure and is based

on a time-varying autoregressive model of order one, with coefficients

b1(
t

T
) = a1(

t

T
) = sin

(
2πt

T

)
/3. (4.1)

The processes generated in the simulation are given by

Xt,T = a1

(
t

T

)
Xt−1,T + εx

t ,

Yt,T = b1

(
t

T

)
Yt−1,T + εy

t

where εx
t and εy

t are Gaussian white noises, and

σ2
x

(
t

T

)
=

(
1 +

cos(2πt
T )

4

)2

,

σ2
y

(
t

T

)
= 0.25

(
1 +

cos(2πt
T )

4

)2

+ 0.25

(
1 +

cos(2πt
T )

4

)6

,

σxy

(
t

T

)
= 0.5

(
1 +

cos(2πt
T )

4

)4

.

The results of the generalized least square estimation procedure for T = 256, L =

8 show a good performance of the estimation procedure. The results are presented in

Fig. 1, 2, 3 and 4 and are based on 1000 simulations. The dotted lines represent the

confidence interval of one standard deviation. The functions with support in [0, 1]

are rescaled to the original interval [1, T ]. The expectation for all the estimated

curves are close to the theoretical ones. In terms of low frequency, the results are

reasonable even using the Haar and D2 wavelets. However, the estimatives using

B-splines show a variability higher than the others at the boundaries.

In order to evaluate the asymptotic null distribution of the proposed statistic,

one thousand of time-varying autoregressive series of order one were simulated,

considering coefficients b1
(

t
T

)
= a1

(
t
T

)
, where a1

(
t
T

)
, εx

t and εy
t were the same as

in the previous simulations. The proposed Wald test was applied for each generated

series (L = 4, T = 128 and the D8 wavelet) and the histogram, kernel density

estimates and theoretical distribution are presented in Fig. 5.

Focusing on the evaluation of suggested Wald test power, we generate time-

varying autoregressive series of order one, with coefficients b1
(

t
T

)
= (1 +λ)a1

(
t
T

)
,
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Fig. 1. Theoretical and estimated autoregressive functions using the Haar wavelet basis. The
solid lines describe the average of estimated curves and theoretical, respectively. The dashed lines
describe the confidence interval of one standard deviation.

where λ ∈ {0, 0.2, 0.4, ..., 1.8} and a1

(
t
T

)
, εx

t and εy
t as before. Hence, the difference

between the two autoregressive structures increases as the value of λ increases. For

λ = 0 we can evaluate the size of the test. The null hypotheses is that the two series

have the same time-varying autoregressive structure. Table 1 presents the results

for the different bases with T ∈ {64, 128, 256}; L ∈ {4, 8, 16} and 1000 simulations.

In general, the proposed Wald test for comparing the two autoregressive struc-

tures has a good performance. The effect of the class of basis functions on the Wald

test is illustrated in Figure 6 (L = 8 and T = 128). Despite the fact that B-splines

seem to be more powerful, the sample length seems to be not enough for a good

approximation of the Wald statistic to the asymptotic distribution. Assuming the

size of the test α = 0.05, the test based on the B-splines has a proportion of rejec-

tions of 0.091. On the other hand, the tests based on wavelets lead to an acceptable

asymptotic approximation, and they have almost the same performance. Figure 7

shows the effect of the number (L) of basis functions considered in the Wald test,

for the D8 wavelet and T = 128. The figure illustrates that the power of the test

decreases as L increases. The estimation bias is certainly reduced as L increases,

but the number of degrees of freedom is strongly reduced, resulting on less power.

As expected, Figure 8 shows that the Wald test power increases as the sampling

rate increases. The simulation results described in Table 1 point towards a similar

power and performance of the test for all the basis functions considered, for a large
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Fig. 2. Theoretical and estimated autoregressive functions using the D2 wavelet basis. The solid
lines describe the average of estimated curves and theoretical, respectively. The dashed lines de-
scribe the confidence interval of one standard deviation.

sampling rate. However, the test based on wavelet bases seems to have a better

performance for small samples.

