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SOME SIMPLIFICATIONS IN BASIC COMPLEX ANALYSIS

OSWALDO RIO BRANCO DE OLIVEIRA

Abstract. This paper presents very simple and easy integration-free proofs in
the context of Weierstrass’s theory of functions, of the Maximum and Minimum
Modulus Principles and Gutzmer-Parseval Inequalities for polynomials and for
functions developable in complex power series at every point in their domains,
as well as a trivial proof of the Open Mapping Theorem, an intuitive version
of Liouville’s Theorem, an easy proof of Weierstrass’s Theorem on Double
Series, a modest extension of Schwarz’s Lemma, and some other related results.
It also presents easy proofs of the Pólya-Szegö and P. Erdös’ Anti-Calculus
Proposition, a theorem on saddle points by Bak-Ding-Newman, and the well-
known Clunie-Jack Lemma.
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1. Introduction

The aim of this work is, by employing a “method” used in the elementary proof
of the Fundamental Theorem of Algebra by de Oliveira [12] (see also [14]) and an
averaging technique, to give simple, easy, and independent proofs for polynomial
versions of a result here named the Gutzmer-Parseval Inequality (by combining the
attributions in Burckel [5, p. 81] and Remmert [29, p. 243]), the Maximum Modulus
Principle, and the Minimum Modulus Principle (also known as Cauchy’s Minimum
Principle, see Remmert [28, p. 112]). This work also aims, through the use of very
basic concepts in plane topology, basic results on complex power series, and the
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two tools already mentioned, to provide extensions of those polynomial results to
all power series, in the context of Weierstrass’s theory of functions. In addition,
this article provides proofs of the Open Mapping Theorem, an Inverse Function
Theorem, Liouville’s Theorem (and an extension of it), a theorem by Pólya-Szegö
and Erdös, a quite recent theorem on saddle points by Bak-Ding-Newman, and the
Clunie-Jack Lemma. Some consequences of a Polygonal Mean-Value Property for
Polynomials are also proved.

Moreover, this paper proves the easy part of a simplification given byWhyburn of
a theorem on power series (independently) demonstrated by Hurwitz, Connell and
Porcelli, and Read. Then, through employing the Gutzmer-Parseval Inequality,
this article furnishes a modest extension of Schwarz’s Lemma and a rather easy
proof for Weierstrass’s theorem on double series (see Remmert [29, pp. 250–251]
and Knopp [20, pp. 430–433]), a result considered by Weierstrass as the key to
convergence theory (see Remmert [29, pp. 250–251]). In addition, still using the
Gutzmer-Parseval inequality, another convergence theorem and Montel’s Theorem
are proved. Lastly, two results on Laurent series are also proved.

It is interesting to notice that this work provides proofs that do not employ func-
tion continuity for the following results: the Gutzmer-Parseval Inequality, Cauchy’s
Inequalities, Maximum Modulus Principle, Liouville’s Theorem, and the Unique-
ness Theorem for the coefficients of a power series.

It is remarked in Conway [11, p. 80] that “the Maximum Modulus Theorem
... is far from obvious even for polynomials.” In Lang [21, p. 84], the Maximum
Modulus Principle is shown to be a consequence of the Open Mapping Theorem,
for which an elaborate proof is given, by applying the theorem on existence of a
local compositional inverse g(w) =

∑

bn(w − w0)
n, where bn ∈ C and n ∈ N, for a

power series f(z) =
∑

an(z − z0)
n, where an ∈ C and n ∈ N, if f ′(z0) 6= 0; that

is, we have (g ◦ f)(z) = z for all z in a neighborhood of z0. In this presentation
we will not use this existence theorem. Moreover, Beardon [3, p. 103] proves the
Maximum Modulus Principle for Polynomials by using the Argument Principle.

We recall that a function f : Ω → C, with Ω an open subset of C, is complex-

differentiable, or holomorphic, if f has complex derivatives f ′(z) = lim
h→0

f(z+h)−f(z)
h

at every point z ∈ Ω. In [29] Remmert pointed out that the goal of Karl Weierstrass
was to establish the study of holomorphic functions solely on the basis of power
series, without the use of integrals; and although such a methodologically pure path
has now been abandoned, modern authors such as Burckel [5], Lang [21], Bak and
Newman [1], Remmert [29], and others still stress the importance of the study of
power series. A translation of Carathéodory’s opinion is presented by Remmert [29,
p. 109] as “Power series are therefore especially convenient because one can compute
with them almost as with polynomials.”

2. Preliminaries

Let us denote by N = {0, 1, 2, ...} the set of all natural numbers, Z the set of
all integer numbers, Q the field of rational numbers, R the complete field of real
numbers, and C the algebraically closed field of complex numbers. Moreover, if
z ∈ C then we write z = x + iy, where x = Re(z) ∈ R is the real part of z,
y = Im(z) ∈ R is the imaginary part of z, and i2 = −1. Given z = x + iy in
C, its conjugate is the complex number z = x − iy and its absolute value is the

non-negative real number |z| =
√
zz =

√

x2 + y2.
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The open disk centered at the point z0 ∈ C with radius r > 0 is the set D(z0; r) =
{z ∈ C : |z− z0| < r}. Similarly, the compact disk centered at z0 with radius r ≥ 0
is the set D(z0; r) = {z ∈ C : |z − z0| ≤ r}.

Given X ⊂ C, a point p ∈ C is an accumulation point of X if every disk D(p; r),
where r > 0, contains a point of X distinct of p.

In this text we will use the following well-known results on power series (see de
Oliveira [13]; see also [1], [5], [20], and [21]):

◦ Let (an) be a sequence of complex numbers. Applying the Cauchy-Hadamard

Formula, ρ−1 = lim sup n
√

|an|, it follows that if ρ > 0, then the power
series f(z) =

∑

an(z − z0)
n converges uniformly and absolutely on any

compact disk D(z0; r) ⊂ D(z0; ρ) and diverges at every point z such that
|z − z0| > ρ. We call ρ and D(z0; ρ), the radius of convergence and the
disk of convergence of the power series, respectively. The function f is
continuous on D(z0; ρ).

◦ If f(z) =
∑

an(z − z0)
n and g(z) =

∑

bn(z − z0)
n are convergent power

series with radii of convergence ρ1 > 0 and ρ2 > 0, respectively, and λ ∈ C,
then λf(z) =

∑

λan(z − z0)
n is a convergent power series with radius of

convergence either equal to ρ1, if λ 6= 0, or equal to +∞, if λ = 0. Moreover,

f(z)+g(z) =
∑

(an+bn)(z−z0)n and f(z)g(z) =
+∞
∑

n=0

(

∑

j+k=n

ajbk

)

(z−z0)n

are convergent power series with radius of convergence ρ3 ≥ min{ρ1, ρ2}.
◦ Given f(z) =

∑

an(z−z0)n in the disk of convergenceD(z0; ρ), with ρ > 0,
then there exists f ′(z) =

∑

nan(z − z0)
n−1 for all z ∈ D(z0; ρ). Thus, f is

infinitely differentiable in D(z0; ρ) and we have an = f(n)(z0)
n! , for all n ∈ N.

We say that f(z) =
∑

f (n)(z0)(z−z0)n/n! is the Taylor series of f around
(or centered at) z0. If w ∈ D(z0; r), then the Taylor series of f around w
converges to f in the open disk D(w; r − |w − z0|).

◦ If f(z) =
∑

anz
n and g(z) =

∑

bnz
n are both convergent in D(0; r), with

r > 0 and g(0) ∈ D(0; r), then the function composition (f◦g)(z) = f
(

g(z)
)

is a convergent power series in some disk D(0; δ), where δ > 0.
◦ If f(z) =

∑

anz
n is a convergent power series in D(0; r), where r > 0 and

a0 = f(0) 6= 0, then the function 1/f(z) is a convergent power series in
some disk D(0; δ), with δ > 0.

◦ Principle of Isolated Zeros for Power Series. If f(z) =
∑

anz
n is a power

series convergent inside D(0; r), where r > 0, such that f(0) = 0 but f is
not the null function, then there exists a smallest k ≥ 1 satisfying ak 6= 0
and a power series g(z) =

∑

bnz
n convergent in D(0; δ), for some δ > 0,

so that we have the factorization f(z) = zkg(z), for all z ∈ D(0; δ), with g
nowhere vanishing.

◦ Identity Principle for Power Series. If f(z) =
∑

anz
n and g(z) =

∑

bnz
n

are convergent power series in D(0; r) satisfying f(z) = g(z) for all z in a
subset X of D(0; r), where X has an accumulation point in D(0; r), then
we have an = bn for all n ∈ N.

◦ The complex series exp(z) = ez =
∑+∞

n=0
zn

n! , sin z =
∑+∞

n=0
(−1)nz2n+1

(2n+1)! , and

cos z =
∑+∞

n=0
(−1)nz2n

(2n)! converge in C. Moreover, we have Euler’s Formula:

eiθ = cos θ + i sin θ, for all θ ∈ R.
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◦ If α is a real number we define, for each n ∈ N, the binomial coefficients
(

α
n

)

= α(α−1)...(α−n+1)
n! , if n ≥ 1, and

(

α
0

)

= 1. Then, we have the real

binomial series (1 + x)α =
∑+∞

n=0

(

α
n

)

xn, with radius of convergence ρ = 1.

Right below we prove a result about the complex binomial series that we shall need.

Proposition 2.1. Let p ∈ N \ {0}. Then B(z) =
∑+∞

n=0

(

1/p
n

)

zn converges in the
open disk D(0; 1) and B(z) is a pth root of 1 + z, where |z| < 1. That is, we have

B(z)p = 1 + z, for all z ∈ D(0; 1).

Proof. Given x ∈ (−1, 1), it is well-known that b(x) = (1+x)
1
p =

∑+∞
n=0

(

1/p
n

)

xn. It

is also known that the real series
∑+∞

n=0

(

1/p
n

)

xn diverges if |x| > 1. Therefore, from

the Cauchy-Hadamard formula it follows that the function B(z) =
∑+∞

n=0

(

1/p
n

)

zn,
where z ∈ C, has radius of convergence ρ = 1. By a property of the product of
convergent power series, the function B(z)p is a power series convergent in D(0; 1)
that satisfies the equation B(x)p = b(x)p = 1 + x, for all x ∈ (−1, 1). The claim
then follows from the identity principle. �

Henceforth, Ω denotes an open subset of C.
We say that Ω is connected if the only subsets X of Ω such that X and Ω \X

are both open in C, are the subsets X = Ω and X = ∅.
Given z1 and z2, both in C, we denote the line segment joining them by [z1, z2].

