MEDIDA E INTEGRAÇÃO - MAT 5798 - IME 2016 Prof. Oswaldo Rio Branco de Oliveira

LISTA 6 DE EXERCÍCIOS

SEÇÃO 2.7, pp. 80-81

- E1. Enuncie o Teorema do Valor Médio para funções em uma variável real. Lembra de como prová-lo?
- E2. (**Desigualdade do Valor Médio**). Seja $F : \mathbb{R} \to \mathbb{C}$ uma função derivável (i.e., uma curva derivável em \mathbb{R}^2) tal que $M = \sup\{|F'(t)| : t \in \mathbb{R}\} < \infty$. Mostre que quaisquer que sejam a e b em \mathbb{R} , temos

$$|F(b) - F(a)| \le M|b - a|.$$

- 62. A medida σ em S^{n-1} é invariante por rotações.
- 64. Determine os valores reais a e b tais que a função

$$f(x) = |x|^a \Big| \log |x| \Big|^b$$

é integrável sobre os conjuntos abaixo.

- (A) $\{x \in \mathbb{R}^n : |x| < \frac{1}{2}\}.$
- (B) $\{x \in \mathbb{R}^n : |x| > 2\}.$

VIDE VERSO

65. Defina
$$G: \mathbb{R}^n \to \mathbb{R}^n$$
 por $G(r, \phi_1, \dots, \phi_{n-2}, \theta) = (x_1, \dots, x_n)$ onde
$$x_1 = r\cos\phi_1, \ x_2 = r\sin\phi_1\cos\phi_2, \ x_3 = r\sin\phi_1\sin\phi_2\cos\phi_3, \dots$$
$$x_{n-1}r\sin\phi_1\cdots\sin\phi_{n-2}\cos\theta, \ x_n = r\sin\phi_1\cdots\sin\phi_{n-2}\sin\theta.$$

- (a) G aplica \mathbb{R}^n em \mathbb{R}^n sobrejetivamente e $|G(r, \phi_1, \dots, \phi_{n-2}, \theta)| = |r|$.
- (b) $\det JG(r, \phi_1, \dots, \phi_{n-2}, \theta) = r^{n-1} \sin^{n-2} \phi_1 \sin^{n-3} \phi_2 \dots \sin \phi_{n-2}$.
- (c) Seja $\Omega=(0,\infty)\times(0,\pi)^{n-2}\times(0,2\pi).$ Então, a restrição

$$G|_{\Omega}:\Omega\to G(\Omega)$$

é um difeomorfismo e $m[\mathbb{R}^n \setminus G(\Omega)] = 0$.

(d) Seja $F(\phi_1,\ldots,\phi_{n-2},\theta)=G(1,\phi_1,\ldots,\phi_{n-2},\theta)$ e $\Omega'=(0,\pi)^{n-2}\times(0,2\pi)$. Então a função

$$(F|_{\Omega'})^{-1}$$

define um sistema de coordenadas sobre S^{n-1} exceto em um conjunto σ -nulo e a medida de σ é expressa neste sistema de coordenadas por

$$d\sigma(\phi_1,\ldots,\phi_{n-2},\theta) = \sin^{n-2}\phi_1\sin^{n-3}\phi_2\cdots\sin\phi_{n-2}d\phi_1\cdots d\phi_{n-2}d\theta.$$