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THE IMPLICIT FUNCTION THEOREM FOR

MAPS THAT ARE ONLY DIFFERENTIABLE:

AN ELEMENTARY PROOF

Oswaldo Rio Branco de Oliveira

Abstract

This article shows a very elementary and straightforward proof of the
Implicit Function Theorem for differentiable maps F (x, y) defined on a
finite-dimensional Euclidean space. There are no hypotheses on the con-
tinuity of the partial derivatives of F . The proof employs determinants
theory, the mean-value theorem, the intermediate-value theorem, and Dar-
boux’s property (the intermediate-value property for derivatives). The
proof avoids compactness arguments, fixed-point theorems, and integra-
tion theory. A stronger than the classical version of the Inverse Function
Theorem is also shown. An example is given.

Mathematics Subject Classification: 26B10, 26B12

Key words and phrases: Implicit Function Theorems, Jacobians, Transforma-
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1 Introduction.

The aim of this article is to present a very elementary and straightforward
proof of a version of the Implicit Function Theorem that is fairly stronger than
the classical version. We prove the implicit function theorem for differentiable
maps F (x, y), defined on a finite-dimensional Euclidean space, assuming that
all the leading principal minors of the partial Jacobian matrix ∂F

∂y
(x, y) are

nowhere vanishing (these hypothesis are already enough to show the existence of
an implicit solution) plus an additional non-degeneracy condition on the matrix
∂F
∂y

to ensure the uniqueness of the implicit solution. There are no hypotheses
on the continuity of the partial derivatives of the map F .

The results in this article extend de Oliveira [1] and [2]. In de Oliveira [1]
are proven the classical versions (enunciated for maps of class C1 on an open
set) of the implicit and inverse function theorems. In de Oliveira [2] is proven
the implicit function theorem for maps F (x, y) such that the partial Jacobian
matrix ∂F

∂y
(x, y) is only continuous at the base point.
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The proof of the implicit function theorem shown in this article follows
Dini’s inductive approach (see [3]). Moreover, the proofs of the implicit and the
inverse function theorems that we present avoid compactness arguments (i.e.,
Weierstrass’s theorem on maxima), fixed-point theorems (e.g., Banach’s fixed
point theorem and Brouwer’s fixed-point theorem), and Lebesgue’s theories of
measure and integration. Instead of such tools, we give elementary proofs that
are based on the intermediate-value and the mean-value theorems, both on the
real line, the intermediate-value property for derivatives on R (also known as
Darboux’s property), and determinants theory.

As a corollary of the implicit function theorem shown in this article we obtain
a version of the inverse function theorem that is stronger than the classical one
proven in most textbooks. An example is given.

Some remarks are appropriate regarding proofs of the classical implicit and
inverse function theorems. Most of these proofs start by showing the inverse
function theorem and then derive the implicit function theorem as a trivial
consequence. In general, these proofs employ either a compactness argument or
the contraction mapping principle (Banach’s fixed point theorem), see Krantz
and Parks [5, pp. 41–52] and Rudin [6, pp 221–228]. On the other hand, proofs
of the classical implicit and inverse function theorems that do not use either of
these two tools can be seen in de Oliveira [1].

Taking into account maps that are everywhere differentiable (their differen-
tials may be everywhere discontinuous), a proof of the implicit function theorem
can be found in Hurwicz and Richter [4], whereas a proof of the inverse function
theorem can be seen in Saint Raymond [7]. While these two results are quite
general, they also have proofs that are quite technical and not that easy to fol-
low. The first of these proofs employs Brouwer’s fixed-point theorem while the
second relies on Lebesgue’s theories of measure and integration.

Henceforth, we shall freely assume that all the functions are defined on a
subset of a finite-dimensional Euclidean space.

2 Notations and Preliminaries.

Apart from the intermediate-value and the mean-value theorems, both on
the real line, we assume the intermediate-value theorem for derivatives on R

(also called Darboux’s property) stated right below.

Lemma 1 (Darboux’s Property). Given f : [a, b] → R differentiable, the
image of the derivative function is an interval.