A polygonal line is a finite union of line segments of the form [z0, z1] ∪ [z1, z2] ∪
. . . ∪ [zn−1, zn]. We say that Ω is polygonally connected if each pair of points in Ω
can be joined through line segments lying in Ω. It is not difficult to verify that Ω
is connected if and only if Ω is polygonally connected.

Definition 2.2. A function f : Ω → C is called analytic in Ω if for each z0 ∈ Ω
there exists a radius r = r(z0) > 0 and constants cn ∈ C such that D(z0; r) ⊂ Ω

and f(z) =
∑+∞

n=0 cn(z − z0)
n for all z ∈ D(z0; r). We indicate by A(Ω) the set of

analytic functions in Ω.

We will use the following well-known results on analytic functions, all of them
easy consequences of the previously listed basic results on power series:

◦ Every power series convergent inD(0; ρ), where ρ > 0, is analytic inD(0; ρ).
◦ Every analytic function is continuous and infinitely differentiable.
◦ If f and g are in A(Ω) and λ ∈ C, then f + g, λf , and fg are also in
A(Ω). The function 1/f defined on the open set {z ∈ Ω : f(z) 6= 0} is also
analytic.

◦ If g ∈ A(Ω1) and f ∈ A(Ω2) and the image of g, the set g(Ω1), is contained
in Ω2, then the function composition (f ◦ g)(z) = f

(

g(z)
)

is analytic in Ω1.

Next, we prove a fundamental result about analytic functions.

Proposition 2.3. (Principle of Isolated Zeros forA(Ω)) Let f be in A(Ω), with f not
being the null function, and Ω an open connected set in the complex plane. Then,
Z(f) = {z ∈ Ω : f(z) = 0} is an isolated subset of Ω. Moreover, if z0 ∈ Z(f),
then there exists a smallest k ≥ 1 and a function ϕ ∈ A(Ω) such that we have the
factorization

f(z) = (z − z0)
kϕ(z), for all z ∈ Ω, where ϕ(z0) 6= 0.
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Proof. First, let us show that

W = {w ∈ Ω : f is identically zero over some open disk centered at w}

is an empty set. Clearly, W is open. Moreover, let us suppose that (wn) is a
sequence in W such that wn → ζ, where ζ ∈ Ω, as n→ +∞. By the hypothesis on
(wn) we have f (j)(wn) = 0, for all j ∈ N and all n ∈ N. Since f and its derivatives
are continuous, we obtain f (j)(ζ) = 0, for all j ∈ N. Developing f by its Taylor
series centered at ζ we deduce that ζ ∈ W . Therefore, Ω \W is also open. Thus,
since Ω is connected and f is not the null function, W is empty.

By the previous paragraph, given z0 ∈ Z(f), the Taylor series of f centered at
z0 does not vanish identically. Employing the principle of isolated zeros for power
series, we find k ∈ {1, 2, 3, . . .} and a small r > 0 such that







f(z) = (z − z0)
kg(z), for all z ∈ D(z0; r),

g(z) =
+∞
∑

p=k

ap(z − z0)
p−k, with ap = f(p)(z0)

p ! , for all p ≥ k, and g(z0) = ak 6= 0.

We complete the proof by defining

ϕ(z) =

{

g(z), if z ∈ D(z0; r)
f(z)

(z−z0)k
, if z ∈ Ω \ {z0}.

�

3. The Gutzmer-Parseval Inequality for Polynomials and for

Analytic Functions, Cauchy’s Inequalities, and Liouville’s

Theorem

In this section we prove The Gutzmer-Parseval Inequality for Polynomials and, as
a consequence, The Gutzmer-Parseval Inequality for Analytic Functions, Cauchy’s
Inequalities, the Maximum Modulus Principle, the Uniqueness Theorem for the
Coefficients of a Power Series, and two Liouville’s theorems.

In 1832, A. L. Cauchy already knew the inequalities bearing his name. In 1888,
A. Gutzmer published the formula

∑

|an|2r2n =
1

2π

∫ 2π

0

|f(z0 + reiθ)|2 dθ ,

for functions complex differentiable in an open set (holomorphic functions).
Searching for an integration-free theory of holomorphic functions, P. Porcelli

and L. M. Weiner [26], in 1957, published the following Cauchy inequality for
polynomials: “ If a polynomial P (z) = a0+a1z+· · ·+anzn satisfies |P (z)| ≤M , for
all |z| ≤ R, then we have |aj | ≤ M/Rj, for j = 0, . . . , n.” This Cauchy inequality
was applied in [9]. Another proof of this inequality, with an application, was given
in [10]. See also Leland [22].

The reader is invited to look Weierstrass’s nice proof of Cauchy’s inequality for
analytic functions (given in 1841) that is offered in Remmert [29, p. 247]. I had
the luck of receiving this same invitation from R. B. Burckel and Paulo A. Martin.
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Lemma 3.1. (The Gutzmer-Parseval Inequality for Polynomials) Let P (z) =
∑n

j=0 ajz
j,

with n ≥ 1, be a polynomial and r > 0. Let us define

m(r) = min
|z|=r

|P (z)| and M(r) = max
|z|=r

|P (z)|.

Then, we have

m(r)2 ≤
n
∑

j=0

|aj | 2 |r|2j ≤M(r)2.

Proof. Let us consider the number ω = eiπ/n (thus, ωn = −1) and the 2n poly-
nomials Pk(z) = P (ωkz), where 0 ≤ k ≤ 2n − 1. A short computation reveals
that

(3.1) |Pk(z)|2 =
∑

0≤j≤n

|aj | 2 |z|2j + 2
∑

0≤µ<ν ≤n

Re
[

aµ z
µaνz

νω kµωkν
]

,

and for µ < ν, the difference ν−µ runs over {1, . . . , n}. Writing ω kµω kν = ωk(ν−µ)

we obtain the finite geometric sum

2n−1
∑

k=0

ωk(ν−µ) =
1− ω2n(ν−µ)

1− ων−µ
= 0.

Hence, for 0 ≤ µ < ν ≤ n, it follows that
∑2n−1

k=0

[

aµ z
µaνz

νω kµω kν
]

= 0. Thus,
employing (3.1) and these identities we arrive at

(3.2)

2n−1
∑

k=0

|Pk(z)|2 = 2n

n
∑

j=0

|aj | 2 |z|2j .

Now, since min
|z|=r

|Pk(z)| = min
|z|=r

|P (z)| and max
|z|=r

|Pk(z)| = max
|z|=r

|P (z)|, we deduce

that

2nm(r)2 ≤
2n−1
∑

k=0

|Pk(z)|2 ≤ 2nM(r)2, if |z| = r.

The claimed inequalities follow from these and (3.2). �

Remark 3.2. It is rather trivial to produce a proof of Lemma 3.1 that does not
employ polynomial continuity. To do so, it is enough to replace m(r) and M(r) by
inf{|P (z)| : |z| = r} and sup{|P (z)| : |z| = r}, respectively.

Theorem 3.3. (The Gutzmer-Parseval Inequality for Analytic Functions) Let f(z) =
∑

anz
n be a convergent power series in D(0;R), where R > 0. Given r such that

0 ≤ r < R, we have
∑

|an| 2r2n ≤M(r)2, where M(r) = max
|z|=r

|f(z)|.

Proof. Let z be arbitrary in C, with |z| = r. From the triangle inequality follows
that

∣

∣

∣

N
∑

n=0

anz
n
∣

∣

∣ ≤M(r) +
∣

∣

∣

+∞
∑

n=N+1

anz
n
∣

∣

∣ ≤M(r) +
+∞
∑

n=N+1

|an|rn, for all N ∈ N.
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Thus, by the Gutzmer-Parseval inequality for polynomials (Lemma 3.1) we obtain

N
∑

n=0

|an|2r2n ≤
[

M(r) +

+∞
∑

n=N+1

|an|rn
]2

, for all N ∈ N.

Passing the last inequality to the limit as N → +∞, the claimed inequality follows.
�

Remark 3.4. By redefining M(r) as sup{|f(z)| : |z| = r}, we obtain a proof of
Theorem 3.3 that does not use function continuity. See also Remark 3.2.

Remark 3.5. From Remark 3.4 follows a proof of The Uniqueness Theorem for the
Coefficients of a Power Series (see [3, pp. 112–113]) that does not employ function
continuity. In fact, let us suppose that

∑

anz
n and

∑

bnz
n satisfy

∑

anz
n =

∑

bnz
n, for all |z| < R. Hence,

∑

(an − bn)z
n vanishes everywhere in D(0;R). By

Remark 3.4, we obtain
∑ |an − bn|2r2n ≤ 0 for all r such that 0 ≤ r < R. Thus,

we have an = bn for all n ∈ N.

Corollary 3.6. (Cauchy’s Inequalities) Keeping the theorem’s notation, we have

|an| ≤
M(r)

rn
, for all n ∈ N.

Proof. It is straightforward from Theorem 3.3. �

Corollary 3.7. Let us keep the hypothesis and the notation in Theorem 3.3. If
sup{|f(z)| : z ∈ D(0;R)} ≤M and 0 < r < R, then we have

max
D(0; r)

|f ′| ≤ M

R− r
.

Proof. The Taylor series of f centered at an arbitrary z0 in D(0; r) is

f(z) =
∑ f (n)(z0)

n!
(z − z0)

n, if |z − z0| < R − r.

Hence, from Theorem 3.3 follows

|f ′(z0)| |z − z0| ≤M, if |z − z0| < R− r.

Taking |z − z0|, with |z − z0| < R − r, arbitrarily near R − r, at the limit we find
that |f ′(z0)|(R− r) ≤M . �

Theorem 3.8. (Maximum Modulus Principle) Let f : Ω → C, where Ω is open and
connected, be analytic. If |f | has a local maximum, then f is a constant.

Proof. Let z0 be a point of local maximum of |f |. We can clearly assume that
z0 = 0. Expressing f by its Taylor series around z0 = 0, we write f(z) =

∑

anz
n

with z in a disk D(0; δ), where δ > 0. By hypothesis, there is r, where 0 < r < δ,
such that

|
∑

anz
n| ≤ |f(0)| = |a0|, for all z ∈ D(0; r).

Hence, from Theorem 3.3 follows

|a0|2 +
+∞
∑

n=1

|an|2 r2n ≤ |a0|2.

