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We consider a transfer function model with time-varying coefficients. We propose an estimation
procedure, based on the least squares method and wavelet expansions of the time-varying
coefficients. We discuss some statistical properties of the estimators and assess the validity of
the methodology through a simulation study. We also present an application of the proposed
procedure to a real pair of series.

1. Introduction

In this paper, we consider the transfer function model

Yt,T =
m∑

i=1

δi

(
t

T

)
Yt−i,T +

n∑

j=0

ωj

(
t

T

)
Xt−j,T + εt, t = 1, . . . , T, (1.1)

where T is the number of observations and εt is i.i.d. (0, σ2). We assume that the error and the
input series are independent. The functions ωj(u), j = 0, 1, 2, . . . , n, and δj(u), j = 1, 2, . . . , m,
are supported on the interval [0,1] and connected to the underlying series by an appropriate
rescaling of time, u = t/T .

As noted by Nason and Sapatinas [1], when both time series Xt and Yt belong to the
class of ARMA models, the transfer function models made popular by Box and Jenkins are
appropriate. See Box et al. [2].
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Model (1.1) is important because it can be used when either or both time series are
not stationary, but it is perhaps more suitable when the series exhibit a locally stationary
behaviour, for example, in the sense of Dahlhaus [3] or of Nason et al. [4]. In several
areas, such as signal analysis (speech analysis in particular) and economics, empirical and
theoretical works suggest that models with time-varying coefficients are useful, reflecting,
for example, the evolution of the economy over time.

Chiann and Morettin [5, 6] considered a special case of (1.1), namely,

Yt,T =
∞∑

j=0

aj

(
t

T

)
Xt−j,T + σ

(
t

T

)
εt, (1.2)

while Dahlhaus et al. [7] entertained the model

Xt,T =
p∑

j=1

aj

(
t

T

)
Xt−j,T + σ

(
t

T

)
εt. (1.3)

These authors used wavelet expansions of the time-varying coefficients in order to
obtain estimates.

Related references are Brockwell et al. [8, 9], who used a state-space approach to
transfer function modelling, allowing for nonstationary input and output sequences, and
Nason and Sapatinas [1] who show how a nondecimated wavelet packet transform
(NDWPT) can be used to model a response time series Yt in terms of an explanatory time
series Xt, both assumed to be nonstationary. Rather than building a model directly between
Xt and Yt some regression-type model is built between Yt and an NDWPT version of Xt.

We consider the problem of estimating ωj(u), j = 0, 1, 2, . . . , n and δj(u), j = 1, 2,. . .,m,
in time domain, using wavelet expansions. We use least squares to obtain the estimators of
the wavelet coefficients. Then the empirical detail coefficients are shrunk before the inverse
wavelet transform is applied to obtain the final estimates of ωj(u) and δj(u). This results in a
nonlinear smoothing procedure. See Section 2 for further details.

We will apply the methodology to real data, namely, a pair of hourly wind speeds
recorded at two Welsh Meteorological Office stations, Valley and Aberporth. Here the idea is
to relate the target wind speeds (Valley) to wind speeds measured at a nearby reference site
(Aberporth). See Nason and Sapatinas [1] for a complete description of this data and Section
6.

The plan of the paper is as follows. In Section 2, we introduce some background
material on wavelets. In Section 3, we present the estimation procedure, and in Section 4,
we give some properties of the empirical wavelet coefficients. In Section 5, we perform some
simulations and in Section 6, we apply the methodology to the data described above. The
paper ends with some remarks in Section 7.

2. Wavelets

In this section, we discuss some basic ideas on wavelets. For more details, see the books
by Vidakovic [10], Percival and Walden [11], and Nason [12]. From two basic functions,
the scaling function φ(x) and the wavelet ψ(x), we define infinite collections of translated
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and scaled versions, φj,k(x) = 2j/2φ(2jx − k), ψj,k(x) = 2j/2ψ(2jx − k), j, k ∈ Z =
{0,±1,±2, . . .}. We assume that {φ�,k(·)}k∈Z

∪ {ψj,k(·)}j≥�;k∈Z
forms an orthonormal basis of

L2(R), for some coarse scale �. A key point [13] is that it is possible to construct compactly
supported φ and ψ that generate an orthonormal system and have space-frequency local-
ization, which allows parsimonious representations for wide classes of functions in wavelet
series.

In some applications, the functions involved are defined in a compact interval, such as
[0, 1]. This will be the case of our functions ωj(u) and δj(u) in (1.1). So it will be necessary
to consider an orthonormal system that spans L2([0, 1]). Several solutions were proposed,
the most satisfactory one being that by Cohen et al. [14]. As in any proposal, close to the
boundaries the basis functions are modified to preserve orthogonality. Cohen et al. [14] use a
preconditioned step. Periodized wavelets are defined by

φ̃j,k(x) =
∑

n∈Z

φj,k(x − n), ψ̃j,k(x) =
∑

n∈Z

ψj,k(x − n), (2.1)

and these generate a multiresolution level ladder Ṽ0 ⊂ Ṽ1 ⊂ · · · , in which the spaces Ṽj
are generated by the ψ̃j,k. Negative values of j are not necessary, since φ̃ = φ̃0,0 = 1 and if
j ≤ 0, ψ̃j,k(x) = 2−j/2. See Vidakovic [10] for details and Walter and Cai [15] for a different
approach. Other instances are the boundary corrected Meyer wavelets [16]. From now on,
we denote the periodized wavelets simply by ψj,k.