Given a n × n real matrix A, we denote its determinant by detA. The
determinant of the sub-matrix of A obtained by deleting the last n−k rows and
the last n− k columns of A is the kth order leading principal minor of A.
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Given a nonempty subset X of Rn and a nonempty subset Y of Rm, it is
well-known that the cartesian product X × Y = {(x, y) : x ∈ X and y ∈ Y } is
open in R

n × R
m if and only if X and Y are open sets.

Let us consider n and m, both in N, and fix the canonical bases {e1, . . . , en}
and {f1, . . . , fm}, of R

n and R
m, respectively. Given x = (x1, . . . , xn) and

y = (y1, . . . , yn), both in R
n, we have the inner product 〈x, y〉 = x1y1+· · ·+xnyn

and the norm |x| =
√

〈x, x〉. We denote the open ball centered at a point x in
R

n, with radius r > 0, by B(x; r) = {y in R
n : |y − x| < r}.

We identify a linear map T : Rn → R
m with the m × n matrix M = (aij),

where T (ej) = a1jf1 + · · ·+ amjfm for each j = 1, . . . , n. We also write Tv for
T (v), where v ∈ R

n.

In this section, Ω denotes a nonempty open subset of Rn, where n ≥ 1. Given
a map F : Ω → R

m and a point p in Ω, we write F (p) =
(

F1(p), . . . , Fm(p)
)

.
Let us suppose that F is differentiable at p. The Jacobian matrix of F at p is

JF (p) =

(

∂Fi

∂xj
(p)

)

1≤i≤m
1≤j≤n

=







∂F1

∂x1
(p) · · · ∂F1

∂xn
(p)

...
...

∂Fm

∂x1
(p) · · · ∂Fm

∂xn
(p)






.

If F is a real function, then we have JF (p) = ∇F (p), the gradient of F at p.

Given p and q, both in R
n, we denote the linear segment with endpoints

p and q by pq = {p + t(q − p) : 0 ≤ t ≤ 1}. The following result is a trivial
corollary of the mean-value theorem on the real line and thus we omit the proof.

Lemma 2 (The mean-value theorem in several variables). Let us con-
sider a differentiable real function F : Ω → R, with Ω open in R

n. Let p and q
be points in Ω such that the segment pq is within Ω. Then, there exists c in pq,
with c 6= p and c 6= q, that satisfies

F (p)− F (q) = 〈∇F (c), p− q〉 .
Given a real function F : Ω → R, a short computation shows that the follow-

ing definition of differentiability is equivalent to that which is most commonly
employed. We say that F is differentiable at p in Ω if there are an open ball
B(p; r) within Ω, where r > 0, a vector v in R

n, and a vector-valued map
E : B(0; r) → R

n satisfying
{

F (p+ h) = F (p) + 〈v, h〉+ 〈E(h), h〉 , for all h ∈ B(0; r),
where E(0) = 0 and E(h) → 0 as h→ 0.

3 Example and Motivation.

Right below we give an example of a function F : R2 → R
2 so that















F is differentiable everywhere,
the Jacobian matrix JF is not continuous at the origin,
the leading principal minors of JF do not vanish near the origin,
F is invertible near the origin (proven in the last section).
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Example. Let us consider the function

F (x, y) =

{ (

8x+ x3 cos 1
x2+y2 , 8y + y3 sin 1

x2+y2

)

outside the origin

(0, 0) at the origin.

The Jacobian matrix of F outside the origin is given by







8 + 3x2 cos 1
x2+y2 + 2x4

(x2+y2)2 sin
1

x2+y2

2x3y
(x2+y2)2 sin

1
x2+y2

− 2xy3

(x2+y2)2 cos
1

x2+y2 8 + 3y2 sin 1
x2+y2 − 2y4

(x2+y2)2 cos
1

x2+y2






.

On the other hand, a short computation shows that

JF (0, 0) =

(

8 0
0 8

)

.

Let us show that F is differentiable at the origin (and thus over the plane).
Let T be the linear map associated to the matrix JF (0, 0). Given a non-null
vector v = (h, k) in the plane we have

F (v)− F (0)− Tv

|v| =

(

8h+ h3 cos 1
h2+k2 , 8k + k3 sin 1

h2+k2

)

− (8h, 8k)
√
h2 + k2

=

(

h3 cos 1
h2+k2 , k

3 sin 1
h2+k2

)

√
h2 + k2

(h,k)→(0,0)−−−−−−−→ (0, 0).

