MAT 5714 - Funções Analíticas - IMEUSP - Semestre 2 de 2014

Professor Oswaldo Rio Branco de Oliveira

Lista 9 de Exercícios

Faça os exercícios abaixo com uma redação clara e não sobrecarregada em simbologia.

1* Seja Ω aberto e não vazio em \mathbb{C} . Dizemos que Ω é conexo por segmentos paralelos aos eixos se dados quaisquer dois pontos p e q, ambos em Ω , existe uma sequência finita de pontos $\{p_0 = p, p_1, \ldots, p_n = q\}$ contida em Ω tal que cada segmento linear

$$\{tp_{j-1} + (1-t)p_j : t \in [0,1]\}, \text{ onde } j = 1,\ldots,n,$$

é paralelo a um dos eixos coordenados e está contido no aberto Ω .

Mostre que Ω é conexo se e somente se Ω é conexo por segmentos paralelos aos eixos.

 $2^{\textstyle *}$ Mostre que é possível definir uma determinação analítica e única de

$$\log\left(\frac{z-1}{z+1}\right) \text{ em } \mathbb{C} \setminus \overline{B(0;1)},$$

se impormos que seu limite no infinito é zero.

3. Encontre a imagem dos conjuntos abaixo, pela transformação de Möbius

$$\varphi(z) = \frac{z - i}{z + i}.$$

- (a) A semi reta superior it, com $t \ge 0$.
- (b) A circunferência de centro 1 e raio 1.
- (c) A linha horizontal i + t, com $t \in \mathbb{R}$.
- (d) A semi circunferência |z| = 2, com $\text{Im}(z) \ge 0$.
- (e) A semi reta vertical $Re(z) = 1 e Im(z) \ge 0$.

4. Encontre os pontos fixos das transformações de Möbius:

$$(a) \varphi(z) = \frac{z-3}{z+1}$$

(b)
$$\varphi(z) = \frac{z-4}{z+2}$$

(c)
$$\varphi(z) = \frac{z-i}{z+1}$$

(d)
$$\varphi(z) = \frac{2z-3}{z+1}$$

5. Seja $\mathbb{R}_{\infty} = \mathbb{R} \cup {\infty}$. Consideremos a transformação de Möbius

$$\varphi(z) = \frac{az+b}{cz+d}.$$

Mostre que temos $\varphi(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ se e só se podemos escolher a, b, c e d em \mathbb{R} .

6* Sejam z_1 um ponto arbitrário em $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ e z_2 , z_3 e z_4 pontos distintos em $\overline{\mathbb{C}}$. Definimos o **produto cruzado**

$$[z_1, z_2, z_3, z_4]$$
 por $T(z_1)$,

com T a única transformação de Möbius mapeando z_2, z_3, z_4 em $1, 0, \infty$, em ordem.

- (a) Suponha que z_2, z_3 e z_4 são números distintos. Ache uma expressão para T(z).
- (b) Encontre expressões para T(z), nos casos : $z_2 = \infty$, $z_3 = \infty$ e $z_4 = \infty$.
- (c) Suponha z_1, z_2, z_3 e z_4 números distintos. Mostre que

$$T(z_1) = \begin{bmatrix} z_1, z_2, z_3, z_4 \end{bmatrix} = \frac{\frac{z_1 - z_3}{z_1 - z_4}}{\frac{z_2 - z_3}{z_2 - z_4}} = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}.$$

(d) Seja φ uma transformação de Möbius. Mostre que

$$[\zeta_1, \zeta_2, \zeta_3, \zeta_4] = [z_1, z_2, z_3, z_4]$$
, onde $\zeta_i = \varphi(z_i)$ e $j = 1, 2, 3, 4$.

Sugestão. Analise separadamente: translações, inversões e multiplicações.

- 7. Compute os produtos cruzados:
 - (a) $[7+i,1,0,\infty]$.
 - (b) [2, 1-i, 1, 1+i].
 - (c) [0, 1, i, -1].
 - (d) $[1-i, \infty, 1+i, 0]$.
- 8. Considere a transformação de Möbius

$$\varphi(z) = \frac{az+b}{cz+d} \qquad (\log o, \ ad-bc \neq 0).$$

Encontre z_2, z_3 e z_4 [em termos de a, b, c e d] tais que

$$\varphi(z) = [z, z_2, z_3, z_4].$$

- 9* Sejam z_1, z_2, z_3 e z_4 distintos na esfera de Riemann $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.
 - (a) Prove que z_1, z_2, z_3 e z_4 pertencem a uma mesma circunferência ou a uma mesma reta se e somente se seu produto cruzado é um número real.
 - (b) Suponha que z_1, z_2, z_3 e z_4 pertencem a uma mesma circunferência. Mostre que

$$|z_1 - z_3||z_2 - z_4| = |z_1 - z_2||z_3 - z_4| + |z_2 - z_3||z_4 - z_1|.$$

10* Seja Γ uma circunferência (generalizada) pelos pontos z_2, z_3 e z_4 em $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$. Dois pontos z e z^* , ambos em \mathbb{C}_{∞} , são ditos simétricos com relação a Γ se

$$[z^*, z_2, z_3, z_4] = \overline{[z, z_2, z_3, z_4]}.$$

Mostre que a definição de simetria independe dos pontos escolhidos em Γ . Isto é, se w_2, w_3, w_4 são outros três pontos em Γ , então a equação destacada acima é satisfeita se e somente se temos

$$[z^*, w_2, w_3, w_4] = \overline{[z, w_2, w_3, w_4]}.$$