Accordingly, for any function f ∈ L2([0, 1]), we can expand it in an orthogonal series

f(x) = α0,0φ(x) +
∑

j≥0

∑

k∈Ij
βj,kψj,k(x), (2.2)

where we take � = 0 and Ij = {k : k = 0, . . . , 2j − 1}. For each j, the set Ij brings the values k,
such that βjk belongs to scale 2j . For example, for j = 3, we have 8 wavelet coefficients in scale
23, while for j = 2 we have half of this number, namely, 4 coefficients in scale 22. The wavelet
coefficients are given by

α0,0 =
∫
f(x)φ(x)dx, βj,k =

∫
f(x)ψj,k(x)dx. (2.3)

Often we consider the sum in (2.2) for a maximum level J ,

f(x) � α00φ(x) +
J−1∑

j=0

∑

k∈Ij
βjkψjk(x), (2.4)

in such a way that we approximate f in the ṼJ space.
Wavelet shrinkage provides a simple tool for nonparametric function estimation. It is

an active research area where the methodology is based on optimal shrinkage estimators for
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the location parameters. Some references are Donoho and Johnstone [17, 18] and Donoho
et al. [19]. In this paper, we focus on the simplest, yet most important shrinkage strategy-
wavelet thresholding. Earlier models considered nonparametric regression with i.i.d. normal
errors. These were further extended by Johnstone and Silverman [20] for correlated errors.
In this context, the paper by Opsomer at al. [21] is a good survey of methods using kernels,
splines, and wavelets.

The thresholding technique consists of reducing the noise included in a signal through
the application of a threshold to the estimatedwavelets coefficients β̂jk. Some commonly used
forms are the soft and hard thresholds, given by

δ(s)
(
β̂jk, λ

)
=
(∣∣∣β̂jk

∣∣∣ − λ
)

+
sgn
(
β̂jk
)
,

δ(h)
(
β̂jk, λ

)
= β̂jkI

(∣∣∣β̂jk
∣∣∣ ≥ λ

)
,

(2.5)

respectively. One crucial issue is the choice of the parameter λ. If the empirical wavelet
coefficients β̂jk are assumed to be Gaussian with mean βjk and constant variance, a popular

method is to apply the so-called universal threshold λ = σ
√
2 log 2J , where σ2 is the

noise variance. Other methods include the SURE procedure, cross validation, and Bayesian
approaches. See Percival and Walden [11] and Vidakovic [10] for details.

But despite the good properties of these procedures, which are spatially adaptive and
nearly optimum over wide classes of function spaces, they are not appropriate when the
design is not regular or it is random. Recently, several approaches were proposed dealing
with nonregular designs. Delouille [22] introduced the concept of design adapted wavelets,
and Kerkyacharian and Picard [23] introduced the warped wavelets. Cai and Brown [24, 25]
consider wavelet estimation for models with nonequispaced or random uniform designs,
and Sweldens [26] introduced the so-called lifting scheme; now the wavelets are no longer
obtained as dilations and translations of some mother wavelet. See also Jansen and Oonincx
[27]. Some applications and extensions of these approaches are given in Porto et al. [28, 29]
and Morettin and Chiann [30].

In this paper, we will use ordinary wavelets, as in Dahlhaus et al. [7], since these
wavelets work well for our purposes. See also a related discussion in Morettin and Chiann
[30]. Concerning the choice of the mother wavelet, there are no established rules. In our
experience, we agree with Nason and Sapatinas [1], when they say that “how the choice of of
wavelets affects the final model and its interpretation is an area of further research.” We will
make use in particular of the Daubechies compactly supported wavelets in the simulations
and application. Concerning thresholding, we use hard thresholds and the parameter λ
chosen as explained in Sections 4 and 5.

3. Estimators

The aim is to estimate the functions δi(u), i = 1, . . . , m, and ωi(u), i = 0, 1, . . . , n, appearing
in model (1.1), given T observations of the series Xt,T and Yt,T . We assume that the
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Figure 1: Example 5.1: (a) input series and (b) output series.

orders m and n are fixed and known. The idea is to expand these functions in wavelet
series

δi(u) = α
(δi)
00 φ(u) +

J−1∑

j=0

∑

k∈Ij
β
(δi)
jk
ψjk(u), i = 1, . . . , m,

ωi(u) = α
(ωi)
00 φ(u) +

J−1∑

j=0

∑

k∈Ij
β
(ωi)
jk ψjk(u), i = 0, . . . , n.

(3.1)

The empirical wavelet coefficients are obtained minimizing

T∑

t=v+1

⎛

⎝Yt,T −
m∑

i=1

δi(u)Yt−i,T −
n∑

j=0

ωj(u)Xt−j,T

⎞

⎠
2

, (3.2)

with δi(u) and ωi(u) replaced by (3.1), v = max(m,n). These empirical wavelet coefficients
are then modified using a hard threshold, and finally we build estimators of δi(u) and ωi(u)
by applying the inverse wavelet transform to these thresholded coefficients.
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Figure 2: Example 5.1: True parameters and estimates using the Daubechies D12 wavelet: (a) δ1, (b) δ2, (c)
ω0, (d) δ̂1, (e) δ̂2 (f) ω̂0, (g) δ̃1, (h) δ̃2 (i) ω̃0.