Thus, F is differentiable at the origin.
We claim that the four entries of JF (x, y) are discontinuous at the origin.

For instance, let us look the first entry, which has three terms. The first two
terms are continuous at the origin. However, the third term is not. In fact, by
employing polar coordinates and writing (x, y) = (r cos θ, r sin θ) we find

x4

(x2 + y2)2
sin

1

x2 + y2
= (cos4 θ) sin

1

r2
.

Thus, the Jacobian matrix JF is not continuous at the origin.
At last, let us fix (x, y) with x2 + y2 ≤ 1. There exist a, b, c, d, e and f , all

in [−1, 1], such that the two principal minors of JF (x, y) respectively satisfy

|8+3a+2b| ≥ 3 and | detJF (x, y)| = |
∣

∣

∣

∣

8 + 3a+ 2b 2c
2d 8 + 3e+ 2f

∣

∣

∣

∣

| ≥ 32−22.

So, the principal minors of JF do not vanish in the unit disc centered at (0, 0).
In the last section we prove that F is invertible on a neighborhood of (0, 0).
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4 The Implicit Function Theorem.

The first implicit function result we prove concerns one equation, several real
variables and a differentiable real function. In its proof, we denote the variable
in R

n+1 = R
n × R by (x, y), where x = (x1, . . . , xn) is in R

n and y is in R.

In the next theorem, Ω denotes a nonempty open set within R
n × R.

Theorem 1 Let F : Ω → R be differentiable, with ∂F
∂y

nowhere vanishing, and

(a, b) a point in Ω such that F (a, b) = 0. Then, there exists an open set X × Y ,
within Ω and containing the point (a, b), that satisfies the following.

• There exists a unique function g : X → Y that satisfies F
(

x, g(x)
)

= 0,
for all x in X.

• We have g(a) = b. The function g : X → Y is differentiable and satisfies

∂g

∂xj
(x) = −

∂F
∂xj

(x, g(x))

∂F
∂y

(x, g(x))
, for all x in X, where j = 1, . . . , n.

Moreover, if ∇F (x, y) is continuous at (a, b) then ∇g(x) is continuous at x = a.

Proof. By considering the function F (x+ a, y
c
+ b), with c = ∂F

∂y
(a, b), we may

assume that (a, b) = (0, 0) and ∂F
∂y

(0, 0) = 1. Next, we split the proof into three
parts: existence and uniqueness, continuity at the origin, and differentiability.

⋄ Existence and Uniqueness. Let us choose a non-degenerate (n+1)-dimensional
parallelepiped X × [−r, r], centered at (0, 0) and within Ω, whose edges
are parallel to the coordinate axes and X is open. Then, the function
ϕ(y) = F (0, y), where y runs over [−r, r], is differentiable with ϕ′ nowhere
vanishing and ϕ′(0) = 1. Thus, by Darboux’s property we have ϕ′ > 0
everywhere and we conclude that ϕ is strictly increasing. Hence, by the
continuity of F and shrinking X (if necessary) we may assume that F
is strictly negative at the bottom of the parallelepiped and F is strictly
positive at the top of the parallelepiped. That is,

F
∣

∣

∣

X×{−r}
< 0 and F

∣

∣

∣

X×{r}
> 0.

As a consequence, having fixed an arbitrary x in X , the function

ψ(y) = F (x, y), where y ∈ [−r, r],

satisfies ψ(−r) < 0 < ψ(r). Hence, by the mean-value theorem there exists
a point η in the open interval Y = (−r, r) such that ψ′(η) = ∂F

∂y
(x, η) > 0.

Therefore, by Darboux’s property we have ψ′(y) > 0 at every y in Y .
Thus, ψ is strictly increasing and the intermediate-value theorem yields
the existence of a unique y, we then write y = g(x), in the open interval
Y such that F (x, g(x)) = 0.
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⋄ Continuity at the origin. Let δ satisfy 0 < δ < r. From above, there exists
an open set X , contained in X and containing 0, such that g(x) is in the
interval (−δ, δ), for all x in X . Thus, g is continuous at x = 0.

