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The Fundamental Theorem of Algebra:
From the Four Basic Operations

Oswaldo Rio Branco de Oliveira

Abstract. This paper presents an elementary and direct proof of the Fundamental Theorem
of Algebra, via Weierstrass’ Theorem on Minima, that avoids the following: every root ex-
traction, angles, non-algebraic functions, differentiation, integration, series, and arguments by
induction.

1. INTRODUCTION. This article aims, through combining an inequality proved by
de Oliveira [5] and a lemma by Estermann [6], to show a very elementary proof of the
Fundamental Theorem of Algebra that does not employ any root extraction. Following
a suggestion given by Littlewood [11, p. 95], see also Remmert [13, pp. 113–114], the
proof requires a minimum amount of “limit processes lying outside algebra proper.”
Hence, the proof avoids differentiation, integration, series, angles, and the transcen-
dental functions (i.e., non-algebraic functions) cos θ , sin θ , and eiθ , for θ ∈ R. Another
reason to avoid these functions is justified by the fact that the theory of transcenden-
tal functions is more profound than that of the Fundamental Theorem of Algebra (a
polynomial result), see Burckel [4]. In particular, it is interesting to notice that the
usual proof of the well known Euler’s Formula, eiθ

= cos θ + i sin θ , for θ ∈ R, re-
quires series, differentiation, and the (transcendental) numbers e and π (see Rudin
[14, pp. 167–169]). This proof also avoids arguments by induction as well as those of
ε − δ type and the asymptotic ones.

Many elementary proofs of the Fundamental Theorem of Algebra, implicitly as-
suming the modulus function |z| =

√
zz where z ∈ C, assume either Weierstrass’

Theorem on Minima or the Intermediate Value Theorem, plus polynomial continu-
ity. In addition, further root extraction is used in the proof (see Aigner and Ziegler
[1, pp. 127–129], Argand [2] and [3], de Oliveira [5], Estermann [6], Fefferman [7],
Kochol [9], Körner [10], Littlewood [11], Redheffer [12], Remmert [13], Rudin [14,
pp. 169–170], Searcöid [16, p. 110], Spivak [17, pp. 548–550], and Terkelsen [18]).
See also Schep [15], Vaggione [19] and [20], and Výborný [21]. Beginning with Little-
wood [11], some of these proofs include a proof by induction of the existence of every
nth root, for n ∈ N, of every complex number (see [9], [13], [16], and [17, p. 553]).

This proof has similarities with the indirect one given by Körner [10]. Both proofs
rely on Weierstrass’ Theorem, avoid differentiation, integration, and angles, and “el-
ementarize” Estermann’s proof. It is worth pointing out that Körner, at the end of his
note—in which the square root function, asymptotic arguments, and the Euclidean
norm are employed—indicates a simple artifice that further eliminates from his pre-
ceding proof “general results on the existence and behaviour of square roots.” How-
ever, the proof in this article employs Weierstrass’ Theorem just once. Furthermore,
this proof of the Fundamental Theorem of Algebra is straightforward in two out of the
three analyzed cases. In fact, we “elementarize” a result by Estermann with the sole
purpose of proving the remaining case.
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2. NOTATIONS AND PRELIMINARIES. Given z ∈ C such that z = a + ib, with
a ∈ R, b ∈ R, and i2

= −1, we write Re(z) = a and Im(z) = b. The complex conju-
gate of z is z = a − ib.

In what follows, the norm |z|1 = |Re(z)| + |Im(z)|, for z ∈ C, is employed in order
to avoid the need for square roots! It is well known that all norms in C are equivalent
(in particular, they are equivalent to the usual Euclidean one). Given four arbitrary real
numbers a, b, c, and d, a short calculation reveals that

(|a| + |b|)2(|c| + |d|)2 ≤ 2(a2
+ b2)2(c2

+ d2)

= 4[(ac − bd)2 + (ad + bc)2] ≤ 4[|ac − bd| + |ad + bc|]2,

and

|ac − bd| + |ad + bc| ≤ |a||c| + |b||d| + |a||d| + |b||c| = (|a| + |b|)(|c| + |d|).