Thus, we obtain an = 0 if n ≥ 1 and f(z) = a0 for all z ∈ D(0; r). By Proposition
2.3 (principle of isolated zeros), f is a constant. �
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Remark 3.9. The strictly algebraic result asserting that a complex polynomial of
degree n ≥ 1 has at most n zeros is well-known. Consequently, adapting the proof of
Theorem 3.8 (maximum modulus principle) to the case where f is a polynomial, in
a very obvious way, it is rather easy to see that by employing Lemma 3.1 (Gutzmer-
Parseval inequality for polynomials) and Remark 3.2, one can produce a trivial proof
of the Maximum Modulus Principle for Polynomials that does not require polynomial
continuity.

Remark 3.10. The maximum modulus principle (Theorem 3.8) yields a proof of
the fundamental theorem of algebra that is very much like the classical proof (that
employs Liouville’s Theorem for holomorphic functions, see Theorem 3.12) usually
given in regular courses. In fact, suppose that there exists a complex polynomial
p = p(z), degree (p) ≥ 1, with no zeros in C. Therefore, 1/p is analytic in C. Since
|p(z)| → +∞ as |z| → +∞ (see [12]), then 1/|p(z)| → 0 as |z| → +∞. Thus, 1/|p|
has a global maximum at some z0 ∈ C. From Theorem 3.8 it may be concluded
that 1/p is a constant. Hence, degree(p) = 0; which is a contradiction.

Definition 3.11. An analytic function f is entire if its domain is C [i.e., f ∈ A(C)].

Next, in Theorem 3.12 we prove Liouville’s Theorem for an entire function f
supposing that f is given by its Taylor series at the origin. We demonstrate on
Theorem 9.1 (a result due to Hurwitz, Read, and Connell-Porcelli) that such ex-
pansion occurs for every entire function.

The following proof of Theorem 3.12 does not employ function continuity.

Theorem 3.12. (Liouville) Let f(z) =
∑

anz
n be bounded and convergent in C.

Then, f is a constant.

Proof. Let M ∈ R be such that |f(z)| ≤ M , for all z ∈ C. Employing Remark 3.4
and a calculation similar to the one in the proof of Theorem 3.3, we find (without
using function continuity) the inequality

∑

|an|2r2n ≤M2, for all r ≥ 0.

Hence, for a fixed n ≥ 1 we obtain |an|2r2n ≤M2, for all r ≥ 0, which implies that
an = 0. As a result, we conclude the identity f(z) = a0 for all z ∈ C. �

Remark 3.13. Similarly to Theorem 3.12, we have The Extended Liouville Theorem:
Let us suppose that f(z) =

∑

anz
n converges in the complex plane. If there are

constants A ≥ 0, B ≥ 0, and N ∈ N such that

|f(z)| ≤ A+B|z|N , for all z ∈ C ,

then f is a polynomial and degree(f) ≤ N . The proof is easy. In fact, since
we have |∑ anz

n| ≤ A + BrN , for all |z| = r, by employing Theorem 3.3 (the
Gutzmer-Parseval inequaliy for analytic functions) and a straightforward inequality,
we conclude that
∑

|an|2r2n ≤ (A+BrN )2 ≤ C+Dr2N , for all r ≥ 0, with C ≥ 0 andD ≥ 0 constants.

Hence, we have an = 0 for all n > N . Thus, f is a polynomial and degree(f) ≤ N .
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4. The Maximum and Minimum Modulus Principles

In spite of the Maximum Modulus Principle for analytic functions (Theorem 3.8)
being an easy consequence of the Gutzmer-Parseval Inequality for Analytic Func-
tions (Theorem 3.3), we present another proof of such principle in Theorem 4.1 on
account of the following four reasons: (1) it furnishes analogous, independent, and
easy direct proofs of the Maximum and Minimum Modulus Principles for analytic
functions and also for polynomials (the proofs for polynomials can be freed from the
exponential function by adapting the proof of the fundamental theorem of algebra
in [12]); (2) although the Minimum Modulus Principle for f ∈ A(Ω) follows easily
from the Maximum Modulus Principle for f ∈ A(Ω) by applying the latter to 1/f
if the function f does not vanish, such an argument cannot be used if we are re-
stricted to the algebra of polynomials because the function 1/P is not a polynomial
if P is a non-constant polynomial; (3) the importance of the Minimum Modulus
Principle for polynomials in proving the fundamental theorem of algebra (see [12]
and Remmert [28, p. 112]); (4) its simplicity and usefulness in analyzing saddle
points of |f |, where f is an analytic function, and in proving the Anti-Calculus
Proposition (Theorem 5.2) and the Clunie-Jack Lemma (Theorem 10.2).

Theorem 4.1. Let f : Ω → C, where Ω is an open and connected set in C, be
analytic and non-constant. Then,

(a) (Maximum Modulus Principle) |f | has no local maximum.
(b) (Minimum Modulus Principle) |f | has no local minimum at z0 in Ω, unless

f(z0) = 0.

Proof. Let us suppose that z0 = 0 is a point of local maximum or local minimum
of |f |. Hence, the expression

(4.1) |f(z)|2 − |f(0)|2

does not change sign [≥ 0 or ≤ 0] in some disk D(0; ǫ), with ǫ > 0, and by the
principle of isolated zeros (Proposition 2.3) there exists a natural number k ≥ 1
and a function ϕ analytic in D(0; ǫ) such that

(4.2) f(z) = f(0) + zkϕ(z), ϕ(0) 6= 0.

Putting z = reiθ, with 0 < r < ǫ and θ ∈ R, and combining the expressions (4.1)
and (4.2) we obtain

(4.3) |f(reiθ)|2 − |f(0)|2 = 2rkRe
[

f(0)eikθϕ(reiθ)
]

+ r2k|ϕ(reiθ)|2,

whose sign is constant and unchanged when we divide the second member of (4.3)
by rk (with 0 < r < ǫ):

2Re
[

f(0)ϕ(reiθ)eikθ
]

+ rk|ϕ(reiθ)|2.
Fixing θ ∈ R, by continuity the limit of the expression right above for r → 0+ is
the expression

2Re
[

f(0)ϕ(0)eikθ
]

that keeps the sign of the former expression, independently of θ ∈ R. However,
this is only possible if f(0)ϕ(0) = 0 [to see this, it is enough to choose values of θ
such that eikθ assumes the values −1, +1, −i, and +i]. Therefore, we deduce that

f(0)ϕ(0) = 0 and then f(0) = 0.



10 OSWALDO RIO BRANCO DE OLIVEIRA

Consequently, if z0 is a point of local maximum of |f |, then f vanishes everywhere
in a neighbourhood of z0 and through the principle of isolated zeros we conclude
that f is null in Ω, against the hypothesis. Thus, there is no such z0. It is quite
easy to turn this proof of the maximum modulus principle into a direct proof.

If z0 is a point of local minimum, then we have proved f(z0) = 0 as desired. �

Next, we give a very intuitive proof of Liouville’s Theorem for a bounded power
series convergent in the entire complex plane, employing the maximum modulus
principle [Theorem 4.1 (a)]. See also Theorem 3.12 and Remark 3.13.

Theorem 4.2. (Liouville) Let f(z) =
∑

anz
n, where z ∈ C, be a bounded function.

Then, f is constant.

Proof. Clearly, the function |f(z) − a0| = |z||a1 + a2z + a3z
2 + · · · | is bounded.

Hence, if |z| → +∞, then ϕ(z) = a1 + a2z + a3z
2 + · · · tends to 0 and the function

|ϕ(z)| has a global maximum. By the maximum modulus principle [Theorem 4.1
(a)], we see that ϕ is constant. Thus, ϕ is the zero function and f is constant. �

Remark 4.3. One can adapt the proof of Theorem 4.2 for an entire and bounded
analytic function f [i.e., f is bounded and f ∈ A(C)]. In fact, applying the principle
of isolated zeros (Proposition 2.3) and writing f(z) = a0 + zϕ(z), with ϕ analytic
in C, one can then proceed exactly as in the proof of Theorem 4.2.

In Theorem 4.4 we present a proof of the maximum modulus principle for an
analytic function that does not employ function continuity.

Theorem 4.4. (Maximum Modulus Principle) Let f be analytic in an open and
connected set Ω. If the function |f | has a local maximum at some z0 ∈ Ω, then f
is a constant.

Proof. At first, let us first consider the case f(z) =
∑

anz
n, with z ∈ D(0;R) and

R > 0. Then, let us define g(w) = f(z0 + w), with |w| < R − |z0|. Since
∑

anz
n

converges absolutely within D(0;R), by a usual power series computation we have


















g(w) =
+∞
∑

n=0

an(z0 + w)n =
+∞
∑

n=0

n
∑

m=0

(

n
m

)

anz
n−m
0 wm =

+∞
∑

m=0

bmw
m,

where bm =
∑

n≥m

an
(

n
m

)

zn−m
0 .

Moreover, since |g| has a local maximum at w = 0, from Remark 3.4 it follows

(without employing function continuity) the inequality |b0|2 +
∑+∞

m=1 |bm|2ρ2m ≤
|b0|2, for all ρ > 0 and ρ small enough. Hence, we obtain bm = 0, for all m ≥ 1,
which implies that g(w) = g(0) = f(z0), for all w ∈ D(0;R− |z0|).

Thus, we proved that f(z) = f(z0), for all z ∈ D(z0;R− |z0|) (the biggest open
disk centered at z0 and still inside the domain of f). Let us consider the subcase
0 ∈ D(z0;R − |z0|). Then, 0 is a point of local maximum of |f |. Hence, by the
previous argument we deduce that f(z) = f(0), for all z ∈ D(0;R). The proof of
this subcase is complete.

Let us now consider the subcase 0 /∈ D(z0;R − |z0|). Then, the point z1 =

z0 − R−|z0|
2

z0
|z0|

∈ D(z0;R− |z0|) is a point of local maximum of |f |. Hence, by the

argument in the paragraph right above, it follows that f(z) = f(z1) = f(z0), for
all z ∈ D(z1; 3(R − |z0|)/2), noticing that 3(R − |z0|)/2 = R − |z1|. Otherwise, if
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the point 0 is in D(z1;R − |z1|), then 0 is a point of local maximum of |f |. Thus,
we complete the proof of this subcase as in the paragraph right above.