Furthermore, we are also interested in evaluate the performance of the test in

the case of time-variant AR(2) processes. Thus, we considered the following pro-

cesses:

Xt,T = a1

(
t

T

)
Xt−1,T + a2

(
t

T

)
Xt−2,T + εx

t ,

Yt,T =

(
b1

(
t

T

)
+ λ

)
Yt−1,T +

(
b2

(
t

T

)
+ λ

)
Yt−2,T + εy

t

where εx
t and εy

t are Gaussian white noises with σ2
x(·), σ2

y(·) and σxy(·) as before.

The power of the test was evaluated using 1000 simulations considering L ∈
{4, 8}, T ∈ {128, 256} and λ ∈ {0, 0.1, 0.2, 0.3, 0.4}. It is important to highlight that

when λ = 0, the two processes have the same AR(2) structure. The results of this

set of simulations are shown in Table 2.

Table 2 suggests that the approach is adequate to test the structure of AR(2)

processes. However, as the number of parameters to be estimated is the double

compared to the AR(1) case, the length of observed time series must be larger for

a good approximation of the Wald statistic asymptotic distribution.
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Fig. 3. Theoretical and estimated autoregressive functions using the D8 wavelet basis. The solid
lines describe the average of estimated curves and theoretical, respectively. The dashed lines de-
scribe the confidence interval of one standard deviation.

5. Application to Real Data

In this section two applications of the proposed test are shown. In the first one,

we considered financial time series from Italy and USA stock markets. The second

example refers to the analysis of brain signals from two subjects, acquired in a func-

tional magnetic resonance imaging experiment.

5.1. Application 1

The volatility structure of financial assets is very useful to quantify risks. Their

predictions are frequently used to determine the value at risk of portfolios, which

in many countries, are required by government financial institutions. Define the

log-volatility time series as

zt = log(r2t + γ), (5.1)

where rt is the log-return of prices or indexes, and γ is an arbitrary constant greater

than zero. This constant is necessary due to the fact that the log-returns may as-

sume zero values.

This illustrative application is based on the analysis of log-volatilities of the

national stock market indexes from Italy and USA. We considered γ = 0.001, and

daily log-returns from September first 1999 to August twelve 2003, resulting on a
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Fig. 4. Theoretical and estimated autoregressive functions using the B-splines basis. The solid lines
describe the average of estimated curves and theoretical, respectively. The dashed lines describe
the confidence interval of one standard deviation.
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the null hypothesis.
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Table 1. Power estimates (α = 0.05) of the Wald test for common autoregressive function.

T L Wavelet 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Haar 0.049 0.053 0.081 0.129 0.227 0.371 0.486 0.674 0.792 0.889
D2 0.057 0.064 0.090 0.140 0.233 0.368 0.529 0.680 0.787 0.892

4 D8 0.047 0.073 0.092 0.148 0.260 0.429 0.604 0.739 0.858 0.925
BS 0.070 0.066 0.107 0.191 0.278 0.415 0.522 0.690 0.819 0.870

Haar 0.057 0.072 0.087 0.116 0.189 0.255 0.385 0.509 0.646 0.793
64 8 D2 0.105 0.110 0.132 0.158 0.232 0.316 0.404 0.510 0.678 0.733

D8 0.110 0.106 0.128 0.172 0.221 0.308 0.409 0.506 0.677 0.722
BS 0.125 0.132 0.160 0.195 0.249 0.322 0.430 0.523 0.657 0.764

Haar 0.152 0.194 0.182 0.196 0.249 0.298 0.362 0.437 0.529 0.621
16 D2 0.166 0.142 0.185 0.186 0.215 0.252 0.299 0.398 0.459 0.531

D8 0.181 0.194 0.206 0.206 0.256 0.273 0.323 0.391 0.472 0.546
BS 0.203 0.213 0.201 0.238 0.277 0.308 0.335 0.440 0.434 0.595

Haar 0.042 0.048 0.130 0.239 0.452 0.679 0.869 0.956 0.991 0.998
4 D2 0.032 0.051 0.127 0.235 0.464 0.692 0.873 0.966 0.984 0.995