For ease of exposition, we restrict our attention from now on to the simple model with
m = 1 and n = 0, namely,

Yt,T = δ1
(
t

T

)
Yt−1,T +ω0

(
t

T

)
Xt,T + εt. (3.3)
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Figure 3: Example 5.1: Boxplots of the 5000 RMSE-values using estimators with the Daubechies D12
wavelet, for linear estimates (a) δ̂1(·), (c) δ̂2, (e) ŵ0(·)and nonlinear estimators (b) δ̃1(·), (d) δ̃2, (f) w̃0(·).

So we regress Yt,T onXt,T and Yt−1,T , using the expansion (3.1) for δ1(t/T) andω0(t/T).
Let Δ = 2J − 1. In matrix notation, we have

⎡
⎢⎢⎢⎣

Y2,T

Y3,T
...

YT,T

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ00

(
2
T

)
Y1,T ψ00

(
2
T

)
Y1,T · · · ψJ−1,Δ

(
2
T

)
Y1,T

φ00

(
3
T

)
Y2,T ψ00

(
3
T

)
Y2,T · · · ψJ−1,Δ

(
3
T

)
Y2,T

...
...

. . .
...

φ00

(
T

T

)
YT−1,T ψ00

(
T

T

)
YT−1,T · · · ψJ−1,Δ

(
T

T

)
YT−1,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

α
(δ1)
00

βδ100
...

β
(δ1)
J−1,Δ

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ00

(
2
T

)
X2,T ψ00

(
2
T

)
X2,T · · · ψJ−1,Δ

(
2
T

)
X2,T

φ00

(
3
T

)
X3,T ψ00

(
3
T

)
X3,T · · · ψJ−1,Δ

(
3
T

)
X3,T

...
...

. . .
...

φ00

(
T

T

)
XT,T ψ00

(
T

T

)
XT,T · · · ψJ−1,Δ

(
T

T

)
XT,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

α
(ω0)
00

β
(ω0)
00
...

β
(ω0)
J−1,Δ

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

ε2
ε3
...
εT

⎤
⎥⎥⎥⎦

(3.4)

or

Y =
[
ΦY Ψ(0)

Y Ψ(1)
Y · · · Ψ(J−1)

Y

]
β(δ1)

+
[
ΦX Ψ(0)

X Ψ(1)
X · · · Ψ(J−1)

X

]
β(ω0) + ε,

(3.5)
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Figure 4: Example 5.1: Bootstrap 95% confidence regions for linear estimators, (a), (c), and (e) and
nonlinear estimators, (b), (d), and (f), with true curves inside.

where

Y =
(
Y2,T Y3,T · · · YT,T

)′
,

β(δ1) =
(
α
(δ1)
00 β

(δ1)
00 β

(δ1)
10 β

(δ1)
11 · · · β(δ1)J−1,0 · · · β(δ1)J−1,Δ

)′
,

β(ω0) =
(
α
(ω0)
00 β

(ω0)
00 β

(ω0)
10 β

(ω0)
11 · · · β(ω0)

J−1,0 · · · β(ω0)
J−1,Δ
)′
,

ε =
(
ε2 ε3 · · · εT

)′
.

(3.6)
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Figure 5: Example 5.2: (a) input series and (b) output series.

The vector ΦY is given by

ΦY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ00

(
2
T

)
Y1,T

φ00

(
3
T

)
Y2,T

...

φ00

(
T

T

)
YT−1,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.7)

and the matrices Ψ(m)
Y are given, for 0 ≤ m ≤ J − 1, by

Ψ(m)
Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψm0

(
2
T

)
Y1,T ψm1

(
2
T

)
Y1,T · · · ψm,2m−1

(
2
T

)
Y1,T

ψm0

(
3
T

)
Y2,T ψm1

(
3
T

)
Y2,T · · · ψm,2m−1

(
3
T

)
Y2,T

...
...

. . .
...

ψm0

(
T

T

)
YT−1,T ψm1

(
T

T

)
YT−1,T · · · ψm,2m−1

(
T

T

)
YT−1,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.8)



10 Journal of Probability and Statistics

0 500 1000 1500 2000

0.5

0

−0.5

(a)

0 500 1000 1500 2000

5

0

−5

(b)

0 500 1000 1500 2000

0.5

0

−0.5

−1

(c)

0 500 1000 1500 2000

5

0

−5

(d)

0.5

0

−0.5

0 500 1000 1500 2000

(e)

0 500 1000 1500 2000

5

0

−5

(f)

Figure 6: Example 5.2: True parameters and estimates using the Daubechies D8 wavelet: (a) δ1, (b) ω0, (c)
δ̂1, (d) ω̂0, (e) δ̃1, (f) ω̃0.

The vector ΦX is given by

ΦX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ00

(
2
T

)
X2,T

φ00

(
3
T

)
X3,T

...