⋄ Differentiability. From the differentiability of the real function F at (0, 0),
and writing ∇F (0, 0) = (v, 1) ∈ R

n × R for the gradient of F at (0, 0), it
follows that there are functions E1 : Ω → R

n and E2 : Ω → R satisfying










F (h, k) = 〈v, h〉+ k + 〈E1(h, k), h〉+ E2(h, k)k,

where lim
(h,k)→(0,0)

Ej(h, k) = 0 = Ej(0, 0), for j = 1, 2.

Hence, substituting [we already proved that g(h)
h→0−−−→ g(0) = 0]

{

k = g(h),
Ej

(

h, g(h)
)

= ǫj(h), with lim
h→0

ǫj(h) = ǫj(0) = 0 for j = 1, 2,

and noticing that we have F
(

h, g(h)
)

= 0, for all possible h, we obtain

〈v, h〉+ g(h) + 〈ǫ1(h), h〉+ ǫ2(h)g(h) = 0.

Thus,
[1 + ǫ2(h)]g(h) = −〈v, h〉 − 〈ǫ1(h), h〉 .

If |h| is small enough, then we have 1 + ǫ2(h) 6= 0 and we may write

g(h) = 〈−v, h〉+ 〈ǫ3(h), h〉 ,
where

ǫ3(h) =
ǫ2(h)

1 + ǫ2(h)
v − ǫ1(h)

1 + ǫ2(h)
and lim

h→0
ǫ3(h) = 0.

Therefore, g is differentiable at 0 and ∇g(0) = −v.
Now, given any a′ in X , we put b′ = g(a′). Then, g : X → Y solves the
problem F

(

x, h(x)
)

= 0, for all x in X , with the condition h(a′) = b′.
From what we have just done it follows that g is differentiable at a′.

�

Next, we prove the implicit function theorem for a finite number of equations.
Some notations are appropriate. We denote the variable in R

n × R
m = R

n+m

by (x, y), where x = (x1, . . . , xn) is in R
n and y = (y1, . . . , ym) is in R

m. Given
Ω an open subset of Rn × R

m and a differentiable map F : Ω → R
m we write

F = (F1, . . . , Fm), with Fi the ith component of F and i = 1, . . . ,m, and

∂F

∂y
=

(

∂Fi

∂yj

)

1≤i≤m
1≤j≤m

=







∂F1

∂y1

· · · ∂F1

∂ym

...
...

∂Fm

∂y1

· · · ∂Fm

∂ym






.

Analogously, we define the matrix ∂F
∂x

=
(

∂Fi

∂xk

)

, where 1 ≤ i ≤ m and 1 ≤ k ≤ n.

6



Theorem 2 (The Implicit Function Theorem). Let F : Ω → R
m be dif-

ferentiable, with Ω a non-degenerate open ball within R
n × R

m and centered at
(a, b). Let us suppose that F (a, b) = 0 and that all the leading principal minors
of the matrix ∂F

∂y
are nowhere vanishing. The following are true.

• There exists an open set X × Y , within Ω and containing (a, b), and a
differentiable function g : X → Y that satisfies

F
(

x, g(x)
)

= 0, for all x ∈ X, and g(a) = b.

• We have

Jg(x) = −
[

∂F

∂y
(x, g(x))

]−1

m×m

[

∂F

∂x
(x, g(x))

]

m×n

, for all x in X.

Let us suppose that we also have det
(

∂Fi

∂yj
(ξij)

)

1≤i,j≤m
6= 0, for all ξij in Ω and

1 ≤ i, j ≤ m. Then, the following is true.

• If h : X → Y satisfies F
(

x, h(x)
)

= 0 for all x in X, then we have h = g.

Proof. Let us split the proof into three parts: existence and differentiability,
differentiation formula, and uniqueness.

⋄ Existence and differentiability. We claim that the system


















F1(x, y1, . . . , ym) = 0,
F2(x, y1, . . . , ym) = 0,

...
Fm(x, y1, . . . , ym) = 0,

with the conditions



















y1(a) = b1
y2(a) = b2

...
ym(a) = bm,

has a differentiable solution g(x) =
(

g1(x), . . . , gm(x)
)

on some open set

X containing a [i.e., we have F
(

x, g(x)
)

= 0 for all x in X and g(a) = b].