Hence, putting z = a + ib and w = c + id , we deduce the properties

|z|1 = |z|1 and
|z|1|w|1

2
≤ |zw|1 ≤ |z|1|w|1.

Moreover, we use the Binomial Formula (z + w)n =
∑n

j=0

(n
j

)
z jwn− j , where z ∈ C,

w ∈ C, n ∈ N,
(n

j

)
=

n!
j !(n− j)! , and 0! = 1. We only assume without proof the following:

• Polynomial continuity, and
• Weierstrass’ Theorem: Any continuous function f : D→ R, with D a bounded and

closed disk, has a minimum on D.

3. THE FUNDAMENTAL THEOREM OF ALGEBRA. In what follows, k is an
arbitrary nonzero natural number.

We start by proving a pair of inequalities for the case where k is even. These in-
equalities have been proved by Estermann [6] for every k ∈ N \ {0}. Our proof uses
the binomial formula and simplifies Estermann’s argument, which is based on root
extraction and induction. The case where k is odd can be proved similarly. It is appro-
priate to emphasize that, in this article, we employ the following Lemma 1 only when
k is a multiple of 4.

Lemma 1 (Estermann). For ζ =
(
1+ i

k

)2
and k even, k ≥ 2, we have that

Re[ζ k
] < 0 < Im[ζ k

].

Proof. Since k = 2m and 2k = 4m, for some m ∈ N, applying the formulas

Re

[(
1+

i

k

)2k
]
=1−

(
2k

2

)
1

k2
+

(
2k

4

)
1

k4
+

k−1∑
odd j, j=3

[
−

(
2k

2 j

)
1

k2 j
+

(
2k

2 j + 2

)
1

k2 j+2

]

and

Im

[(
1+

i

k

)2k
]
=

k−1∑
odd j, j=1

[(
2k

2 j − 1

)
1

k2 j−1
−

(
2k

2 j + 1

)
1

k2 j+1

]
,
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we proceed by noticing that for every j ∈ N, with 1 ≤ j ≤ k − 1, it follows that

1−

(
2k

2

)
1

k2
+

(
2k

4

)
1

k4
=1−

(
2−

1

k

)(
2

3
+

5

6k
−

1

2k2

)
≤ 1−

3

2

(
2

3
+

5k − 3

6k2

)
= −

3

2
·

5k − 3

6k2
< 0,−

(
2k

2 j

)
1

k2 j
+

(
2k

2 j + 2

)
1

k2 j+2

= −
(2k)!

(2 j)!k2 j (2k − 2 j − 2)!

[
1

(2k − 2 j)(2k − 2 j − 1)
−

1

(2k j + 2k)(2k j + k)

]
< 0,

and(
2k

2 j − 1

)
1

k2 j−1
−

(
2k

2 j + 1

)
1

k2 j+1

=
(2k)!

(2 j − 1)!(2k − 2 j − 1)!

1

k2 j−1

[
1

(2k − 2 j + 1)(2k − 2 j)
−

1

(2k j + k)(2k j)

]
> 0

Theorem 1. If P is a non-constant complex polynomial, then P has a zero in C.

Proof. Putting P(z) = a0 + a1z + · · · + anzn , where a j ∈ C for all j such that 0 ≤
j ≤ n, an 6= 0, and n ≥ 1, we define the nonnegative function

P(z)P(z) =
n∑

j=0

a j a j z
j z j
+

∑
0≤ j<k≤n

2Re[a j ak z j zk
], for z ∈ C.

Applying the triangle inequality and the previously mentioned properties of | . |1, we
obtain

P(z)P(z) ≥
|an|

2
1|z|

2n
1

22n+1
−

∑
0≤ j<k≤n

2|a j |1|ak |1|z|
j+k
1 , forall z ∈ C.

