MEDIDA E INTEGRAÇÃO - MAT 5798 - IME 2016 Prof. Oswaldo Rio Branco de Oliveira

Lista 2 de Exercícios - Seção 1.4, p. 32

Resolva, no mínimo, os oito exercícios marcados com asterisco.

Definição. Uma pré-medida é uma medida numa álgebra.

Notação. μ^* indica uma medida exterior.

- 18. Sejam $\mathcal{A} \subset \mathcal{P}(X)$ uma álgebra, \mathcal{A}_{σ} a coleção das uniões contáveis de conjuntos em \mathcal{A} e $\mathcal{A}_{\sigma\delta}$ a coleção das intersecções contáveis de conjuntos em \mathcal{A}_{σ} . Sejam μ_0 uma pré-medida em \mathcal{A} e μ^* a medida exterior induzida por μ_0 .
 - (a) Dados $E \subset X$ e $\epsilon > 0$, existe $A \in \mathcal{A}_{\sigma}$ tal que $E \subset A$ e $\mu^*(A) \leq \mu^*(E) + \epsilon$.
 - (b) Se $\mu^*(E) < \infty$, então E é μ^* -mensurável se e somente se existe algum $B \in \mathcal{A}_{\sigma\delta}$ tal que $E \subset B$ e $\mu^*(B \setminus E) = 0$.
 - (c) Se μ_0 é σ-finita, a restrição $\mu^*(E)$ < ∞ no item anterior é supérflua.
- 19* Seja μ^* uma medida exterior em X induzida por uma pré-medida finita μ_0 . Dado $E \subset X$, defina a **medida interior** de E por

$$\mu_*(E) := \mu_0(X) - \mu^*(E^c).$$

Verifique que E é μ^* -mensurável se e somente se $\mu^*(E) = \mu_*(E)$.

- 20* Sejam μ^* uma medida exterior sobre X e \mathcal{M}^* a σ -álgebra dos conjuntos μ^* -mensuráveis. Sejam $\nu = \mu^*|_{\mathcal{M}^*}$ e ν^* a medida exterior induzida por ν .
 - (a) Dado $E \subset X$, temos $\mu^*(E) \leq \nu^*(E)$, valendo a igualdade se e somente se existir $A \in \mathcal{M}^*$ tal que $E \subset A$ e $\mu^*(A) = \mu^*(E)$.
 - (b) Se μ^* for induzida por uma pré-medida, então

$$\mu^* = \nu^*$$
.

Dica: 18(a).

(c) Se $X = \{0, 1\}$, existe uma medida exterior μ^* sobre X tal que $\mu^* \neq \nu^*$.

- 21. Consideremos μ^* induzida por uma pré-medida e μ a restrição de μ^* aos conjuntos μ^* -mensuráveis. Então, μ é **saturada** (v. exerc. 16, seção 1.3).
- 22* Sejam (X, \mathcal{M}, μ) um espaço de medida, μ^* induzida por μ , \mathcal{M}^* a σ -álgebra dos conjuntos μ^* -mensuráveis e $\overline{\mu}$ a restrição de μ^* a \mathcal{M}^* .
 - (a) Se μ é σ -finita então $\overline{\mu}$ é o completamento de μ .
 - (b) Em geral, $\overline{\mu}$ é a saturação do completamento de μ .
- 23. Seja \mathcal{A} a coleção de todas as uniões finitas de conjuntos da forma

$$(a,b] \cap \mathbb{Q}$$
, com $-\infty \le a < b \le \infty$.

Verifique as afirmações abaixo.