φ00

(
T

T

)
XT,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.9)
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Figure 7: Example 5.2: Boxplots of the 5000 RMSE-values using estimators with the Daubechies D8
wavelet, for linear estimates (a) δ̂1(·), (c) ŵ0(·), and nonlinear estimators (b) δ̃1(·), (d) w̃0(·).

and the matrices Ψ(m)
X are given, for 0 ≤ m ≤ J − 1, by

Ψ(m)
X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψm0

(
2
T

)
X2,T ψm1

(
2
T

)
X2,T · · · ψm,2m−1

(
2
T

)
X2,T

ψm0

(
3
T

)
X3,T ψm1

(
3
T

)
X3,T · · · ψm,2m−1

(
3
T

)
X3,T

...
...

. . .
...

ψm0

(
T

T

)
XT,T ψm1

(
T

T

)
XT,T · · · ψm,2m−1

(
T

T

)
XT,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

Let ΨX = [ΦX Ψ(0)
X · · · Ψ(J−1)

X ] and ΨY = [ΦY Ψ(0)
Y · · · Ψ(J−1)

Y ].
It follows easily that the least squares estimators of the coefficients are then given by

⎡

⎣
β̂
(δ1)

β̂
(ω0)

⎤

⎦ =

[
Ψ′
YΨY Ψ′

YΨX

Ψ′
XΨY Ψ′

YΨX

]−1[
Ψ′
YY

Ψ′
XY

]
. (3.11)

Having obtained the estimates given by (3.11), we plug them in (3.1), resulting in
linear estimates δ̂i(u) and ω̂i(u). Finally, nonlinear smoothed estimators δ̃i(u) and ω̃i(u),
respectively, are obtained applying some threshold to the empirical detail coefficients β̂(i)jk
and taking the inverse wavelet transform.
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Figure 8: Example 5.2: Bootstrap 95% confidence regions for linear estimators, (a) and (c), and nonlinear
estimators, (b) and (d), with true curves inside.

We might think of using other procedures, as the LASSO (least absolute shrinkage
and selection operator) procedure of Tibshirani [31] or the nonnegative garotte of Breiman
[32]. For the case of orthogonal design, LASSO has a relationship with the soft shrinkage
procedure of Donoho and coworkers. But using these procedures wouldmake the derivations
of the properties of the estimators above considerably more difficult, or even impossi-
ble.

4. Properties of Empirical Coefficients

Now we present some properties of the linear empirical wavelet coefficients. The techniques
used to prove the results are quite involved and are based on function space theory.
Basically we adapt the results of Dahlhaus et al. [7] for the transfer function model (1.1).
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Figure 9: Example 5.3: (a) input series and (b) output series.

The proofs may be obtained from the authors upon request or from the site of the jour-
nal.

We assume that functions ωi(u), i = 0, 1, . . . , n and δi(u), i = 1, . . . , m belong to some
function spaces Fi given by

Fi =

⎧
⎨

⎩fi = α
(i)
00φ +

∑

j,k

β
(i)
jk ψjk :

∥∥∥α(i)00
∥∥∥ ≤ Ci1,

∥∥∥β(i)..
∥∥∥
�,p,q

≤ Ci2

⎫
⎬

⎭, (4.1)

where

∥∥∥β(i)..
∥∥∥
�i,pi,qi

=

⎛
⎜⎝
∑

j≥0

⎡

⎣2jsipi
∑

k∈Ij

∣∣∣β(i)jk
∣∣∣
pi

⎤

⎦
qi/pi
⎞
⎟⎠

1/qi

, (4.2)
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Figure 10: Example 5.3: True parameters and estimates using the Haar wavelet: (a) δ1, (b) ω0, (c) δ̂1, (d)
ω̂0, (e) δ̃1, (f) ω̃0.

si = �i + 1/2 − 1/pi. Here, �i is the smoothness degree of each space, pi and qi (1 ≤ pi, qi ≤
∞) specify the norm, and Ci1 and Ci2 are positive constants. For these function spaces, the
following result is valid [19]:

sup
fi∈Fi

⎧
⎨

⎩
∑

j≥J

∑

k

∣∣∣β(i)jk
∣∣∣
2

⎫
⎬

⎭ = O
(
2−2Js̃i

)
, (4.3)

where s̃i = �i + 1/2 − 1/p̃i, with p̃i = min{pi, 2}.
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Figure 11: Example 5.3: Boxplots of the 5000 RMSE-values using estimators with the Haar wavelet, for
linear estimates (a) δ̂1(·), (c) ŵ0(·)and nonlinear estimators (b) δ̃1(·), (d) w̃0(·).

These classes contain Besov, Hölder, and L2-Sobolev spaces, see, for example,
Vidakovic [10], Dahlhaus et al. [7], and Triebel [33].

It can be shown, see Donoho et al. [19], that the loss incurred by truncating at level J
is of order T−2�i/(2�i+1) if we choose J such that 2J−1 ≤ T1/2 ≤ 2J . This is achieved if s̃i > 1.

Concerning the wavelets, we assume that φ and ψ are compactly supported on [0, 1]
and have continuous derivatives up to order r > l, with � = max �i. We denote the spectral
norm by ‖ · ‖2 and the sup norm by ‖ · ‖∞.