If 0 /∈ D(z1;R−|z1|), then proceeding as in the last paragraph we will eventually

find a point zn = zn−1−R−|zn−1|
2

zn−1

|zn−1|
∈ D(zn−1;R−|zn−1|), with n ≥ 2 and radius

R − |zn−1| = (32 )
n−1(R − |z0|), such that f(z) = f(zn) = · · · = f(z1) = f(z0), for

all z ∈ D(zn;R − |zn|), with 0 ∈ D(zn;R − |zn|). Hence, in such a subcase, we
complete the proof as in the last paragraph. The proof of the first case is complete.

Now, let us consider the general case f : Ω → C. Then, since Ω is open and con-
nected, given any w ∈ Ω, there exists a polygonal path P = [z0, z1]

⋃

. . .
⋃

[zn−1, zn],
where n is fixed and [zj , zj+1] = {zj+t(zj+1−zj) : 0 ≤ t ≤ 1}, for all j ∈ {0, . . . , n−
1}, inside Ω and connecting z0 and zn = w. Moreover, for every ζ ∈ P , there exists
rζ > 0 such that f is developable as a power series centered at ζ and convergent
in D(ζ; rζ). Furthermore, since the polygonal P is compact, there exists a smallest
m ≥ 0 such that ζ0 = z0, . . . , ζm satisfies P ⊂ D(ζ0; rζ0)

⋃

. . .
⋃

D(ζm; rζm). Then,
since the intersections P ∩D(ζj ; rζj ) are nonempty, for all j ∈ {0, . . . ,m}, we can re-
enumerate these disks so that for each j ∈ {1, . . . ,m}, the disk D(ζj ; rζj ) intersects
the union D(ζ0; rζ0) ∪ . . . ∪ D(ζj−1; rζj−1 ). Now, by the first case, we notice that
we have f(z) = f(z0), for all z ∈ D(z0; rz0). Consequently, we obtain f(z) = f(z0),
for all z in D(ζ0; rζ0) ∩ D(ζ1; rζ1). Therefore, by the first case, we conclude that
f(z) = f(z0), for all z ∈ D(ζ1; rζ1 ), which implies the identity f(z) = f(z0), for
all z ∈ D(z0; rz0) ∪ D(ζ1; rζ1 ). Hence, proceeding by induction we conclude that
f(z) = f(z0), for all z ∈ D(ζ0; rζ0 ) ∪ . . . ∪D(ζm; rζm). The proof is complete. �

5. The Anti-Calculus Proposition by Pólya-Szegö and P. Erdös and

the Theorem on Saddle Points by Bak-Ding-Newman.

The two results in this section can be found in Bak and Newman [1, pp. 87–90]
and [2], and also in H. P. Boas [4]. As proposed problems, they can be seen in
Pólya and Szegö [25, Part III, Problems 132, 136, and 144]. The proofs given in
this section are different than the respective ones in [1], [2], and [4].

Definition 5.1. Given a set X ⊂ C and a function f : X → C, we say that f is
analytic in X if there exists an open set containing X in which some extension of
f is analytic.

Theorem 5.2. (Anti-Calculus Proposition (Pólya-Szegö, P. Erdös)) Let us suppose
that f : D(0;R) → C is analytic and non-constant and α, where |α| = R, is a point
of maximum of |f | or a point of minimum of |f |.

(a) If α is a point of maximum, then f ′(α) 6= 0.
(b) If α is a point of minimum, then f(α) = 0 or f ′(α) 6= 0.

Proof. Let us suppose that f ′(α) = 0. Since α is either a point of maximum or a
point of minimum of |f | in D(0;R) and f is non-constant, from the Taylor series
of f centered at α we may conclude that there exists a function ϕ analytic inside
D(α; r), with r > 0 and sufficiently small, and k ≥ 2 satisfying

(5.1)







f(z) = f(α) + (z − α)kϕ(z), ϕ(α) 6= 0, for all z ∈ D(α; r),

|f(z)|2 − |f(α)|2 has the same sign for all z ∈ D(α; r) ∩D(0;R).
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Substituting the first equation of (5.1) for z = α + ǫeiθ, where the real numbers ǫ
and θ are such that z ∈ D(α; r) ∩ D(0;R), into the second expression of (5.1) we
obtain the expression

(5.2) 2ǫkRe
[

f(α)eikθϕ(α+ ǫeiθ)
]

+ ǫ2k |ϕ(α+ ǫeiθ)|2,
whose sign is the same for all such values of ǫ and θ. The possible values of θ
include some interval (θ0, θ0 + π). Given one such θ, there exists rθ > 0 such that
z = α + ǫeiθ ∈ D(0;R) if ǫ is in (0, rθ). Let us fix one such θ. Taking the limit as
ǫ→ 0+ of (5.2) divided by ǫk we obtain the expression

2Re
[

f(α)ϕ(α)eikθ
]

, with the same sign for all θ ∈ (θ0, θ0 + π).

However, since k ≥ 2, this can only be true if f(α)ϕ(α) = 0, which implies f(α) = 0.
Now we can complete the proof of this theorem.

(a) If α is a point of maximum, then we deduce that f is the zero function,
against the hypothesis. Thus, f ′(α) 6= 0.

(b) If α is a point of minimum then we proved f(α) = 0, as we intended.

�

Definition 5.3. Given a real-differentiable function F : Ω → R, with Ω an open
subset of R2, a point P0 ∈ Ω is a saddle point of F if P0 is a critical point of F
(i.e., the partial derivatives of first order Fx(P0) and Fy(P0) are both zero) but P0

is not a local extremum of F (i.e., P0 is neither a point of local maximum of F nor
a point of local minimum of F ).

Let us consider an analytic function f : Ω → C, where Ω is an open subset of C.
By identifying Ω as the subset {(x, y) ∈ R2 : z = x + iy ∈ Ω} contained in R2, we
consider in R3 the graph of the function |f | : Ω → R,

Graph(|f |) =
{

(x , y , |f(z)| ) ∈ R3 : z = x+ iy ∈ Ω
}

.

Definition 5.4. The set Graph(|f |) is the analytic landscape of f (see Busam and
Freitag [6, p. 64], Jensen [18], and Pólya-Szegö [25, Part III, Problems 131 and
132]).

Theorem 5.5. (Bak-Ding-Newman) Let f be a non-constant analytic function de-
fined in Ω and z0 = x0 + iy0 ∈ Ω, with x0 and y0 real numbers. Then, (x0, y0) is a
saddle point of F = |f | : Ω → R if and only if f ′(z0) = 0 and f(z0) 6= 0.

Proof. Let us keep the notation in Theorem 5.2 (the anti-calculus proposition). We
may assume without loss of generality that z0 = 0.

(⇒) It is clear that f(0) 6= 0. Let us consider ψ analytic in Ω such that

f(z) = f(0) + zψ(z), ψ(0) = f ′(0).

At the origin, |f | is real-differentiable and has null gradient. Then, fixing
an arbitrary angle θ ∈ R and taking the limit for r → 0+ we obtain

(5.3) 0 = lim
r→0+

|f(reiθ)| − |f(0)|
|reiθ|

= lim
r→0+

1

|f(reiθ)|+ |f(0)|
{

2Re
[

f(0)ψ(reiθ)eiθ
]

+ r|ψ(reiθ)|2
}

.
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On the other hand, for fixed θ, if r → 0+ then we have f(reiθ) → 0 and, in
addition, ψ(reiθ) → f ′(0). Substituting these limits into (5.3) we obtain

2Re[f(0)f ′(0)eiθ] = 0.

Since θ is arbitrary in R, we finally obtain f(0)f ′(0) = 0 and thus f ′(0) = 0.
(⇐) Thanks to the hypothesis, we know that there exists a function ϕ analytic

in Ω which satisfies the equation f(z) = f(0)+ zkϕ(z), for all z ∈ Ω, where
k ≥ 2 and ϕ(0) 6= 0. Hence, given z 6= 0 we can write

|f(z)| − |f(0)|
|z| =

|f(z)|2 − |f(0)|2
|z| ( |f(z)|+ |f(0)| ) =

2Re[ f(0)ϕ(z)zk ] + |ϕ(z)|2 |z|2k
|z| ( |f(z)|+ |f(0)| ) .

Consequently, we have

lim
z→0

|f(z)| − |f(0)|
|z| =

= lim
z→0

1

|f(z)|+ |f(0)|

{

2Re

[

f(0)ϕ(z)zk−1 z

|z|

]

+ |ϕ(z)|2|z|2k−1

}

= 0.

Therefore, at the origin the function |f | is real-differentiable and its partial
derivatives of first order vanish.

Furthermore, for any fixed angle θ, the sign of |f(reiθ)|2−|f(0)|2 is that

of the expression 2Re
[

f(0)ϕ(reiθ)eikθ
]

+ rk|ϕ(reiθ)|2 which is, considering

small values of r > 0, the sign of 2Re[f(0)ϕ(0)eikθ ], if this number is not

zero. However, since f(0)ϕ(0) 6= 0, this sign can in fact change, depending
on the chosen θ. Thus, z = 0 is a saddle point.

�

6. The Polygonal Mean-Value Property for Polynomials

The next result is just a part of a theorem due to S. Kakutani and M. Nagamo
[19] and J. L. Walsh [30] (see also S. Haruki [15]) characterizing the functions having
the property described in Definition 6.1 as polynomials.

Definition 6.1. A function f(z) possesses the polygonal mean-value property if
there exists N ∈ N such that for any z0 ∈ C the value f(z0) is the average of f at
the N vertices of every regular polygon with N sides centered at z0.

Theorem 6.2. (Kakutani-Nagamo, Walsh) Let P (z) =
∑n

j=0 ajz
j, n ≥ 1, be a

complex polynomial and ω = eiπ/n (thus, ωn = −1). Given arbitrary complex
numbers z0 and z, we have

P (z0) =
1

2n

2n−1
∑

k=0

P (z0 + zωk).

Proof. Supposing initially z0 = 0, we consider the 2n polynomials

Pk(z) = P (zωk) = a0 + a1zω
k + · · ·+ anz

nωkn, where 0 ≤ k ≤ 2n− 1.

Clearly, we have

2n−1
∑

k=0

ωkj =

{

2n, if j = 0
1−ω2nj

1−ωj = 0, if 1 ≤ j ≤ n.
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Hence,
∑2n−1

k=0 Pk(z) = 2na0 = 2nP (0). Thus, defining Q(z) = P (z0+ z) we obtain

2nP (z0) = 2nQ(0) =

2n−1
∑

k=0

Qk(z) =

2n−1
∑

k=0

Q(zωk) =

2n−1
∑

k=0

P (z0 + zωk).