- (a) \mathcal{A} é uma álgebra sobre $\mathcal{P}(\mathbb{Q})$.
- (b) A σ -álgebra gerada por \mathcal{A} é $\mathcal{P}(\mathbb{Q})$.
- (c) Defina $\mu_0(\emptyset) = 0$ e $\mu_0(A) = \infty$ se $\emptyset \neq A \in \mathcal{A}$. Então, μ_0 é uma prémedida e existe mais de uma medida sobre $\mathcal{P}(\mathbb{Q})$ que estende μ_0 .
- 24. Sejam μ uma medida finita em (X, \mathcal{M}) e μ^* induzida por μ . Seja E um subconjunto arbitrário de X tal que $\mu^*(E) = \mu^*(X)$.
 - (a) Se $A, B \in \mathcal{M}$ e $A \cap E = B \cap E$, então $\mu(A) = \mu(B)$.
 - (b) Considere

$$\mathcal{M}_E = \{ A \cap E : A \in \mathcal{M} \}.$$

Defina $\nu: \mathcal{M}_E \to [0, \infty]$ por

$$\nu(A \cap E) = \mu(A)$$

(o que é uma boa definição, pelo item anterior). Então \mathcal{M}_E é uma σ -álgebra sobre E e ν é uma medida sobre \mathcal{M}_E .

Seção 1.5, p. 39-40

Seja $m: \mathcal{L} \to [0, \infty]$ a medida de Lebesgue (i.e. a medida de Lebesgue-Stieltjes induzida pela função identidade), onde \mathcal{L} designa a coleção dos conjuntos Lebesgue mensuráveis.

E1. Complete a prova do Teorema 1.9, nota de aula p. 26-27. Introduzamos a notação: dados $E \subset \mathbb{R}$ e $h, t \in \mathbb{R}$, (h de homotetia e t de translação) sejam

$$hE = \{hx : x \in E\} \text{ e } E + t = \{x + t : x \in E\}.$$

- (a) $\mathcal{B}_{\mathbb{R}}$ é invariante por homotetias e translações.
- (b) Dados $E \in \mathcal{B}_{\mathbb{R}}$ e $h, t \in \mathbb{R}$, sejam $m_t(E) = m(E+t)$ e $m^h(E) = m(hE)$. Então, m_t e m^h são medidas que coincidem com m e |h|m sobre as uniões finitas de intervalos quaisquer, as quais formam uma álgebra.
- (c) A classe \mathcal{N} dos conjuntos de Lebesgue de medida nula é invariante por translações e homotetias.
- (d) A classe \mathcal{L} dos conjuntos Lebesgue mensuráveis é invariante por translações e homotetias.
- (e) Para todo $E \in \mathcal{L}$, temos $m_t(E) = m(E)$ e $m^h(E) = |h|m(E)$.
- 26. Sejam $(\mathbb{R}, \mathcal{M}_{\mu}, \mu)$ um espaço de medida de Lebesgue-Stieltjes e $E \in \mathcal{M}_{\mu}$ tal que $\mu(E) < \infty$. Então, para todo $\epsilon > 0$ existe uma reunião finita disjunta de intervalos abertos, $A \subset \mathbb{R}$, tal que $\mu(E\Delta A) < \epsilon$.
- E2. Todo $x \in [0,1]$ admite uma representação na base 3 da forma

$$0.x_1x_2\cdots$$

Isto é, existe uma sequência $(x_n)_{\mathbb{N}} \subset \{0,1,2\}$ tal que

$$x = \sum_{n=1}^{\infty} \frac{x_n}{3^n}.$$

Tal representação diz-se finita ou eventualmente nula se existir $N \in \mathbb{N}$ tal que $x_n = 0$ para todo n > N. Caso contrário, diz-se que a representação é infinita.

Prove as afirmações abaixo

- (a) $x \in [0, 1]$ admite uma representação finita $x = 0.x_1x_2\cdots$ na base 3 se e somente se existe $n \in \mathbb{N}$ e $k \in \{0, \dots, 3^n 1\}$ tais que $x = k3^{-n}$.
- (b) Todo $x \in (0,1]$ admite uma única representação infinita, na base 3, na forma $x = 0.x_1x_2\cdots$.