D8 0.038 0.052 0.138 0.296 0.550 0.758 0.914 0.975 0.994 1.000
BS 0.065 0.090 0.135 0.276 0.473 0.711 0.886 0.966 0.986 0.998

Haar 0.038 0.059 0.093 0.172 0.338 0.549 0.752 0.896 0.973 0.995
128 8 D2 0.063 0.056 0.118 0.190 0.352 0.520 0.744 0.891 0.976 0.983

D8 0.049 0.049 0.117 0.184 0.327 0.538 0.773 0.896 0.953 0.991
BS 0.083 0.093 0.139 0.226 0.391 0.593 0.756 0.887 0.949 0.976

Haar 0.069 0.056 0.082 0.175 0.245 0.377 0.540 0.750 0.852 0.941
16 D2 0.145 0.138 0.182 0.208 0.286 0.406 0.583 0.709 0.825 0.908

D8 0.138 0.130 0.187 0.239 0.286 0.426 0.560 0.753 0.816 0.900
BS 0.147 0.162 0.190 0.243 0.332 0.459 0.588 0.713 0.856 0.912

Haar 0.042 0.052 0.198 0.490 0.801 0.946 0.990 1.000 1.000 1.000
4 D2 0.039 0.055 0.205 0.531 0.851 0.958 0.997 1.000 1.000 1.000

D8 0.039 0.072 0.251 0.591 0.869 0.982 0.999 1.000 1.000 1.000
BS 0.043 0.086 0.218 0.534 0.822 0.977 0.995 0.999 0.999 1.000

Haar 0.028 0.051 0.136 0.371 0.699 0.904 0.987 1.000 1.000 1.000
256 8 D2 0.023 0.053 0.163 0.394 0.675 0.912 0.984 0.997 0.999 1.000

D8 0.013 0.032 0.139 0.377 0.688 0.928 0.982 1.000 1.000 1.000
BS 0.091 0.178 0.407 0.738 0.912 0.983 0.996 0.994 0.997 0.997

Haar 0.022 0.050 0.108 0.226 0.482 0.752 0.944 0.987 1.000 1.000
16 D2 0.046 0.079 0.132 0.317 0.526 0.776 0.924 0.979 0.985 0.989

D8 0.043 0.045 0.126 0.262 0.510 0.771 0.945 0.988 0.998 1.000
BS 0.076 0.086 0.157 0.312 0.524 0.784 0.919 0.977 0.990 0.991

Table 2. Power estimates (α = 0.05) of the Wald test in the AR(2) Model.

T L Basis 0 0.1 0.2 0.3 0.4

D1 0.023 0.155 0.655 0.958 0.999
4 D2 0.033 0.168 0.668 0.976 0.999

D8 0.035 0.162 0.675 0.974 1.000
BS 0.077 0.218 0.696 0.957 0.985

128 D1 0.023 0.093 0.456 0.863 0.996
8 D2 0.044 0.131 0.430 0.851 0.984

D8 0.082 0.167 0.468 0.855 0.969
BS 0.087 0.162 0.476 0.846 0.966
D1 0.019 0.325 0.969 1.000 1.000

4 D2 0.032 0.349 0.979 1.000 1.000
D8 0.020 0.379 0.969 0.999 1.000
BS 0.072 0.411 0.974 0.994 0.997

256 D1 0.019 0.198 0.857 0.999 1.000
8 D2 0.026 0.183 0.896 1.000 1.000

D8 0.047 0.247 0.879 0.988 0.996
BS 0.061 0.252 0.889 0.995 0.996

time series of extension 1025. Before the analysis, the log-volatilities were standard-

ized to mean zero and unit variance by subtracting the average and dividing by the
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Fig. 6. Basis functions effect on the Wald test power, using T = 128 and L = 8.

standard deviation. The standardized log-volatilities are shown in Figure 9.

The time-varying autoregressive estimates (AR(1)) are shown in Figures 10

and 11. Assuming L = 4, the p-value of test using the wavelets Haar, D2, D8 and

the B-splines basis are 0.972, 0.004, 0.040 and < 0.001, respectively. Considering

the case when L = 8, the respective p-values are 0.050, 0.123, 0.005 and 0.015.