In order to analyze the statistical behavior of the estimated coefficients, it is convenient
to assume that we take expansions of these coefficients as linear combinations of functions
in the ṼJ spaces, generated by {φJ,1, φJ,2, . . . , φJ,2J}. With this basis, we can write (3.3)
as

Yt,T =
2J∑

i=1

ζ
(δ1)
J,i φJ,i

(
t

T

)
Yt−1,T +

2J∑

i=1

ζ
(ω0)
J,i φJ,i

(
t

T

)
Xt,T + γt,T , (4.4)

where

γt,T =
∑

j≥J

∑

k∈Ij
β
(δ1)
jk

ψjk

(
t

T

)
Yt−1,T +

∑

j≥J

∑

k∈Ij
β
(ω0)
jk

ψjk

(
t

T

)
Xt,T + εt. (4.5)

Equation (4.4) in matrix form becomes

Y =
[
ϕY

... ϕX

]
⎡
⎢⎣
ζ(δ1)

· · ·
ζ(ω0)

⎤
⎥⎦ + γ, (4.6)



16 Journal of Probability and Statistics

0 500 1000 1500 2000

0.5

0

−0.5

(a)

0 500 1000 1500 2000

0.6

0.4

0.2

0

−0.2

−0.4

(b)

0 500 1000 1500 2000

2

1

0

−1

−2

(c)

0 500 1000 1500 2000

2

1

0

−1

−2

(d)

Figure 12: Example 5.3: Bootstrap 95% confidence regions for linear estimators, (a) and (c), and nonlinear
estimators, (b) and (d), with true curves inside.

with

ϕY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φJ,1

(
2
T

)
Y1,T φJ,2

(
2
T

)
Y1,T · · · φJ,2J

(
2
T

)
Y1,T

φJ,1

(
3
T

)
Y2,T φJ,2

(
3
T

)
Y2,T · · · φJ,2J

(
3
T

)
Y2,T

...
...

. . .
...

φJ,1

(
T

T

)
YT−1,T φJ,2

(
T

T

)
YT−1,T · · · φJ,2J

(
T

T

)
YT−1,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ϕX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φJ,1

(
2
T

)
X2,T φJ,2

(
2
T

)
X2,T · · · φJ,2J

(
2
T

)
X2,T

φJ,1

(
3
T

)
X3,T φJ,2

(
3
T

)
X3,T · · · φJ,2J

(
3
T

)
X3,T

...
...

. . .
...

φJ,1

(
T

T

)
XT,T φJ,2

(
T

T

)
XT,T · · · φJ,2J

(
T

T

)
XT,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.7)



Journal of Probability and Statistics 17

0 20 40 60 80

20

15

10

5

0

W
in

d
 s

pe
ed

(m
/

s)

(a) Days since 00:00 on 6th April 1995

0 20 40 60 80

20

15

10

5

0

W
in

d
 s

pe
ed

(m
/

s)

(b) Days since 00:00 on 6th April 1995

Figure 13: Hourly wind speeds from 00:00 on 6th April 1995: (a) Aberporth (b) Valley.

In (4.6), ζ(δ1) and ζ(ω0) contain the coefficients in the expansion (4.4) and γ contains
lines given by (4.5).

Analogously to (3.11), we have the least squares estimates

⎡

⎣
ζ̂
(δ1)

ζ̂
(ω0)

⎤

⎦ =

[
ϕ′
YϕY ϕ′

YϕX

ϕ′
XϕY ϕ′

XϕX

]−1[
ϕ′
YY

ϕ′
XY

]
. (4.8)

The relationship between
(

β(δ1)

β(ω0)

)
and
(

ζ(δ1)

ζ(ω0)

)
is

(
β(δ1)

β(ω0)

)
= Γ

(
ζ(δ1)

ζ(ω0)

)
, (4.9)

where the Γ is a (2J+1×2J+1) block diagonal matrix. Thematrix Γ does the transformation (α̂(i)00 ,
β̂
(i)
00 , β̂

(i)
10 , β̂

(i)
11 , . . ., β̂

(i)
J−1,0, . . ., β̂

(i)
J−1,Δ)

′ = Γ(ζ̂(i)J,1, . . ., ζ̂
(i)
J,2J )

′; so each coefficient estimate β̂(i)
jk
, i = δ1, ω0

in (3.11) can be written as β̂(i)
jk

= Γ′
i,jk
ζ̂ and ‖Γδ1,j,k‖L2

= ‖Γω0,j,k‖L2
= 1.
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Figure 14: ModelM3: (a) δ̂1(u) (full line) and δ̃1(u) (dashed line), (b) δ̂2(u) (full line) and δ̃2(u) (dashed
line), (c) ω̂0(u) (full line) and ω̃0(u) (dashed line).

Equation (4.6) can be written in the form

Y = Υζ + γ, (4.10)

with Υ = [ϕY
...ϕX], ζ =

(
ζ(δ1)

ζ(ω0)

)
and the vector γ as defined above. The least squares estimator

of ζ is given by

ζ̂ =
(
Υ′Υ
)−1Υ′Y. (4.11)

We notice that the error term γ is not independent from the regressors Υ, which means
that the estimator is biased and its squared error is of order Op(2JT−1/2 + bias). But this
order can be improved, as shown below. To take care of the bias, we might use some robust
procedure, as in Martin et al. [34], for example.