�

Remark 6.3. Since the enunciation of Theorem 6.2 does not specify the degree of
the polynomial P (z) =

∑n
j=0 ajz

j, we may conclude that its claim is true for every

n ∈ {1, 2, 3, . . .} such that n ≥ degree(P ).

As a consequence of Theorem 6.2, we provide a “high school proof” of the Max-
imum Modulus Principle for Polynomials that does not employ polynomial conti-
nuity (see Remark 3.9 and the penultimate paragraph of the Introduction).

Theorem 6.4. (MaximumModulus Principle for Polynomials) Let P (z) =
∑n

j=0 ajz
j,

where n ≥ 1, be a complex polynomial and z0 a point of local maximum of |P |. Then,
P is a constant.

Proof. We assume, without losing generality, z0 = 0. Let R > 0 be such that
|P (z)| ≤ |P (0)|, for all z ∈ D(0;R), and let ω = eiπ/n (thus, ωn = −1). Then, by
the polygonal mean-value property for polynomials (Theorem 6.2) we have

P (0) =
1

2n

2n−1
∑

k=0

P (zωk)

and also, since |P (0)| is the maximum value of |P | in D(0;R),

|P (0)| ≤ 1

2n

[

|P (zω0)|+ · · ·+ |P (zω2n−1)|
]

≤ 1

2n

[

|P (z)| + (2n−1)|P (0)|
]

≤ |P (0)|.

Thus, we obtain |P (z)| = |P (0)| = |a0| for all z ∈ D(0;R). Hence, given a real
number z = x ∈ [0, R] we deduce that

|a0|2 =

n
∑

j=0

|aj |2x2j + 2
∑

0≤µ<ν≤n

Re[aµaν ]x
µ+ν

and, cancelling |a0|2 on each side, noticing that µ+ ν < 2n if 0 ≤ µ < ν ≤ n, and
isolating the monomial |an|2x2n, which has the biggest exponent,







n−1
∑

j=1

|aj |2x2j + 2
∑

0≤µ<ν≤n

Re[ aµaν ]x
µ+ν







+ |an|2x2n = 0, for all x ∈ [0, R].

Since every complex polynomial with a nonzero coefficient has a finite number of
zeros, we deduce that all the coefficients of the polynomial right above are zero.
Thus, the coefficient |an|2 of the monomial |an|2x2n is zero. Hence, we are allowed

to write P (z) =
∑n−1

j=0 ajz
j . If n−1 = 0, then we have P (z) = a0; thus, the proof is

complete. Otherwise, by repeating the previous argument (n−1)-times we conclude
that an−1 = an−2 = · · · = a1 = 0 and consequently P (z) is a constant. �
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Proposition 6.5. (Cauchy’s Inequalities for P (z) =
∑j =m

j=−n ajz
j) Let us consider

P (z) =
∑j =m

j=−n ajz
j, where n and m are fixed in N and aj ∈ C, for all j such that

−n ≤ j ≤ m. Let M(r) = max{|P (z)| : |z| = r}, where r > 0. Then,

|aj | ≤
M(r)

rj
, for all j ∈ {−n,−n+ 1, . . . ,m}.

Proof. Introducing null coefficients aj′s if necessary, we can suppose that m = n.

Set ω = eiπ/n. A short computation reveals that

Pk(z) = P (zωk) =
a−n

zn
ω−kn + · · ·+ a0 + · · ·+ anz

nωkn, if 0 ≤ k ≤ 2n− 1,

and
2n−1
∑

k=0

ωkj =

{

2n, if j = 0
1−ω2nj

1−ωj = 0, if − n ≤ j ≤ n and j 6= 0.

Hence, since max{|Pk(z)| : |z| = r} = max{|P (z)| : |z| = r} =M(r), for |z| = r we
obtain

2n|a0| =
∣

∣

∣

∣

∣

2n−1
∑

k=0

Pk(z)

∣

∣

∣

∣

∣

≤ 2nM(r),

and then for the constant term a0 we deduce the inequality |a0| ≤M(r).
For j ∈ N such that −n ≤ j ≤ n we have P (z) = zjQ(z), with Q(z) =

a−nz
−n−j + · · · + aj + · · · + anz

n−j and max{|Q(z)| : |z| = r} = M(r)/rj . Thus,
by the previous case we conclude that

|aj | ≤ max
|z|=r

|Q(z)| = M(r)

rj
.

�

The following result is a discrete version of Cauchy’s Integral Formula.

Proposition 6.6. Let P (z) be a complex polynomial, n ∈ {1, 2, 3, . . .} such that
n ≥ degree(P ), and ω = eiπ/n (thus, ωn = −1). Then, given arbitrary complex
numbers z0 and z, with z 6= 0, and an arbitrary j ∈ {0, 1, . . . , n} we have

P (j)(z0)

j !
=

1

2n

2n−1
∑

k=0

P (ζk)

(ζk − z0)j
, where ζk = z0 + zωk.

Proof. Writing P (ζ) = P (z0)+P
′(z0)(ζ−z0)+· · ·+P (n)(z0)

n! (ζ−z0)n and introducing

ζk = z0 + zωk, with z 6= 0 and 0 ≤ k ≤ 2n− 1,

we find

P (ζk) = P (z0) + P ′(z0)zω
k + · · ·+ P (n)(z0)

n!
znωkn

and then,

P (ζk)

(ζk − z0)j
=

P (ζk)

zjωkj
= P (z0)z

−jω−kj+ · · ·+ P (j)(z0)

j !
+ · · ·+ P (n)(z0)

n!
zn−jωk(n−j).

It is trivial to verify the identity
∑2n−1

k=0 ωkl = 1−ω2nl

1−ωl = 0, if −n ≤ l ≤ n and l 6= 0.

Moreover, it is obvious that
∑2n−1

k=0 ωkl = 2n, if l = 0. Apply these with l running
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over {−j, 1− j, . . . , n− j} to get finally

P (j)(z0)

j !
=

1

2n

2n−1
∑

k=0

P (ζk)

(ζk − z0)j
.

�

7. The Open Mapping Theorem

Definition 7.1. Given f : Ω → C, we say that f is an open map if for every open
subset O of Ω, the set f(O) = {f(z) : z ∈ O} is an open set in the complex plane.

Definition 7.2. Given A and B, two subsets of C, the distance between A and B
is the non-negative number d(A;B) = inf{|a− b| : a ∈ A and b ∈ B}.

For another power series proof of the Open Mapping Theorem, we refer the
reader to Cater [8]. See also Lang [21, p. 81].

Theorem 7.3. (Open Mapping Theorem) Let f be a non-constant analytic function
in an open connected set containing D(0;R). Then, the image of f contains an open
disk centered at f(0).

Proof. By the principle of isolated zeros (Proposition 2.3), there exists a circle
C(0; r) = {z : |z| = r}, with r > 0, contained in D(0;R) such that f(0) /∈
f
(

C(0; r)
)

. Then, we consider the strictly positive distance

δ = d
(

f(0); f
(

C(0; r)
)

)

.

Let us verify the inclusion D
(

f(0); δ/2
)

⊂ f
(

D(0; r)
)

. Given an arbitrary point

T ∈ D
(

f(0); δ/2
)

, there exists a point v ∈ D(0; r) satisfying

|T − f(v)| = d
(

T ; f
(

D(0; r)
)

)

.

It is clear that |T −f(v)| ≤ |T −f(0)| < δ/2. From the triangle inequality it follows
that |f(v)− f(0)| ≤ |f(v)− T |+ |T − f(0)| < δ. Hence, f(v) /∈ f

(

C(0; r)
)

and we
obtain |v| < r. Let us consider the radius ρ = r − |v| > 0.

From above we conclude that there exists ϕ analytic in D(0; ρ), with ϕ(0) 6= 0,
and k ∈ {1, 2, 3, . . .} such that for all z ∈ D(0; ρ) we have the system

{

f(v + z) = f(v) + zkϕ(z),
|T − f(v + z)|2 ≥ |T − f(v)|2.

Substituting the equation in the first line into the inequality in the second line and
then expanding the resulting inequality we arrive at

|T − f(v)|2 − 2Re
{

[

T − f(v)
]

zkϕ(z)
}

+ |z|2k|ϕ(z)|2 ≥ |T − f(v)|2, if z ∈ D(0; ρ),

which implies that, after cancelling the term |T−f(v)|2, then substituting z = reiθ,
where 0 < r < ρ and θ ∈ R, and cancelling rk,

−2Re
{

[

T − f(v)
]

ϕ(reiθ)e−ikθ
}

+ rk|ϕ(reiθ)|2 ≥ 0, if 0 < r < ρ and θ ∈ R.

Now, fixing the angle θ and letting r → 0+ we obtain

−2Re
{

[

T − f(v)
]

ϕ(0)e−ikθ
}

≥ 0.
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Since θ is arbitrary, and k ≥ 1, we deduce that [T − f(v)]ϕ(0) = 0. Therefore,
T = f(v). �

Remark 7.4. One can easily show that the open mapping theorem implies the max-
imum and the minimum modulus principles. The famous Carathéodory’s proof of
the open mapping theorem for holomorphic functions can be seen in Carathéodory [7,
pp. 139–140], Burckel [5, p. 172], and Remmert [29, pp. 256–258] (see also Bak and
Newman [1, pp. 93–94]).

8. The Inverse Function Theorem and The Local Representation

Theorem

Theorem 8.1. Let us consider f ∈ A(Ω) and z0 ∈ Ω satisfying f ′(z0) 6= 0. Then,
there exists r > 0 such that

(a) f is injective in D(z0; r) ⊂ Ω.
(b) f

(

D(z0; r)
)

= V is an open set containing f(z0).
(c) ϕ = f |D(z0;r) : D(z0; r) → V is invertible and its inverse is continuous.

(d) ϕ−1 is complex-differentiable.

Proof. Replacing f with the map z 7→ f(z + z0)− f(z0), allows us to suppose that
f(z0) = 0 and z0 = 0.

(a) Let r > 0 be such that |f ′(ζ)| > |f ′(0)|
/

2 for all ζ ∈ D(0; 2r) ⊂ Ω and such
that the Taylor series (with coefficients an) of f around the origin converges
in D(0; 2r). Given z and w, both in D(0; r), we find

f(z)− f(w) = a1(z − w) + a2(z
2 − w2) + · · ·+ an(z

n − wn) + · · ·
and, also supposing z 6= w,

f(z)− f(w)

z − w
= f ′(0) +

+∞
∑

n=2

an

n−1
∑

k=0

zn−1−kwk.

