MEDIDA E INTEGRAÇÃO - MAT 5798 - IME 2013 Prof. Oswaldo Rio Branco de Oliveira

Lista 2 de Exercícios - Seção 1.4, p. 32

Definição. Uma pré-medida é uma medida numa álgebra.

Notação. μ^* indica uma medida exterior.

- 19. Seja μ^* uma medida exterior em X induzida por uma pré-medida finita μ_0 . Dado $E \subset X$, defina a **medida interior** de E por $\mu_*(E) := \mu_0(X) - \mu^*(E^c)$. Verifique que E é μ^* -mensurável se, e somente se, $\mu^*(E) = \mu_*(E)$.
- 20. Sejam μ^* uma medida exterior sobre X e \mathcal{M}^* a σ -álgebra dos conjuntos μ^* -mensuráveis. Sejam $\nu = \mu^*|_{\mathcal{M}^*}$ e ν^* a medida exterior induzida por ν .
 - (a) Dado $E \subset X$, temos $\mu^*(E) \leq \nu^*(E)$, valendo a igualdade se e somente se existir $A \in \mathcal{M}^*$ tal que $E \subset A$ e $\mu^*(A) = \mu^*(E)$.
 - (b) Se μ^* for induzida por uma pré-medida, então $\mu^* = \nu^*$. Dica: 18(a).
 - (c) Se $X = \{0, 1\}$, existe uma medida exterior μ^* sobre X tal que $\mu^* \neq \nu^*$.
- 21. Consideremos μ^* induzida por uma pré-medida e μ a restrição de μ^* aos conjuntos μ^* -mensuráveis. Então, μ é **saturada** (v. exerc. 16, seção 1.3).
- 22. Sejam (X, \mathcal{M}, μ) um espaço de medida, μ^* induzida por μ , \mathcal{M}^* a σ -álgebra dos conjuntos μ^* -mensuráveis e $\overline{\mu}$ a restrição de μ^* a \mathcal{M}^* .
 - (a) Se μ é σ -finita então $\overline{\mu}$ é o completamento de μ .
 - (b) Em geral, $\overline{\mu}$ é a saturação do completamento de μ .

Seção 1.5, p. 39-40

Seja $m: \mathcal{L} \to [0, \infty]$ a medida de Lebesgue (i.e. a medida de Lebesgue-Stieltjes induzida pela função identidade), onde \mathcal{L} designa a coleção dos conjuntos Lebesgue mensuráveis.

E1. Complete a prova do Teorema 1.9, nota de aula p. 26-27. Introduzamos a notação: dados $E \subset \mathbb{R}$ e $h, t \in \mathbb{R}$, (h de homotetia e t de translação) sejam

$$hE = \{hx : x \in E\} \ \text{e} \ E + t = \{x + t : x \in E\}.$$

- (a) $\mathcal{B}_{\mathbb{R}}$ é invariante por homotetias e translações.
- (b) Dados $E \in \mathcal{B}_{\mathbb{R}}$ e $h, t \in \mathbb{R}$, sejam $m_t(E) = m(E+t)$ e $m^h(E) = m(hE)$. Então, m_t e m^h são medidas que coincidem com m e |h|m sobre as uniões finitas de intervalos quaisquer, as quais formam uma álgebra.
- (c) A classe \mathcal{N} dos conjuntos de Lebesgue de medida nula é invariante por translações e homotetias.
- (d) A classe \mathcal{L} dos conjuntos Lebesgue mensuráveis é invariante por translações e homotetias.
- (e) Para todo $E \in \mathcal{L}$, temos $m_t(E) = m(E)$ e $m^h(E) = |h|m(E)$.
- E2. Seja C o conjunto ternário de Cantor (vide Lista 0), constituído pelos pontos de [0,1] em cuja representação normalizada não aparece o dígito 1. Verifique:
 - (a) É bem definida a aplicação $f: C \to [0,1]$ tal que, se a representação ternária normalizada de x é dada por $0.x_1x_2\cdots$, então $f(x) \in [0,1]$ tem representação binária dada por $0.y_1y_2\cdots$, onde temos $y_n = x_n/2$ para todo n. A função f é sobrejetiva e $\operatorname{card}(C) = \mathfrak{c}$. Além disso, f é crescente e, dados $x,y \in [0,1]$ com x < y, então f(x) = f(y) se somente se (x,y) é um dos intervalos que se removeu em alguma etapa da construção do conjunto de Cantor .
 - (b) Mantendo a notação, defina F: [0,1] → [0,1] por F|_C = f e, em cada intervalo (x,y) que se removeu em alguma etapa da construção do conjunto de Cantor, F é constante e igual a f(x) = f(y). Mostre que F é crescente e contínua. F é a função de Cantor-Lebesgue.

28. Seja μ_F a medida de Lebesgue-Stieltjes associada a $F: \mathbb{R} \to \mathbb{R}$ crescente e contínua pela direita. Verifique:

$$\begin{cases} \mu_F(\{a\}) = F(a) - F(a-) \\ \mu_F([a,b]) = F(b-) - F(a-) \\ \mu_F([a,b]) = F(b) - F(a-) \\ \mu_F((a,b)) = F(b-) - F(a). \end{cases}$$

- 29. Seja E um conjunto Lebegue mensurável
 - (a) Se $E \subset N$, com N o conjunto não mensurável em 1.1, então m(E) = 0.
 - (b) Se m(E) > 0, então E contém um conjunto não mensurável. Sugestão. Assuma $E \subset [0,1]$. Com a notação em $1.1, E = \bigcup_r (E \cap N_r)$.
- 30. Se $E \in \mathcal{L}$ e m(E) > 0, então para qualquer $\alpha < 1$ existe um intervalo aberto I tal que $m(E \cap I) > \alpha m(I)$.
- 31. Se $E \in \mathcal{L}$ e m(E) > 0, então o conjunto $E E = \{x y : x, y \in E\}$ contém um intervalo centrado em 0.

Sugestão. Se I é como no exercício 30, com $\alpha > 3/4$, então E-E contém o intervalo $\left(-\frac{m(I)}{2}, +\frac{m(I)}{2}\right)$.

33. Existe um conjunto de Borel $A \subset [0,1]$ tal que $0 < m(A \cap I) < m(I)$ para todo subintervalo I.

Sugestão. Todo sub-intervalo de [0,1] contém um conjunto de Cantor de medida positiva (vide notas de aula).