Let us employ induction on m. The case m = 1 follows immediately from
Theorem 1.

Assuming that the claim holds for m− 1, let us examine the case m.

Then, given a pair (x, y) = (x, y1, . . . , ym) we introduce the helpful nota-
tions y′ = (y2, . . . , ym), y = (y1, y

′), and (x, y) = (x, y1, y
′).

As a first step, we consider the equation

F1(x, y1, y
′) = 0, with the condition y1(a, b

′) = b1,

where x and y′ are independent variables and y1 is the dependent one.
Since ∂F1

∂y1
(x, y1, y

′) is nowhere vanishing, by Theorem 1 it follows that

there exists a differentiable function ϕ(x, y′) on some open set [let us say,
X × Y ′] containing (a, b′) that satisfies

F1[x, ϕ(x, y
′), y′] = 0 (on X × Y ′) and the condition ϕ(a, b′) = b1.

7



From Theorem 1 we see that ϕ(x, y′) also satisfies the m− 1 equations

− ∂ϕ

∂yj
(x, y′) =

∂F1

∂yj
[x, ϕ(x, y′), y′]

∂F1

∂y1
[x, ϕ(x, y′), y′]

, for all j = 2, . . . ,m. (1)

As a second step, we look at solving the system with m− 1 equations










F2[x, ϕ(x, y
′), y′] = 0

...
Fm[x, ϕ(x, y′), y′] = 0

, with the condition y′(a) = b′.

Here, x is the independent variable while y′ is the dependent variable.
Let us define Fi(x, y

′) = Fi[x, ϕ(x, y
′), y′], with i = 2, . . . ,m, and write

F = (F2, . . . ,Fm). Evidently, the map F is differentiable. In order to
employ the induction hypothesis, let us show that all the leading principal
minors of the partial Jacobian matrix ∂F

∂y′
are nowhere vanishing.

Thus, let us consider the leading principal minor (a general one)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂F2

∂y1

∂ϕ
∂y2

+ ∂F2

∂y2

∂F2

∂y1

∂ϕ
∂y3

+ ∂F2

∂y3
· · · ∂F2

∂y1

∂ϕ
∂yk

+ ∂F2

∂yk

∂F3

∂y1

∂ϕ
∂y2

+ ∂F3

∂y2

∂F3

∂y1

∂ϕ
∂y3

+ ∂F3

∂y3
· · · ∂F3

∂y1

∂ϕ
∂yk

+ ∂F3

∂yk

...
...

...
∂Fk

∂y1

∂ϕ
∂y2

+ ∂Fk

∂y2

∂Fk

∂y1

∂ϕ
∂y3

+ ∂Fk

∂y3
· · · ∂Fk

∂y1

∂ϕ
∂yk

+ ∂Fk

∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Developing this determinant by the columns and then canceling the ev-
erywhere vanishing determinants we arrive at (a sum of k determinants)

det

(

∂Fi

∂yj

)

2≤i,j≤k

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂F2

∂y2

∂F2

∂y3

· · · ∂F2

∂yk

∂F3

∂y2

∂F3

∂y3

· · · ∂F3

∂yk

...
...

...
∂Fk

∂y2

∂Fk

∂y3

· · · ∂Fk

∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂F2

∂y1

∂ϕ
∂y2

∂F2

∂y3

· · · ∂F2

∂yk

∂F3

∂y1

∂ϕ
∂y2

∂F3

∂y3

· · · ∂F3

∂yk

...
...

...
∂Fk

∂y1

∂ϕ
∂y2

∂Fk

∂y3
· · · ∂Fk

∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂F2

∂y2

∂F2

∂y1

∂ϕ
∂y3

∂F2

∂y4

· · · ∂F2

∂yk

∂F3

∂y2

∂F3

∂y1

∂ϕ
∂y3

∂F3

∂y4

· · · ∂F3

∂yk

...
...

...
...

∂Fk

∂y2

∂Fk

∂y1

∂ϕ
∂y3

∂Fk

∂y4
· · · ∂Fk

∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂F2

∂y2

· · · ∂F2

∂yk−1

∂F2

∂y1

∂ϕ
∂yk

∂F3

∂y2
· · · ∂F3

∂yk−1

∂F3

∂y1

∂ϕ
∂yk

...
...