From (4.10) and (4.11), we obtain

ζ̂ =
(
Υ′Υ
)−1Υ′(Υζ + γ

)
. (4.12)
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Figure 15: Model M3: Bootstrap 95% confidence regions for (a) δ1(u), (b) δ2(u), (c) ω0(u), using linear
estimates.

If we write γ = ε + S, we get

ζ̂ =
(
Υ′Υ
)−1Υ′(Υζ + ε + S), (4.13)

where the matrix S is an ((T − 1) × 1) matrix, given by

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑

j≥J

∑

k∈Ij
β
(δ1)
jk ψjk

(
2
T

)
Y1,T +

∑

j≥J

∑

k∈Ij
β
(ω0)
jk ψjk

(
2
T

)
X2,T

∑

j≥J

∑

k∈Ij
β
(δ1)
jk

ψjk

(
3
T

)
Y2,T +

∑

j≥J

∑

k∈Ij
β
(ω0)
jk

ψjk

(
3
T

)
X3,T

...

∑

j≥J

∑

k∈Ij
β
(δ1)
jk ψjk

(
T

T

)
YT−1,T +

∑

j≥J

∑

k∈Ij
β
(ω0)
jk ψjk

(
T

T

)
XT,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.14)
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Figure 16:ModelM3: Bootstrap 95% confidence regions for (a) δ1(u), (b) δ2(u), (c) ω0(u), using nonlinear
estimates.

We now state results on the squared error and mean squared error of the linear
empirical wavelet coefficients. The following assumptions are needed.

(A1) The wavelets φ and ψ are compactly supported on [0, 1] and have continuous
derivatives up to order r > l, with � = max �i.

(A2) In the estimation procedure, we have used first a linear estimator, truncating
the wavelet expansion at scale 2J . In order to get functions with the appropriate
smoothness, J was chosen such that s̃i > 1.

(A3) The matrix Υ in (4.10) satisfies E‖(Υ′Υ)−1‖2+δL2
= O(T−2−δ), for some δ > 0.

The Daubechies Extremal Phase waveletsD2N, for an appropriate choice ofN, satisfy
(A1). See Härdle et al. [35] for details. The number of continuous derivatives has a connection
with the number of null moments of ψ. Also, the support of ψ is contained in the interval
[−N + 1,N].
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Since βjk is the coefficient of the regressor ψjk, the squared error of the least squares

estimator is ‖β̂jk − βjk‖
2
= Op(T−1), which implies that the square error ‖δ̂(u) − δ(u)‖2 =

Op(2JT−1/2 + bias), for example. We can improve this rate as in the next result.

Proposition 4.1. Under Assumptions (A1)–(A3), we have that ‖ζ̂ − ζ‖2∞ = Op(2JT−1 log(T)).

This proposition allows us to derive the rate of convergence of the mean square error
of the original linear estimators of the wavelet coefficients.

Proposition 4.2. If Assumptions (A1)–(A3) hold, then E(β̂(i)
jk

− β(i)
jk
)
2
= O(T−1) holds uniformly in

i, k and j < J .

5. Some Simulations

We now present three simulation examples for the linear and nonlinear estimates δ̂i(·), ŵi(·)
and δ̃i(·), w̃i(·), respectively. In the first, the coefficients are very smooth functions, the second
presents an intermediary case, and, in the third, the functions are piecewise constants.

The performance of the estimators are assessed via the square root of themean squared
errors (RMSE), namely,

RMSE(δ)j =

{
1

T − v
T∑

t=v+1

[
δ̂j

(
t

T

)
− δj
(
t

T

)]2}1/2

,

RMSE(w)j =

{
1

T − v
T∑

t=v+1

[
ŵj

(
t

T

)
−wj

(
t

T

)]2}1/2

,

(5.1)

the same for the nonlinear estimators. Recall that v = max(m,n).
Concerning the choice of the wavelet, we have tried the Daubechies Extremal Phase

D8 and D12, the Daubechies Least Asymmetric S8 and S12 and the Haar wavalets. The best
results were obtained with the wavelet mentioned in each example. Of course, in a real
problem situation, this cannot be done, since we do not know the true function coefficients.
In our experience, the Haar and D8 wavelets have proven useful.

Other important issues are the choice of J , how to estimate σ2, the noise variance, and
the choice of the threshold parameter λ. Concerning J , we have used the rule specified in
Section 4, below (4.3), resulting J = 6 for all examples. The variance was estimated using the
empirical wavelet coefficients in all scales. Hard thresholding was used with the parameter λ

chosen as λ = σ̂
√
2 log(2J).

In all cases, the input time series was generated as an AR(2) model, Xt,T =
a1(t/T) X(t−1),T +a2(t/T)X(t−2),T + ςt, where ςt are independent, normally distributed random
variables, with zeromean and variance one, for t = 1, 2, . . . , T , and the coefficients are given by

a1(u) =

⎧
⎨

⎩
1.69, 0 < u ≤ 0.6,

−0.3, 0.6 < u ≤ 1,

a2(u) = −0.81 0 < u ≤ 1.