Hence, P(z)P(z)→∞ as |z|1 →∞ and thus, there is R > 0 such that P(z)P(z) >
P(0)P(0), if |z|1 > R. By continuity and by Weierstrass’ Theorem, the function P P
restricted to the disk D = {z ∈ C : |z|1 ≤ R} has a minimum at some z0 ∈ D. Since
0 ∈ D, we obtain the inequality P(0)P(0) ≥ P(z0)P(z0). Thus, P P has a global
minimum at z0. By considering P(z + z0), which is a polynomial of degree n, with
leading coefficient an and constant term P(z0), we may assume that z0 = 0. Therefore,

P(z)P(z)− P(0)P(0) ≥ 0, for all z ∈ C, (1)

and P(z) = P(0) + zk Q(z), for some k ∈ {1, . . . , n}, where Q is a polynomial and
Q(0) 6= 0. Substituting this equation, evaluated at z = rζ , where r ≥ 0 and ζ is arbi-
trary in C, in inequality (1), we arrive at

2r kRe
[

P(0)ζ k Q(rζ )
]
+ r 2kζ k Q(rζ )ζ k Q(rζ ) ≥ 0, for all r ≥ 0 and all ζ ∈ C,
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and, canceling r k > 0, we deduce the inequality

2Re
[

P(0)ζ k Q(rζ )
]
+ r kζ k Q(rζ )ζ k Q(rζ ) ≥ 0, for all r > 0 and all ζ ∈ C,

whose left-hand side is a continuous function of r , with r ∈ [0,+∞). Thus, taking the
limit as r → 0 we are led to consider

2Re
[

P(0)Q(0)ζ k
]
≥ 0, for all ζ ∈ C. (2)

Let α = P(0)Q(0) = a + ib, where a ∈ R and b ∈ R. If k is odd, then substituting
ζ = ±1 and ζ = ±i into (2), we deduce that a = 0 and b = 0. Hence, α = 0 and
then we conclude that P(0) = 0. Thus, the case where k is odd is proved. We pro-
ceed by splitting the case where k is even into two subcases. First, let us suppose that
k = 4 j + 2, for j ∈ N. Taking ζ = 1 in (2), we obtain a ≥ 0. Taking ζ = i in (2), we
obtain −a ≥ 0. Hence, we deduce that a = 0. Taking ζ = 1 ± i in (2), we arrive at
Re[±ib(−4) j 2i] ≥ 0. Thus, we deduce that b = 0. Hence, α = 0 and then we con-
clude that P(0) = 0. Thus, the case where k = 4 j + 2, for j ∈ N, is proved. Finally,
let us suppose that k = 4 j , for j ∈ N. Taking ζ = 1 in (2), we obtain a ≥ 0. Picking
ζ as in Lemma 1, let us write ζ k

= x + iy, with x < 0 and y > 0. Substituting ζ k

and ζ
k
= ζ k into (2) we arrive at Re[α(x ± iy)] = ax ∓ by ≥ 0. Hence, ax ≥ 0 and

then (since x < 0) we obtain a ≤ 0. Thus, we deduce that a = 0. Therefore, we arrive
at ∓by ≥ 0. Hence, since y 6= 0, we deduce that b = 0. Hence, α = 0 and then we
conclude that P(0) = 0. Thus, the case where k = 4 j , for j ∈ N, is proved, and the
proof is complete.

Having concluded the proof of the Fundamental Theorem of Algebra, and keeping
our previous notation, we recognize that k is the algebraic multiplicity of z = z0 as a
zero of P(z).

4. REMARKS.

Remark 1. By equipping C with the usual norm |z| =
√

zz, for z ∈ C, one can adapt
the proof above to produce a “more familiar” and easier to follow proof of the Fun-
damental Theorem of Algebra, at the cost of the introduction of the square root func-
tion. One then has the inequality |P(z)| ≥ |an||z|n −

∑n−1
j=0 |a j ||z| j , for z ∈ C, which

implies that the function |P| has a global minimum at some z0 ∈ C. Thus, suppos-
ing without loss of generality that z0 = 0, one can analyze the inequality |P(z)|2 −
|P(0)|2 ≥ 0 exactly as was done above.