...
∂Fk

∂y2

· · · ∂Fk

∂yk−1

∂Fk

∂y1

∂ϕ
∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Thus, we obtain (keeping track of ∂ϕ
∂yj

for j even and also for j odd)

det

(

∂Fi

∂yj

)

2≤i,j≤k

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − ∂ϕ
∂y2

− ∂ϕ
∂y3

· · · − ∂ϕ
∂yk

∂F2

∂y1

∂F2

∂y2

∂F2

∂y3
· · · ∂F2

∂yk

∂F3

∂y1

∂F3

∂y2

∂F3

∂y3
· · · ∂F3

∂yk

...
...

...
...

∂Fk

∂y1

∂Fk

∂y2

∂Fk

∂y3

· · · ∂Fk

∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The already remarked identity − ∂ϕ
∂yj

= ∂F1

∂yj
/∂F1

∂y1

[see formula (1)] leads to

det

(

∂Fi

∂yj

)

2≤i,j≤k

=
1

∂F1

∂y1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂F1

∂y1

∂F1

∂y2

∂F1

∂y3
· · · ∂F1

∂yk

∂F2

∂y1

∂F2

∂y2

∂F2

∂y3
· · · ∂F2

∂yk

∂F3

∂y1

∂F3

∂y2

∂F3

∂y3
· · · ∂F3

∂yk

...
...

...
...

∂Fk

∂y1

∂Fk

∂y2

∂Fk

∂y3

· · · ∂Fk

∂yk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Hence, all the leading principal minors of ∂F
∂y′

are nowhere vanishing.

Thus, by induction hypothesis there exists a differentiable function ψ de-
fined on an open set X containing a [with ψ(X) within Y ′] that satisfies

{

Fi[x, ϕ
(

x, ψ(x)
)

, ψ(x)
]

= 0, for all x in X, for all i = 2, . . . ,m,
and the condition ψ(a) = b′.

Clearly, we also have F1

[

x, ϕ
(

x, ψ(x)
)

, ψ(x)
]

= 0, for all x in X . Defining

g(x) =
(

ϕ(x, ψ(x)), ψ(x)
)

, where x ∈ X,

we obtain F [x, g(x)] = 0, for every x in X , with g differentiable on X , and
also the identity g(a) =

(

ϕ(a, b′), b′
)

= (b1, b
′) = b.

⋄ Differentiation formula. Differentiating F [x, g(x)] = 0 we find

∂Fi

∂xk
+

m
∑

j=1

∂Fi

∂yj

∂gj
∂xk

= 0, with 1 ≤ i ≤ m and 1 ≤ k ≤ n.

In matricial form, we write ∂F
∂x

(

x, g(x)
)

+ ∂F
∂y

(

x, g(x)
)

Jg(x) = 0.

⋄ Uniqueness. If h : X → Y and x in X satisfy F (x, h(x)) = 0, by Lemma
2 (the mean-value theorem in several variables) there exist c1, . . . , cm, all
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in the open ball Ω (a convex set), satisfying

0 = F
(

x, h(x)
)

− F
(

x, g(x)
)

=







∂F1

∂y1

(c1) · · · ∂F1

∂ym
(c1)

...
...

∂Fm

∂y1
(cm) · · · ∂Fm

∂ym
(cm)













h1(x)− g1(x)
...

hm(x)− gm(x)






.

From the hypothesis we have det
(

∂Fi

∂yj
(ci)

)

6= 0. Thus, h(x) = g(x).

�

5 The Inverse Function Theorem.

Theorem 3 (The Inverse Function Theorem). Let F : Ω → R
n be differ-

entiable, with Ω a non-degenerate open ball within R
n and centered at x0. Let us

suppose that all the leading principal minors of JF (x) are nowhere vanishing.
We also suppose det

(

∂Fi

∂xj
(ξij)

)

1≤i,j≤n
6= 0 for all ξij ∈ Ω, where i, j = 1, . . . , n.

Under such conditions, there exist an open set X containing x0, an open set Y
containing y0 = F (x0), and a differentiable G : Y → X satisfying

F
(

G(y)
)

= y, for all y ∈ Y, and G
(

F (x)
)

= x, for all x ∈ X.