(5.2)
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Figure 17: Example 5.1: Histograms of linear estimate of δ1 at some points of [0,1].

Example 5.1. Letm = 2 and n = 0, so the transfer function model is

Yt,T = δ1
(
t

T

)
Yt−1,T + δ2

(
t

T

)
Yt−2,T +ω0

(
t

T

)
Xt,T + εt, t = 1, 2, . . . , T. (5.3)
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Figure 18: Example 5.1: Histograms of nonlinear estimate of δ1 at some points of [0, 1].

We choose ω0(u), δ1(u), and δ2(u) as ω0(u) = 0.9 cos(2πu + π), δ1(u) = −0.5 sin(2πu),
and δ2(u) = −0.4 cos(2πu + π/4).

For the simulation, we generated T = 2048 data values for Xt,T and Yt,T with 5000
replicates. For this example, the Daubechies D12 wavelet is employed for our estimation
procedure.
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Figure 19: Example 5.2: Histograms of linear estimate of δ1 at some points of [0, 1].

Figure 1 presents the input and output series, and Figure 2 presents the true and
estimated coefficients from a typical sample. The boxplots for the 5000 RMSE values are
presented in Figure 3. We see that both types of estimators perform well, but clearly the
nonlinear estimator perform, better, both visually and in RMSE sense.
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Figure 20: Example 5.2: Histograms of nonlinear estimate of δ1 at some points of [0, 1].

In Figure 4, we use bootstrap with B = 300 replications to see that the true transfer
function coefficients lie within the 95% confidence regions. See Section 6 for the description
of the bootstrap procedure.
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Figure 21: Example 5.3: Histograms of linear estimate of δ1 at some points of [0, 1].

In Figures 17 and 18 of the appendix, we show histograms for linear and nonlinear
estimators of the parameter δ1 at some points of the interval [0, 1]. Notice that the normal
approximation for the estimators is a possibility to be considered under the theoretical point
of view.
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Figure 22: Example 5.3: Histograms of nonlinear estimate of δ1 at some points of [0, 1].

Example 5.2. Letm = 1 and n = 0; so the transfer function model is

Yt,T = δ1
(
t

T

)
Yt−1,T +ω0

(
t

T

)
Xt,T + εt, t = 1, 2, . . . , T. (5.4)



28 Journal of Probability and Statistics

We chooseω0(u) and δ1(u) asω0(u) = 9 cos(2πu+π), u ∈ (0, 1]; δ1(u) = −0.8 cos(1.5−
cos(4πu + π)), for 0 < u ≤ 0.25 and 0.75 < u ≤ 1, and δ1(u) = −0.8 cos(3 − cos(4πu + π/2)),
for 0.25 < u ≤ 0.75.

As in the Example 5.1, we generated T = 2048 data values for Xt,T and Yt,T with 5000
replicates and the Daubechies Extremal Phase wavelet D8 is employed.

From a typical sample, the input and output series are shown in Figure 5 and the
estimated coefficients in Figure 6. The boxplots for the 5000 RMSE values are presented in
Figure 7. We see that, visually, both types of estimators perform well, but the thresholded
estimator is better for the smoother parameter ω0 in terms of RMSE. This is a well-known
fact, see, for example, Percival and Walden [11]. In Figure 8, we use bootstrap with B = 300
replications to see that the true transfer function coefficients lie within the 95% confidence
regions.

In Figures 6(c) and 6(e), we see some unwanted artifacts next to discontinuity points.
These do not disappear, even with expansions with many terms. But this Gibbs effect is
less severe than in Fourier expansions. See Vidakovic [10] and Percival and Walden [36] for
details.

In Figures 19 and 20 of the appendix, we show histograms for linear and nonlinear
estimators of the parameter δ1 at some points of the interval [0, 1].

Example 5.3. Let Letm = 1 and n = 0; so the transfer function model is as in Example 5.2.

We choose the coefficients ω0(u) and δ1(u) as piecewise constant functions: ω0(u) = 2,
for 0 < u ≤ 0.5 and ω0(u) = −2, for 0.5 < u ≤ 1; δ1(u) = 0.6, for 0 < u ≤ 0.25 or 0.50 < u ≤ 0.75,
and δ1(u) = −0.5, for 0.25 < u ≤ 0.5 or 0.75 < u ≤ 1.

We simulated T = 2048 data values for Xt,T and Yt,T with 5000 replicates, and, due to
the nature of the functions, the Haar wavelet is appropriate in this situation.

Figure 9 presents the input and output series, and Figure 10 presents the true and
estimated coefficients from a typical sample. The boxplots for the 5000 RMSE values are
presented in Figure 11. We see that both types of estimators perform well, but clearly the
nonlinear estimator perform better, both visually and in RMSE sense.

In Figure 12, we use bootstrap with B = 300 replications to see that the true transfer
function coefficients lie within the 95% confidence regions.

In Figures 21 and 22 of the appendix, we present histograms for linear and nonlinear
estimators of δ1 at some points of the interval [0, 1].