We have
∣

∣

∑+∞
n=2 an

∑n−1
k=0 z

n−1−kwk
∣

∣ ≤ ∑+∞
n=2 |an|nrn−1, and the series

f ′(z) =
∑

n≥1 nanz
n−1 is absolutely convergent in the open disk D(0; 2r).

Clearly, we can suppose r small enough (with r strictly positive) so that
∑

n≥2 n|an|rn−1 < | f ′(0) |
/

2. Thus, given two arbitrary points z and w,

both within D(0; r), it follows that
∣

∣

∣

f(z)− f(w)

z − w

∣

∣

∣ >
|f ′(0)|

2
> 0 and thus f(z) 6= f(w).

(b) It follows from the open mapping theorem (Theorem 7.3), by noticing that
D(0; r) is connected.

(c) Since ϕ is bijective and open, if O is open then the set
(

ϕ−1
)−1

(O) = ϕ(O)

is also open. As a consequence, ϕ−1 is continuous.

(d) In the Newton quotient ϕ−1(w)−ϕ−1(w0)
w−w0

we make the notational change

ϕ−1(w) = z, ϕ−1(w0) = z0, w = f(z), and w0 = f(z0). Since the function
ϕ−1 is continuous, it follows that z → z0 if w → w0 and consequently

(

ϕ−1
)′
(w0) = lim

w→w0

ϕ−1(w) − ϕ−1(w0)

w − w0
= lim

z→z0

z − z0
f(z)− f(z0)

=
1

f ′(z0)
.

�



18 OSWALDO RIO BRANCO DE OLIVEIRA

Theorem 8.2. (Local Representation) Let f be analytic in D(z0; r), with r > 0 and

f(z) = a0 +

+∞
∑

n=m

an(z − z0)
n, where m is fixed, m ≥ 1, and am 6= 0.

Then, there exists ϕ analytic and bijective in an open disk centered at the origin
such that ϕ has differentiable inverse and satisfies

f(z) = a0 + ϕ(z − z0)
m.

Proof. We write f(z)− a0 = am(z − z0)
m + am+1(z − z0)

m+1 + · · · as

f(z)− a0 = am(z − z0)
m[1 + g(z − z0)], with g(0) = 0.

Let a ∈ C be a mth root of am (i.e., am = am). Then, by Proposition 2.1, on
complex binomial series, we can consider a convergent power series G(z) satisfying,
for |z| sufficiently small,

1 + g(z) = [1 +G(z)]m, with G(0) = 0.

Then we have

f(z)− a0 =
{

a(z − z0)[1 +G(z − z0)]
}m

,

implying that

f(z) = a0 + ϕ(z − z0)
m, where ϕ(w) = aw

(

1 +G(w)
)

.

Since G(0) = 0, the second coefficient of the Taylor series of ϕ centered at z = 0 is
a 6= 0. Thus, by the inverse function theorem (Theorem 8.1), ϕ enjoys the desired
properties. �

9. The Theorem of Read and Connell-Porcelli and the Theorem of

Hurwitz

This section presents an adaptation for analytic functions of the proof of a theo-
rem for holomorphic functions given by Whyburn in [31] and [32, pp. 81–82]. This
theorem was independently proved, in 1961, by A. H. Read [27] and by E. H. Con-
nell and P. Porcelli [9]. A proof by A. Hurwitz of a version of this theorem for
analytic functions can be found in [16].

Theorem 9.1. Let f be analytic in D(0; 1). Then, there exists a sequence (aj) ⊂ C

such that

f(z) =
∑

ajz
j, for all z ∈ D(0; 1).

Proof. Let us fix an arbitrary n ≥ 1, with n ∈ N. Let g be the analytic function in
D(0; 1) given by

g(z) =
2n−1
∑

k=0

(−1)kf(zωk) , where ω = eiπ/n (thus, ωn = −1).

From the hypothesis it follows that there exists a complex sequence (aj) satisfying
f(z) =

∑

ajz
j, for all z ∈ D(0; ρ), for some 0 < ρ < 1. Hence, there exists a
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complex sequence (bj) such that we have g(z) =
∑

bjz
j, for all z ∈ D(0; ρ). In

addition,






















bj =
2n−1
∑

k=0

(−1)kajω
jk = aj

1−ωj2n

1+ωj = 0, if 0 ≤ j < n,

bn =
2n−1
∑

k=0

(−1)kanω
nk = 2nan.

Therefore, we can write
∑+∞

j=0 bjz
j = zn

(

2nan+
∑+∞

j=n+1 bjz
j−n

)

, where z belongs

to D(0; ρ). Now, it is easy to see that the function

ϕ(z) =







2nan +
+∞
∑

j=n+1

bjz
j−n, if z ∈ D(0; ρ),

g(z)
zn , if z 6= 0,

is well defined and analytic in D(0; 1). Putting M(r) = max{|f(z)| : |z| = r}, with
0 < r < 1, by Theorem 4.1 (the maximum modulus principle) we infer that

2nan = |ϕ(0)| ≤ max
|z|=r

|ϕ(z)| = max
|z|=r

|g(z)|
rn

≤ 2nM(r)

rn
.

Therefore, we have proved that

|an|rn ≤M(r) , if 0 < r < 1 , for all n ∈ N.

Hence, if R is the radius of convergence of
∑

anz
n, from the Cauchy-Hadamard

formula follows that

R−1 = lim sup n
√

|an| ≤ lim sup
n
√

M(r)

r
= r−1,

which implies R ≥ r for all 0 < r < 1 and then, R ≥ 1. As a consequence, the
power series

∑

anz
n converges within D(0; 1) and, through the principle of isolated

zeros (Proposition 2.3) we conclude that f(z) =
∑

anz
n, for all z ∈ D(0; 1). �

Remark 9.2. From Theorem 9.1 and Liouville’s theorem (Theorem 3.12) we obtain
a very easy proof of the fundamental theorem of algebra. In fact, let us suppose that
there exists a polynomial p = p(z), degree (p) ≥ 1, with no zeros. Hence, 1/p(z)
is entire and by Theorem 9.1 together with point 5 on p. 3, we have 1/p(z) =
∑

anz
n, for all z ∈ C. Moreover, since |p(z)| → +∞ as |z| → +∞ (see [12]), there

exists M ∈ R such that |∑ anz
n| = 1/|p(z)| ≤ M , for all z ∈ C. Finally, from

Theorem 3.12 we conclude that
∑

anz
n is a constant and degree(p) = 0, which is

a contradiction.

10. The Schwarz Lemma and the Clunie-Jack Lemma

Section 10 provides a modest generalization of the Schwarz Lemma for ana-
lytic functions, as a consequence of the Gutzmer-Parseval inequality for analytic
functions (Theorem 3.3). This generalization is inspired by a power series proof
of the Schwarz Lemma for complex-differentiable functions, given by Burckel [5,
p. 191]. Erhardt Schmidt’s famous proof of Schwarz’s Lemma for holomorphic func-
tions, first published by Carathéodory, in 1905 (see Osserman [24]), can be seen in
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Carathéodory [7, pp. 135–136]. See also Bak and Newman [1, p. 94], Conway [11,
pp. 130–131], Lang [21, pp. 210–211], and Remmert [29, p. 270].

As a result of Schwarz’s Lemma, this section presents a trivial proof of the
Clunie-Jack Lemma (originally published in 1971), see Jack [17]. See also H. P.
Boas [4], Burckel [5, p. 207], Osserman [24], and Pólya and Szegö [25, Part III,
Problem 291].

Here and subsequently, S1 stands for the set {z ∈ C : |z| = 1}.
Theorem 10.1. (Schwarz’s Lemma) Let f be analytic in D(0; 1) such that

|f(z)| ≤ 1, for all z ∈ D(0; 1), and f(0) = 0.

The following statements are true.

• We can write f(z) =
∑+∞

n=1 anz
n, where

+∞
∑

n=1

|an|2 ≤ 1 and |f(z)| ≤ |z|, for all z ∈ D(0; 1).

• We have |an| = 1, for some n ≥ 1, if and only if there is ω ∈ S1 satisfying

f(z) = ωzn , for all z ∈ D(0; 1).

• We have |f(z)| = |z|, for some z 6= 0, if and only if there is ω ∈ S1

satisfying
f(z) = ωz , for all z ∈ D(0; 1).

Proof. Since f(0) = 0, through using Theorem 9.1 (by Hurwitz, Connell-Porcelli,

and Read) we write f(z) =
∑+∞

n=1 anz
n, where z ∈ D(0; 1) and an ∈ C, for all n ≥ 1.

As a consequence, since |f(z)| ≤ 1 for all z ∈ D(0; 1), from the Gutzmer-Parseval
inequality for analytic functions (Theorem 3.3) we obtain the inequality

+∞
∑

n=1

|an|2r2n ≤ 1 , for all r in [0, 1) ,

and taking the limit of such an inequality as r → 1− we find that
∑+∞

n=1 |an|2 ≤ 1.
Thus, if |an| = 1 for a particular n ≥ 1, then we have f(z) = anz

n, for all |z| < 1.
Now, let us consider any point ζ in the circle {z : |z| = r}, with r fixed and

0 < r < 1. It is clear that |∑+∞
n=1 anζ

n−1| = r−1|∑+∞
n=1 anζ

n| ≤ r−1. Therefore,
from the maximummodulus principle for analytic functions (Theorem 4.1) it follows

the inequality |∑+∞
n=1 anz

n−1| ≤ 1/r, for all z ∈ D(0; r). Consequently, as r is

arbitrary in the interval (0, 1), we find that |∑+∞
n=1 anz

n−1| ≤ 1, for all z ∈ D(0; 1).

Hence, we deduce that |f(z)| = |z∑+∞
n=1 anz

n−1| ≤ |z|, for all z ∈ D(0; 1).

If |∑+∞
n=1 anζ

n| = |ζ|, for some ζ such that 0 < |ζ| < 1, then we have the

identity |∑+∞
n=1 anζ

n−1| = 1. We already proved (two paragraphs above) the in-

equality |∑+∞
n=1 anz

n−1| ≤ 1, for all z inside D(0; 1). Therefore, employing the
maximum modulus principle for analytic functions (Theorem 4.1) we deduce the

identity
∑+∞

n=1 anz
n−1 = a1 ∈ S1, for all z ∈ D(0; 1). Thus, we conclude that

f(z) =
∑+∞

n=1 anz
n = a1z, for all z ∈ D(0; 1). �
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Theorem 10.2. (Clunie-Jack Lemma) Let f : D(0; 1) → D(0; 1) be non-constant
and analytic (see Definition 5.1). The following statements hold.