Com a notação da questão anterior, associemos a cada $x \in [0, 1]$ uma representação na base 3, $x = 0.x_1x_2\cdots$, da seguinte forma:

- se x não admitir representação finita, associemos a x a única representação possível;
- se x admitir representação finita $0.x_1 \cdots x_N 0 \cdots$, com $x_N \neq 0$ e $x_n = 0$ para n > N: se $x_N = 2$, associemos a x a referida representação; se x_N for 1, associemos a x a representação infinita, i.e. $0.x_1 \cdots x_{N-1} 0222 \cdots$.

Chamemos tais representações de normalizadas.

- E3* Seja C o conjunto ternário de Cantor (vide Lista 0), constituído pelos pontos de [0,1] em cuja representação normalizada não aparece o dígito 1. Verifique:
 - (a) É bem definida a aplicação $f: C \to [0,1]$ tal que, se a representação ternária normalizada de x é dada por $0.x_1x_2\cdots$, então $f(x) \in [0,1]$ tem representação binária dada por $0.y_1y_2\cdots$, onde temos $y_n = x_n/2$ para todo n. A função f é sobrejetiva e $\operatorname{card}(C) = \mathfrak{c}$. Além disso, f é crescente e, dados $x,y \in [0,1]$ com x < y, então f(x) = f(y) se somente se (x,y) é um dos intervalos que se removeu em alguma etapa da construção do conjunto de Cantor .
 - (b) Mantendo a notação, defina $F:[0,1] \to [0,1]$ por $F|_C = f$ e, em cada intervalo (x,y) que se removeu em alguma etapa da construção do conjunto de Cantor, F é constante e igual a f(x) = f(y). Mostre que F é crescente e contínua. F é a função de Cantor-Lebesgue.
- E4. Sejam \mathcal{B} e \mathcal{L} , respectivamente, as σ -álgebras de Borel e de Lebesgue em \mathbb{R} . Mostre que card $(\mathcal{B}) = \mathfrak{c}$ e card $(\mathcal{L}) = 2^{\mathfrak{c}}$. Conclua que $\mathcal{B} \nsubseteq \mathcal{L}$. Sugestão. Proposição 1.23 em Folland.

28* Seja μ_F a medida de Lebesgue-Stieltjes associada a $F: \mathbb{R} \to \mathbb{R}$ crescente e contínua pela direita. Verifique:

$$\begin{cases} \mu_F(\{a\}) = F(a) - F(a-) \\ \mu_F([a,b]) = F(b-) - F(a-) \\ \mu_F([a,b]) = F(b) - F(a-) \\ \mu_F((a,b)) = F(b-) - F(a). \end{cases}$$

- 29^* Seja E um conjunto Lebegue mensurável
 - (a) Se $E \subset N$, com N o conjunto não mensurável em 1.1, então m(E) = 0.
 - (b) Se m(E) > 0, então E contém um conjunto não mensurável. Sugestão. Assuma $E \subset [0,1]$. Com a notação em $1.1, E = \bigcup_r (E \cap N_r)$.
- 30. Se $E \in \mathcal{L}$ e m(E) > 0, então para qualquer $\alpha < 1$ existe um intervalo aberto I tal que $m(E \cap I) > \alpha m(I)$.
- 31* Se $E \in \mathcal{L}$ e m(E) > 0, então o conjunto $E E = \{x y : x, y \in E\}$ contém um intervalo centrado em 0.

Sugestão. Se I é como no exercício 30, com $\alpha > 3/4$, então E-E contém o intervalo

$$\left(-\frac{m(I)}{2}, +\frac{m(I)}{2}\right).$$

33* Existe um conjunto de Borel $A \subset [0,1]$ tal que

$$0 < m(A \cap I) < m(I)$$
 para todo subintervalo I.

Sugestão. Todo sub-intervalo de [0,1] contém um conjunto de Cantor de medida positiva (vide notas de aula).