In addition,

JG(y) = JF
(

G(y)
)−1

, for all y in Y.

Proof. Let us split it into two parts: injectivity of F and existence of G.

⋄ Injectivity of F . Let us suppose F (p) = F (q), with p in Ω and q in Ω. By
employing Lemma 2 we obtain c1, . . . , cn, all in the ball Ω, such that

0 = F (p)− F (q) =







∂F1

∂x1

(c1) · · · ∂F1

∂xn
(c1)

...
...

∂Fn

∂x1

(cn) · · · ∂Fn

∂xn
(cn)













p1 − q1
...

pn − qn






.

The hypotheses imply det
(

∂Fi

∂xj
(ci)

)

6= 0. Thus, p = q.

⋄ Existence of G. The map

Φ(y, x) = F (x)− y, where (y, x) ∈ R
n × Ω,

is differentiable and Φ(y0, x0) = 0. From the hypotheses it follows that all
the leading principal minors of ∂Φ

∂x
(y, x) = JF (x) are nowhere vanishing

in R
n × Ω and

det

(

∂Φ

∂x
(ηij , ξij)

)

= det

(

∂F

∂x
(ξij)

)

6= 0,
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for all (ηij , ξij) ∈ R
n × Ω. The Implicit Function Theorem guarantees an

open set Y containing y0 and a differentiable map G : Y → Ω satisfying

F
(

G(y)
)

= y, for all y in Y.

Thus, G is bijective from Y to X = G(Y ) and F is bijective from X to
Y . We also have X = F−1(Y ). Since F is continuous, the set X is open
(and contains x0).

Putting F (x) =
(

F1(x), . . . , Fn(x)
)

and G(y) =
(

G1(y), . . . , Gn(y)
)

and

differentiating
(

F1(G(y)), . . . , Fn(G(y))
)

we find

n
∑

k=1

∂Fi

∂xk

∂Gk

∂yj
=
∂yi
∂yj

=

{

1, if i = j,
0, if i 6= j.

�

Remark 1 Is is clear that the function in section 3 (Example and Motivation)
satisfy the conditions of the above inverse function theorem and is thus invert-
ible, with differentiable inverse function, on a neighborhood of the origin.

Remark 2 It is not difficult to see that Theorem 2 implies the implicit function
theorem for a differentiable function F : Ω ⊂ R

n × R
m → R

m, with F (a, b) = 0
and Ω an open set, whose partial Jacobian matrix ∂F

∂y
(x, y) is continuous at the

base point (a, b) and det ∂F
∂y

(a, b) 6= 0. In fact, by a linear change of coordinates

in the y variable, we may assume ∂F
∂y

(a, b) = I, with I the m×m identity matrix.

Thus, on some open neighborhood of (a, b), we have det
(

∂Fi

∂yj
(ξij)

)

1≤i,j≤k
6= 0

for all ξij in this neighborhood, where 1 ≤ i, j ≤ k, for each k = 1, . . . ,m.

Remark 3 Similarly, Theorem 3 implies the inverse function theorem for a
differentiable function F : Ω ⊂ R

n → R
n, with F (x0) = y0 and Ω an open set

in R
n, whose Jacobian matrix JF (x) is continuous at x0 and detJF (x0) 6= 0.

Acknowledgments. The author is gratful to Professor P. A. Martin for dis-
cussions that lead to the example given in this article.

References

[1] O. R. B. de Oliveira, The implicit and the inverse function theorems: easy
proofs, Real Anal. Exchange, 39(1), 2013/2014, pp. 207–218.

[2] O. R. B. de Oliveira, The implicit function theorem when the partial Ja-
cobian matrix is only continuous at the base point, Real Anal. Exchange,
41(2), 2016, pp. 377–388.

11



[3] U. Dini, Lezione di Analisi Infinitesimale, volume 1, Pisa, 1907, 197–241.

[4] L. Hurwicz and M. K. Richter, Implicit functions and diffeomorphisms
without C1, Adv. Math. Econ., 5 (2003) 65–96.

[5] S. G. Krantz and H. R. Parks, The Implicit Function Theorem - History,
Theory, and Applications, Birkhäuser, Boston, 2002.
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