MAT5812 - EDP ELIPTICA- primeiro semestre de 2017 Lista 2 de Exercícios

Prof. Oswaldo Rio Branco de Oliveira

Notações. Os problemas abaixo são todos em \mathbb{R}^n . Se $U \subset O$, ambos abertos, dizemos que U é relativamente compacto em O se \overline{U} é compacto contido O. Escrevemos $U \subset O$.

1. Seja $f \in L^1_{loc}(\mathbb{R}^n)$. Suponhamos $f \leq M$ para alguma constante M (respectivamente, $m \leq f$ para alguma constante m). Então,

$$\rho_{\epsilon} * f \leq M \quad (m \leq \rho_{\epsilon} * f).$$

2. Lema de Urysohn (C^{∞}) . Sejam $K \subset \Omega \subset \mathbb{R}^n$, com K compacto e Ω aberto. Então, existe $f \in C_c^{\infty}(\mathbb{R}^n)$ com

 $f \equiv 1$ numa vizinhança de K, $0 \le f \le 1$ e supp $(f) \subset \Omega$.

3. Sejam K um compacto e O_1, \ldots, O_N abertos (não vazios). Suponhamos

$$K \subset O_1 \cup \cdots \cup O_N$$
.

Existem abertos relativamente compactos U_1, \ldots, U_N (não vazios) satisfazendo

$$U_j \subset\subset O_j$$
 para cada j e $K \subset U_1 \cup \cdots \cup U_N$.

Dica. Dado $x \in K$, existem r = r(x) > 0 e j = j(x) tais que $D(x,r) \subset O_j$. No caso em que O_j não intersecta K então qualquer (não vazio) $U_j \subset O_j$ nos serve.

4. Uma partição da unidade ϕ_1, \ldots, ϕ_N para o compacto K e subordinada à cobertura aberta O_1, \ldots, O_N . Sejam K um compacto e O_1, \ldots, O_N abertos limitados (todos em \mathbb{R}^n), com $K \subset O_1 \cup \cdots \cup O_N$. Mostre que existem funções

$$\phi_j \in C_c^{\infty}(O_j, [0, 1])$$
 para $j = 1, \dots, n$, e com $\sum_{j=1}^N \phi_j \equiv 1$ numa vizinhança de K .

Esboço (complete e cheque argumentos). Com as notações nos exercícios 1 e 2, seja $f_j \in C_c^{\infty}(O_j)$ com $0 \le f_j \le 1$ e $f_j \equiv 1$ em $\overline{U_j}$. Segue $f_1 + \cdots + f_N \ge 1$ em $\overline{U_1} \cup \cdots \cup \overline{U_N}$. Então

$$\overline{U_1} \cup \cdots \cup \overline{U_N} \subset O_{N+1} = \{x : (f_1 + \cdots + f_N)(x) > 0\} \text{ (um aberto)}.$$

Existe uma função $g \in C_c^{\infty}(O_{N+1})$ satisfazendo $0 \le g \le 1$ e $g \equiv 1$ em $\overline{U_1} \cup \cdots \cup \overline{U_N}$. Mostre que

$$f_{N+1} = 1 - g \in C^{\infty}$$
, com $0 \le f_{N+1} \le 1$ e $f_{N+1} \equiv 1$ se $f_1 + \dots + f_N = 0$.

Mostre $F = f_1 + \dots + f_N + f_{N+1} > 0$ em todo ponto. Seja

$$\phi_j = \frac{f_j}{F}$$
, para $j = 1, ..., N, N + 1$.

Verifique (e complete a prova)

$$\phi_1 + \dots + \phi_N + \phi_{N+1} \equiv 1$$
 (i.e., em todo ponto) e $\phi_1 + \dots + \phi_N = 1$ em $U_1 \cup \dots \cup U_N$.

Comentário. Compare esta prova (vide Folland [8, p. 134]) com a prova em Folland [7, p. 13]. Qual tua opinião sobre esta última?

Tarefas. Vide as provas em Rudin [13, p. 40] e Hörmander, L., *The Analysis of Linear Partial Differential Operators I*, Springer, 2nd ed., pp. 27–28. Destas quatro, qual tua preferida? Por qualquer motivo?

5. Integração por partes. Sejam $f \in C^{\infty}(\Omega)$ e $\varphi \in C_c^{\infty}(\Omega)$, com Ω aberto em \mathbb{R}^n . Prove as identidades

(a)
$$\int_{\Omega} (\partial_j f)(x) \varphi(x) dx = -\int_{\Omega} f(x) (\partial_j \varphi)(x) dx.$$

(b)
$$\int_{\Omega} (\partial^{\alpha} f)(x) \varphi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x) (\partial^{\alpha} \varphi)(x) dx.$$

- 6. A propriedade do segmento. Dizemos que um aberto limitado Ω tem a propriedade do segmento se existe uma cobertura aberta V_0, V_1, \ldots, V_N de $\overline{\Omega}$ com as seguintes propriedades.
 - (a) $V_0 \subset \Omega$.
 - (b) $V_i \cap \partial \Omega \neq \emptyset$ para cada $j \geq 1$.
 - (c) Para cada $j \ge 1$, existe um vetor $v^j \in \mathbb{R}^n$ tal que

$$x+\delta v^j\notin\overline{\Omega}\ \ \text{para todo ponto}\ \ x\in V_j\smallsetminus\Omega\ \text{e todo}\ 0<\delta\leq 1.$$

Mostre que

$$\partial\Omega\in C^1 \implies \Omega$$
 tem a propriedade do segmento.

Dica. Escolha para V_1, \ldots, V_N pequenas bolas centradas em pontos apropriados $\omega^j \in \partial \Omega$ e para vetor v^j , onde $j = 1, \ldots, n$, um pequeno múltiplo positivo do vetor normal exterior $\nu(\omega^j)$.

- 7. Mostre que se Ω tem a propriedade do segmento, então vale o que segue.
 - (a) A fronteira $\partial\Omega$ tem dimensão n-1.
 - (b) O aberto Ω não pode estar dos dois lados em qualquer parte da fronteira.
 - (c) $m(\partial\Omega) = 0$.
- 8. Mostre que

$$L^p_{\mathrm{loc}}(\Omega) = \left\{ \begin{array}{l} f: \Omega \to \mathbb{R}, \text{ que satisfazem a condição} \\ \text{para todo } p \in \Omega \text{ existe } r > 0 \text{ tal que } B(p,r) \subset \Omega \text{ e } f \in L^p\big(B(p,r)\big). \end{array} \right\}.$$

Chamamos $L_{loc}^p(\Omega)$ de espaço das funções localmente p-integráveis em Ω .

9. **Localização.** Sejam Ω e O abertos (arbitrários e não necessariamente disjuntos) e uma função $f: \Omega \cup O \to \mathbb{R}$. Mostre que

$$f \in L^p_{loc}(\Omega \cup O) \iff f \in L^p_{loc}(\Omega) \cap L^p_{loc}(O).$$