6. An Application

The data that we analyze are hourly wind speeds recorded from 00:00 on 6th April 1995
at two Welsh Meteorological Office stations: Valley and Aberporth, with 2048 observations.
Valley is located approximately 120 km north of Aberporth, and they are mostly separated
by Cardigan Bay. Part of these data were analysed by Nason and Sapatinas [1]. Figure 13
shows the data we analyze. We are grateful to N&M Wind Power for providing the
data.

In this application, our aim is to model Valley’s wind speeds, {Yt,T}, in terms of its
lagged values and present and lagged values of wind speeds at Aberporth, {Xt,T}. We should
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remember that both series are not stationary and so classical methods should not be used. We
fitted four potential models, namely,

M1 : yt,T = δ1
(
t

T

)
yt−1,T +ω0

(
t

T

)
xt,T + εt,

M2 : yt,T = δ1
(
t

T

)
yt−1,T +ω0

(
t

T

)
xt,T +ω1

(
t

T

)
xt−1,T + εt,

M3 : yt,T = δ1
(
t

T

)
yt−1,T + δ2

(
t

T

)
yt−2,T +ω0

(
t

T

)
xt,T + εt,

M4 : yt,T = δ1
(
t

T

)
yt−1,T + δ2

(
t

T

)
yt−2,T +ω0

(
t

T

)
xt,T +ω1

(
t

T

)
xt−1,T + εt.

(6.1)

The Daubechies Extremal Phase D8 wavelet was used in the computations. The model
M4 was marginally superior (in terms of RMSE) to model M3, so it was discarded. The
mean residual sums of squares for M1, M2, and M3 are 0.02258, 0.02186, and 0.02177,
respectively, for linear estimation. For nonlinear estimation, the figures are 0.02391, 0.02359,
and 0.02178, respectively. The final coefficient estimates for model M3 are shown in
Figure 14.

ForModelM3, Figures 15 and 16 show the 95% confidence regions based on bootstrap,
using linear and nonlinear estimates, respectively.

The bootstrap procedure works as follows:

(a) using the real series, we obtain the estimated transfer function coefficients;

(b) we obtain the fitted series Yt,T using these estimated coefficients;

(c) we obtain the residuals from the fitted model;

(d) we resample these residuals and obtain bootstrap samples of the Yt,T series;

(e) we obtain bootstrap estimators of the transfer function coefficients.

We used B = 300 bootstrap replications of δ̂1, δ̂2, ω̂0, and δ̃1, δ̃2, ω̃0, to obtain bootstrap
standard errors and the 95% confidence regions. We also fitted the model M3 with constant
coefficients given anMSE value of 0.02354, indicating that themodel with varying coefficients
is better. We see that is not possible to plot constant lines totally within these regions, showing
that, in fact, the coefficients are time varying.

7. Further Remarks

In this paper, we have proposed an estimation procedure for a transfer function model with
time-varying coefficients. Basically it is a least squares procedure, with the use of wavelets
to expand the function coefficients. Firstly, linear estimators for the time-varying coefficients
are obtained, truncating the wavelet expansion at an appropriate scale. Then thresholds are
applied to the empirical wavelet coefficients, and inverse wavelet transformation gives the
nonlinear smoothed estimators for the function coefficients.

Simulations have shown that this procedure leads to estimators with a good
performance. Some statistical properties for the empirical wavelet coefficients in the case of
linear estimators were presented.
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Further studies are needed on the estimation of the variance and asymptotic normality
of the empirical wavelet coefficients in the linear case, on the rate of convergence for the
risk of the nonlinear estimator over the smoothness classes Fi and on issues related to the
identification, diagnostics, and forecasting for these nonstationary models.

The issue of forecasting was discussed in the literature for some special and related
models. Fryzlewicz et al. [37] addressed the problem of how to forecast locally stationary
wavelet processes in the sense of Nason et al. [4] by means of nondecimated wavelets. Van
Bellegem and von Sachs [38] consider a special modulated locally stationary process, where
a stationary process is modulated by a time-varying variance, so the problem reduces to
forecast this variance.

Concerning asymptotic distribution of the empirical wavelet estimators, in the linear
case, we believe that this can be obtained under further assumptions, namely on the
cumulants of the εt, on the thresholds used and on the roots of the polynomials associated
with the model (1.1). This will be the subject of further research.

Appendix

For more details, see Figures 17, 18, 19, 20, 21, and 22.
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[35] W. Härdle, G. Kerkyacharian, D. Picard, and A. Tsybakov, Wavelets, Approximation, and Statistical

Applications, vol. 129 of Lecture Notes in Statistics, Springer, New York, NY, USA, 1998.
[36] D. B. Percival and A. T.Walden, Spectral Analysis for Physical Applications, Cambridge University Press,

Cambridge, UK, 1993.
[37] P. Fryzlewicz, S. Van Bellegem, and R. von Sachs, “Forecasting non-stationary time series by wavelet

process modelling,” Annals of the Institute of Statistical Mathematics, vol. 55, no. 4, pp. 737–764, 2003.
[38] S. Van Bellegem and R. von Sachs, “Forecasting economic time series with unconditional time-varying

variance,” International Journal of Forecasting, vol. 20, no. 4, pp. 611–627, 2004.