• Supposing that |f | has a maximum at α ∈ S1, then we have

α
f ′(α)

f(α)
> 0.

• If all the conditions above are true and we also have f(0) = 0, then

α
f ′(α)

f(α)
≥ 1.

Proof. Since f is non-constant, we have f(α) 6= 0. From the anti-calculus proposi-
tion (Theorem 5.2) it follows that f ′(α) 6= 0. Considering the function

g(z) =
f(αz)

f(α)
, where z ∈ D(0; 1),

we have g(1) = 1 and |g| attains its maximum value 1 at the point z = 1. Moreover,
in a small open disk centered at z = 1 we have

(10.1) g(z) = 1 + ϕ(z)(z − 1), where ϕ(z) → g′(1) if z → 1, with z ∈ D(0; 1).

We also have

(10.2) |g(z)|2 ≤ 1 = |g(1)|2, for all z ∈ D(0; 1).

Substituting into (10.1) the expression z = 1 + reiθ, with θ ∈ (π2 ,
3π
2 ) and r =

rθ strictly positive and small enough so that z ∈ D(0; 1), and the expression so
obtained into (10.2), we find

1 + 2Re
[

ϕ(1 + reiθ)re−iθ
]

+ r2|ϕ(1 + reiθ)|2 ≤ 1.

Cancelling 1 on each side of the inequality right above and then dividing by r > 0,
we arrive at

2Re
[

ϕ(1 + reiθ)e−iθ
]

+ r|ϕ(1 + reiθ)|2 ≤ 0.

Now, fixing θ ∈ (π2 ,
3π
2 ) and letting r → 0+ we find, since ϕ(1) = g′(1),

(10.3) 2Re
[

g′(1)e−iθ
]

≤ 0.

Since θ is arbitrary in (π2 ,
3π
2 ) and the expression in (10.3) is continuous in θ, we

obtain






−2Re
[

g′(1)
]

≤ 0, if θ = π,
−2Im

[

g′(1)
]

≤ 0, if θ → π
2
+,

+2Im
[

g′(1)
]

≤ 0, if θ → 3π
2

−
.

Therefore, the number g′(1) = α f ′(α)
f(α) is real and strictly positive. This proves the

first statement.
To prove the second statement we notice that since f(0) = 0, we have g(0) = 0.

As a consequence, employing the Schwarz Lemma (Theorem 10.1) we conclude
that |g(z)| ≤ |z|, for all z ∈ D(0; 1). Finally, given an arbitrary t in (0, 1) we have
|g(t)− g(1)| ≥ 1− |g(t)| ≥ 1− t and then

|g′(1)| =
∣

∣

∣

∣

lim
t→1−

g(t)− g(1)

t− 1

∣

∣

∣

∣

≥ lim
t→1

∣

∣

∣

∣

1− t

t− 1

∣

∣

∣

∣

= 1.

�
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11. The Weierstrass Double Series Theorem

Theorem 11.1. (Weierstrass’s Double Series Theorem) Let
∑+∞

µ=0 fµ(z) be a se-

ries of convergent power series fµ(z) =
∑+∞

n=0 an(µ)z
n, where µ ∈ N, in the disk

D(0;R), where R > 0, with coefficients an(µ) ∈ C. Let us suppose that the series
∑

fµ converges uniformly in D(0; ρ), for each ρ such that 0 < ρ < R, to the func-

tion F (z) =
∑+∞

µ=0 fµ(z) in D(0;R). Then, for all z ∈ D(0;R) and all k ∈ N we
have

F (z) =

+∞
∑

n=0

+∞
∑

µ=0

an(µ)z
n and F (k)(z) =

+∞
∑

µ=0

f (k)
µ (z),

with uniform convergence in every closed disk D(0; ρ), where 0 < ρ < R.

Proof. Let us fix r, where ρ < r < R. By hypothesis, given ǫ > 0 there exists
µ0 = µ0(ǫ) ≥ 0 such that

|fµ+1(z) + · · ·+ fµ+p(z)| ≤ ǫ, for all µ ≥ µ0, all |z| ≤ r, and all p ∈ N.

Then, from Theorem 3.3 (the Gutzmer-Parseval inequality for analytic functions)
follows
+∞
∑

n=0

|an(µ+1)+ · · ·+an(µ+p)|2 |z|2n ≤ ǫ2, for all µ ≥ µ0, all |z| ≤ r, and all p ∈ N,

and in this way we have [for z ∈ D(0; ρ)]

(11.1)







|an(µ+ 1) + · · ·+ an(µ+ p)| |z|n =

=
√

|an(µ+ 1) + · · ·+ an(µ+ p)|2 |r|2n |z|n

rn ≤ ǫ
(

ρ
r

)n
,

for all µ ≥ µ0 = µ0(ǫ), all |z| ≤ ρ, all p ∈ N, and all n ∈ N.

Hence, for any n ∈ N and any z ∈ D(0; ρ), we proved that given ǫ > 0 then
there exists µ0 = µ0(ǫ) such that |an(µ + 1)zn + · · · + an(µ + p)zn| ≤ ǫ (since

ρ/r ≤ 1), for all µ ≥ µ0 and all p ∈ N. Thus, the series
∑+∞

µ=0 an(µ)z
n fulfills the

well-known Cauchy’s Criterion for numerical series and converges and, therefore,
so does

∑+∞
µ=0 an(µ). Next, we return to (11.1).

Letting p → +∞ at (11.1), and using the index ν ∈ N to label a sequence of

partial sums, we find the inequalities
∣

∣

∑+∞
µ=0 an(µ) −

∑ν
µ=0 an(µ)

∣

∣ |z|n ≤ ǫ(ρ/r)n,

for all ν ≥ µ0, all |z| ≤ ρ, and all n ∈ N. Summing up these inequalities over n ∈ N,
we obtain

+∞
∑

n=0

∣

∣

∣

+∞
∑

µ=0

an(µ)−
ν

∑

µ=0

an(µ)
∣

∣

∣ |z|n ≤ ǫ

1− ρ
r

, for all ν ≥ µ0 and all |z| ≤ ρ.

As a consequence, given an index ν ≥ µ0 and a point z ∈ D(0; ρ), we have the

inequality
∣

∣

∑+∞
n=0

[
∑+∞

µ=0 an(µ)−
∑ν

µ=0 an(µ)
]

zn
∣

∣ ≤ ǫr/(r − ρ), which entails

∣

∣

∣

+∞
∑

n=0

+∞
∑

µ=0

an(µ) z
n −

ν
∑

µ=0

fµ(z)
∣

∣

∣ ≤ ǫr

r − ρ
, for all ν ≥ µ0(ǫ) and all |z| ≤ ρ.

Taking ρ arbitrarily close to R shows that F (z) =
∑+∞

µ=0 fµ(z) =
∑+∞

n=0

∑+∞
µ=0 an(µ) z

n,

for every z ∈ D(0;R), with the convergence uniform over D(0; ρ), if 0 < ρ < R.
Finally, putting sν = f0 + · · · + fν , where ν ∈ N, we see that the sequence

(sν − F )ν∈N converges uniformly to the zero function over D(0; ρ), if 0 < ρ < R,
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and then by Corollary 3.7 the sequence (s′ν − F ′)ν∈N also does. Proceeding by

induction on k we obtain the identities
∑+∞

µ≥0 f
(k)
µ (z) = F (k)(z), for arbitrary k ∈ N

and z ∈ D(0;R), with uniform convergence over all the compact disks D(0; ρ),
where 0 < ρ < R. �

Notation 11.2. Let us consider X a nonempty subset of C.

◦ We denote by C(X) the set {f : X → C , where f is continuous}.
◦ Given K a nonempty compact subset of X and f ∈ C(X), we put

|f |K = sup
z∈K

|f(z)| = max
z∈K

|f(z)|.

The number |f |K is called the norm (the sup norm) of f over K.
Given a sequence (fn) in C(X), a compact set K ⊂ X , and f ∈ C(X), it is clear

that (fn) converges uniformly to f on K if and only if |fn − f |K → 0 as n→ +∞.

Definition 11.3. A sequence, or a series, of functions in C(X) converges compactly
on X if it converges uniformly on every compact subset of X .

Definition 11.4. Given X ⊂ C, we say that

◦ L is a compact neighborhood of X if L is compact and there exists an open
set V such that X ⊂ V ⊂ L.

◦ the boundary of X is

∂X =
{

ζ ∈ C : D(ζ; r) ∩X 6= ∅ and D(ζ; r) ∩
(

C \X
)

6= ∅, for all r > 0
}

.

Corollary 11.5. Let (fn)n∈N be a sequence in A(Ω)∩C(Ω), with Ω connected and
bounded, such that the sequence (fn|∂Ω

)n∈N converges uniformly on ∂Ω. Then,

(a) For every k ∈ N, the sequence (f
(k)
n )n∈N converges compactly on Ω.

(b) If f = lim fn, then f ∈ A(Ω) ∩ C(Ω).
(c) The sequence (f

(k)
n )n∈N converges compactly to f (k) on Ω, for every k ∈ N.

Proof. By employing the maximum modulus principle (Theorem 4.1) we deduce
the identities |fn − fm|Ω = |fn − fm|∂Ω, for all n ∈ N and all m ∈ N. Therefore,

the sequence (fn) converges uniformly on Ω to a function f ∈ C(Ω).
Next, let us consider an arbitrary compact disk D(z0; r) ⊂ Ω, where r > 0. From

Theorem 9.1 (by Connell-Porcelli, Hurwitz, and Read) we know that throughout
the disk D(z0; r) each function fn is given by its Taylor series centered at z0. In
addition, the nth partial sum of the series

f1 +
+∞
∑

n=1

(fn+1 − fn)

is sn = f1 + (f2 − f1) + · · ·+ (fn+1 − fn) = fn+1 and, by the previous paragraph,

the sequence (sn) and the series f1 +
∑+∞

n=1(fn+1 − fn) both converge uniformly

to f on D(z0; r). From the Weierstrass double series theorem (Theorem 11.1) it

follows that f is analytic in D(z0; r) and f
(k)
n → f (k) compactly on D(z0; r), for

every k ∈ N. Finally, through a simple compactness argument we infer that the

sequence (f
(k)
n )n∈N converges compactly to f (k) on Ω, for every k ∈ N. �



24 OSWALDO RIO BRANCO DE OLIVEIRA

12. Montel’s Theorem

For the sake of completeness, in this section we present a proof of Montel’s The-
orem for analytic functions. This demonstration employs Corollary 3.6 (Cauchy’s
Inequalities) and Corollary 3.7, both following the Gutzmer-Parseval inequality for
analytic functions (Theorem 3.3). For additional power series proofs of Montel’s
Theorem, see Narasimhan and Nievergelt [23, pp. 34–35] and Read [27].