Remark 2. The almost algebraic “Gauss’ Second Proof” (see [8]) of the Fundamental
Theorem of Algebra uses only that “every real polynomial of odd degree has a real
zero” and the existence of a nonnegative square root of every nonnegative real number.
Nevertheless, this proof by Gauss is not elementary.

Remark 3. It is possible to rewrite a small part of the given proof of the Fundamental
Theorem of Algebra so that the polynomial continuity is employed only to guaran-
tee the existence of z0, a point of global minimum of the function P P . In fact, to
avoid extra use of polynomial continuity, let us keep the notation of the proof and
set Q(z) = Q(0) + z R(z), with R as a polynomial. Now substitute this expression
for Q(z), with z = rζ , only in the first term in the left-hand side of the inequality
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2Re
[

P(0)ζ k Q(rζ )
]
+ r kζ k Q(rζ )ζ k Q(rζ ) ≥ 0, for all r > 0 and all ζ ∈ C, which

appeared just above (2). Thus, we obtain

2Re
[

P(0)ζ k Q(0)
]
+ 2rRe

[
P(0)ζ k+1 R(rζ )

]
+ r kζ k Q(rζ )ζ k Q(rζ ) ≥ 0,

for all r > 0 and all ζ ∈ C. Fixing ζ arbitrary in C, a calculation shows that there is a
finite constant M = M(ζ ) such that the following inequality holds:

max
(
|P(0)ζ k+1 R(rζ )|1, |ζ

k Q(rζ )|21
)
≤ M,

for all r ∈ (0, 1). Hence,

−2Re
[

P(0)ζ k Q(0)
]
≤ 2r M + r k M ≤ 3r M, for all r ∈ (0, 1).

Therefore, we conclude that −2Re
[

P(0)ζ k Q(0)
]
≤ 0, with ζ arbitrary in C. The rest

of the proof continues as before.

Remark 4. It is worth pointing out that this proof of the Fundamental Theorem of
Algebra easily implies an independent proof of the existence of a unique nonnegative
nth root, for n ≥ 2, of each nonnegative number c. To show this, let us fix c ≥ 0.
Considering n = 2, and applying the Fundamental Theorem of Algebra, we can pick
z = x + iy ∈ C, for x ∈ R and y ∈ R, such that c = z2

= (x2
− y2)+ 2xyi . Hence,

we have that y = 0 and x2
= c. Thus, (±x)2 = c. Let

√
c be the unique nonnegative

one of x and −x . Hence, the absolute value function |z| =
√

zz, for z ∈ C, thereby
becomes well defined and nonnegative. Lastly, given an arbitrary n ∈ N, where n ≥ 2,
let us pick z ∈ C such that zn

=
√

c. Therefore, we have that z2n
= c and, by the

well known properties of the absolute value function over C, (|z|2)n = |z2n
| = c. The

uniqueness of a nonnegative nth root of c is rather trivial.

Remark 5. We can find a motivation for Estermann’s Lemma by freely employing
the well known results about the complex exponential function. In fact, since (1 +
z
k )

k
→ ez as k → +∞, for all z ∈ C, we immediately deduce that ζ k

= (1+ i
k )

2k
→

e2i
= cos 2+ i sin 2, as k → +∞. Yet, by geometric arguments we obtain the pair of

inequalities cos 2 < 0 < sin 2.
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SP - Brasil
oliveira@ime.usp.br

758 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 119

http://dx.doi.org/10.1007/s00283-011-9199-2
http://dx.doi.org/10.1112/jlms/s1-31.2.238
http://dx.doi.org/10.2307/2315823
http:www.cs.man.ac.uk/~pt/misc/gauss-web.html
http://dx.doi.org/10.2307/27641922
http://dx.doi.org/10.1112/jlms/s1-16.2.95
http://dx.doi.org/10.2307/2311752
http://dx.doi.org/10.2307/2319897

	Introduction.
	Notations and Preliminaries.
	The Fundamental Theorem of Algebra.
	Remarks.