It is important to notice that for this application, the decision of the test depends

on the basis chosen and on the number of functions considered in the expansion.

Anyway, analyzing all the results, it is reasonable to conclude that the two autore-

gressive structures are different. The test using the Haar wavelet for L = 4 was the

only one suggesting that the AR structures were not different (p = 0.972). However

the p-value of the test decreased to p = 0.050 for L = 8. This result suggests that

the structures are different but L = 4 is too small for Haar. On the other hand,

using L = 8 may lead to a decrease in the power of the test considering D2 and

B-splines, as the number of parameters to be estimated increased.

In conclusion, considering a test size of α = 0.05, we reject the hypothesis that

the two time series have the same autoregressive structure.
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Fig. 7. Number of basis functions (L) effect on the Wald test power, using D8 and T = 128.

5.2. Application 2

In this second example, the data was acquired in an experiment of functional

magnetic resonance imaging (fMRI). The BOLD signal (blood oxigenation level de-

pendent) observed in fMRI sessions can be considered as a indirect measure of local

neural activity. In this experiment, faces were randomly presented to the subjects,

who should decide if they were neutral, sad or very sad faces.

During this experiment, both subjects activated a brain region named Insula.

We are interested in verify if the Insulas’ BOLD signals of the two participants have

the same autoregressive structure, as they were submitted to the same sequence of

faces’ presentation (stimulation). Figure 12 shows the BOLD time series.

In this application, the time series extension was 129 points. The signals were

normalized to mean zero and variance one. The test of same time-variant autore-

gressive structure (AR(1)) was applied to these series, considering the Haar, D2,

D8 wavelets, B-splines for L = 4 and L = 8. The estimated structures are shown

in Figure 13 and 14. Considering L = 4, the p-values for the test using Haar, D2,

D8 and B-splines are 0.013, 0.014, 0.003, and 0.001, respectively. Assuming L = 8,

the p-values are 0.081, 0.006, 0.028 and 0.017, respectively. Note that in this case,

the results suggest that autoregressive structures are not equal. In fact, it seems

that they have a similar behaviour, but the autoregressive coefficient is greater in
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Fig. 8. Sampling rate (1/T ) effect on the Wald test power, using D8 and L = 8.
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Fig. 10. Estimated time-varying autoregressive structures (AR(1)) of the log-volatilities using
L = 4.
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Fig. 11. Estimated time-varying autoregressive structures (AR(1)) of the log-volatilities using
L = 8.



July 11, 2007 10:37 WSPC/WS-IJWMIP ws-ijwmip

20 Salcedo, Sato, Morettin and Toloi

Time

S
ub

je
ct

 1

0 20 40 60 80 100 120

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Time

S
ub

je
ct

 2

0 20 40 60 80 100 120

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Fig. 12. Insulas’ BOLD signal from the two subjects.

subject 2. Further, using L = 8 we observe a decrease in the power, indicating that

a larger expansion is not necessary.

In summary, we conclude that the time-variant autoregressive structure in In-

sula is not the same for the two subjects, even if they were submitted to the same

stimulus at the same time intervals.

6. Conclusions

In the context of locally stationary time series with autoregressive representa-

tion and time-varying parameters, we proposed a statistical test to evaluate the

similarity of two locally stationary series comparing their functional autoregressive

parameters. Simulation studies provide evidence that the proposed test performs

well and has a better performance if we use the wavelet expansion for the estimation

procedure of the autoregressive functions. The application to real data demonstrates

that this test can be successfully applied in cases of locally stationary time series.

Furthermore, the test can be easily extended to the multivariate case.

Acknowledgments

GES was supported by a CNPq grant and University of Quind́ıo; PAM and CMCT

were partially supported by FAPESP grant 03/10105-2. JRS was supported by a



July 11, 2007 10:37 WSPC/WS-IJWMIP ws-ijwmip

Comparing Time-varying Autoregressive Structures of Locally Stationary Processes 21

time

C
oe

fic
ie

nt

0 20 40 60 80 100 120

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

time

C
oe

fic
ie

nt

0 20 40 60 80 100 120

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

D1
D2
D8
BS
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