Definition 12.1. A family F contained in C(Ω) is

◦ normal if every sequence in F contains a subsequence compactly conver-
gent to a function f [it is clear that f ∈ C(Ω); it is not required that
f ∈ F ].

◦ locally bounded if for every z0 ∈ Ω there exists an open disk D(z0; r) and a
finite constant M such that |f(z)| ≤M , for all f ∈ F and all z ∈ D(z0; r).

◦ equicontinuous on X ⊂ Ω if for every ǫ > 0 there exists δ > 0 such that

|f(z)− f(w)| < ǫ, ∀f ∈ F and ∀z and ∀w, both in X, such that |z − w| < δ.

It is easy to verify that if F , where F ⊂ C(Ω), is locally bounded and K is
compact in Ω, then there exists M ∈ R such that |f(z)| ≤M , for all f ∈ F and for
all z ∈ K. We then say that F is uniformly bounded on the compact subsets of Ω.

If F is locally equicontinuous then F is equicontinuous on the compacta in Ω.

Lemma 12.2. Let us consider the countable collection of open disks

C =
{

D(an; rm) : an ∈ Q×Q and rm ∈ Q, where rm > 0, n ∈ N, and m ∈ N
}

.

Then, every open set in R2 is a union of sets in C.
Proof. Let Ω be an arbitrary open set in R2 and D(z; 2r) an open disk contained
in Ω, with r a strictly positive rational number. It is clear that there exists a point
w ∈ D(z; r)∩ (Q×Q). Moreover, it is easy to see that z ∈ D(w; r) ⊂ D(z; 2r) ⊂ Ω.
We complete the proof by noticing that D(w; r) ∈ C. �

Theorem 12.3. Let F be a locally bounded family in A(Ω). Then,

(a) F is equicontinuous on each compact subset of Ω.
(b) (Montel’s Theorem) F is normal.

Proof. Let us fix K, where K is an arbitrary compact subset of Ω.

(a) Let us pick r = d(K; ∂Ω)/4 > 0. Since F is locally bounded, F is uniformly
bounded on the compact set K(3r) = {z : d(z;K) ≤ 3r} ⊂ Ω. That is,
there exists M ∈ R such that |f(z)| ≤ M , for all f ∈ F and for all
z ∈ K(3r).

Given an arbitrary z0 ∈ K, from Theorem 9.1 (by Hurwitz, Read,
and Connell-Porcelli) we deduce that the Taylor series of an arbitrary

function f ∈ F around z0, written as f(z) =
∑+∞

n=0 an(z − z0)
n, con-

verges in D(z0; 4r). Therefore, given an arbitrary h ∈ D(0; r) we have
f(z0 + h) =

∑

anh
n and

(12.1) |f(z0+h)− f(z0)| =
∣

∣

∣

∑

n≥1

anh
n
∣

∣

∣ ≤ |h|
∑

|an| |h|n−1 ≤ |h|
∑

n|an||h|n−1.

Since f ′(z0 + h) =
∑

nanh
n−1, by Corollaries 3.6 and 3.7 we have

(12.2) n|an| (2r)n−1 ≤ max
D(z0;2r)

|f ′| ≤ M

3r − 2r
=
M

r
, for all n ∈ N.
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Using inequalities (12.1) and (12.2), after observing that |h|/2r ≤ 1/2, we
conclude the proof of (a) thus:

|f(z0+h)−f(z0)| ≤ |h|
∑

n|an|(2r)n−1

( |h|
2r

)n−1

≤ |h|M
r

∑

( |h|
2r

)n−1

≤ |h|2M
r
,

valid for all f ∈ F , all z0 ∈ K, and all |h| < r.
(b) Let us fix an arbitrary sequence (fn)n∈N in F .

Claim 1. There exists a subsequence of (fn) uniformly convergent on K.
To prove this claim, let X = {xk : k ∈ N} be dense in K. Putting N0 =

N, let us construct inductively a sequence of infinite sets of indexes Nk ⊂
Nk−1, where k ∈ {1, 2, 3, . . .}. For fixed k ≥ 1, the sequence

(

fn(xk)
)

n∈Nk−1

is by hypothesis bounded and therefore possesses a convergent subsequence,
indexed by an infinite set Nk ⊂ Nk−1. Then, if np is the pth index in Np,
the sequence (fnp

(xk))p∈N converges, for each k ∈ N.
Given ǫ > 0, we consider any δ > 0 following from the equicontinuity of

F in K. Then, for some k ≥ 1 we have K ⊂ D(z1; δ) ∪ ... ∪D(zk; δ). Let
N ∈ N be such that

|fnp
(zj)− fnq

(zj)| < ǫ , if j = 1, ..., k and p, q ≥ N.

Then, for fixed w ∈ K, choose j so that w ∈ D(zj ; δ). Hence, for p, q ≥ N
we have, by definition of δ,

|fnp
(w)−fnq

(w)| ≤ |fnp
(w)−fnp

(zj)|+ |fnp
(zj)−fnq

(zj)|+ |fnq
(zj)−fnq

(w)| < 3ǫ.

So, the subsequence (fnp
)p∈N converges uniformly on K. Claim 1 is proved.

Now we will show that there exists a subsequence of (fn) converging
uniformly on every compact subset of Ω.

Claim 2. There exists an increasing sequence (Kn)n≥1 of compacta in Ω,
with each Kn contained in the interior of Kn+1, satisfying the condition

Ω = K1 ∪K2 ∪K3 ∪ . . . .
In fact, considering the following set, for each n ∈ N \ {0},

Kn =

{

z ∈ D(0;n) ∩ Ω : d(z; ∂Ω) ≥ 1

n

}

,

it is clear that Kn is closed and bounded and thus compact. Also, if z ∈ Kn

then z ∈ Ω but z /∈ ∂Ω, implying z ∈ Ω. Moreover, if z ∈ Kn, then we have
|z| ≤ n < n + 1, z ∈ Ω, and d(z; ∂Ω) ≥ 1

n > 1
n+1 . As a consequence, we

obtain

Kn ⊂ Ωn+1 = Ω ∩D(0;n+ 1) ∩
{

z : d(z; ∂Ω) >
1

n+ 1

}

⊂ Kn+1 ,

with Ωn+1 clearly open and Kn in the interior of Kn+1. Claim 2 is proved.
To finish the proof of (b) we first notice that by applying Claim 1, we

can choose an infinite set of indexes I1 ⊂ N such that the subsequence
(fn)n∈ I1 , of the original sequence (fn)n∈N, converges on K1. Moreover, for
each p ≥ 2, p ∈ N, we can construct inductively an infinite set of indexes
Ip ⊂ Ip−1 such that the subsequence (fn)n∈Ip converges on Kp.

Next, applying the well-known “Cantor’s diagonal method”, we choose
an infinite set of indexes I = {i1 < i2 < ...} ⊂ N such that ip ∈ Ip, for all
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p ≥ 1. Finally, from Claim 2 we conclude that the subsequence (fip)p∈N

converges uniformly on every compact subset of Ω.

�

13. Laurent Series

Let us fix r1 and r2 such that 0 ≤ r1 < r2 ≤ +∞. Let us suppose that the power
series

∑+∞
n=0 anz

n = a0 + a1z + a2z
2 + · · · converges in the disk {z : |z| < r2} and

also that the power series in the variable 1
z ,

∑+∞
m=1 a−mz

−m = a−1

z + a−2

z2 + a−3

z3 + · · ·
converges inside {z : |z| > r1}, the complement of the closed disk D(0; r1). Then,

we define the Laurent series centered at zero f(z) =
∑+∞

n=−∞ anz
n as

f(z) =

+∞
∑

m=1

a−mz
−m +

+∞
∑

n=0

anz
n, if r1 < |z| < r2 .

We say that the Laurent series
∑+∞

n=−∞ anz
n converges on a subset X of the

annulus centered at zero {z : r1 < |z| < r2} if the series
∑+∞

m=1 a−mz
−m and

∑+∞
n=0 anz

n are both convergent for all z ∈ X . Hence, it is easy to see that the
Laurent series just defined converges for all z satisfying r1 < |z| < r2.

Theorem 13.1. Let us suppose that f(z) =
∑+∞

j=−∞ ajz
j, where r1 < |z| < r2. If

r is such that r1 < r < r2, then we have

+∞
∑

j=−∞

|aj |2 r2j ≤M(r)2, where M(r) = max
|z|=r

|f(z)|.

Proof. Let us pick an arbitrary z ∈ C such that |z| = r. Given an arbitrary N ∈ N,
according to the triangle inequality we have

∣

∣

∣

j=N
∑

j=−N

ajz
j
∣

∣

∣ ≤M(r) +
∣

∣

∣

+∞
∑

j=N+1

a−jz
−j +

+∞
∑

j=N+1

ajz
j
∣

∣

∣.

Since zj = r−Nzj+N , from the inequality right above it may be concluded that

∣

∣

∣

j=N
∑

j=−N

ajr
−Nzj+N

∣

∣

∣ ≤M(r) +

+∞
∑

j=N+1

|a−j |r−j +

+∞
∑

j=N+1

|aj |rj .

Hence, by the Gutzmer-Parseval inequality for polynomials (Lemma 3.1) we obtain

j=N
∑

j=−N

|aj |2r2j ≤



M(r) +

+∞
∑

j=N+1

|a−j |r−j +

+∞
∑

j=N+1

|aj |rj




2

.

Taking the limit of the last inequality for N → +∞ yields the claimed inequality.
�

Keeping the hypothesis in Theorem 13.1 we have the following result.

Corollary 13.2. If f(z) =
∑+∞

j=−∞ ajz
j = 0, where r1 < |z| < r2, then we have

aj = 0, for all j ∈ Z.

Proof. It follows straightforward from Theorem 13.1. �
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7. C. Carathéodory, Theory of Functions of a Complex Variable, Vol. 1, second English edition,

translated by F. Steinhardt, Chelsea Publishing Company, New York, 1964.
8. F. S. Cater, An elementary proof that analytic functions are open mappings, Real Anal.

Exchange 27(1) 2001/2002 389–392.
9. E. H. Connell and P. Porcelli, Power series development without Cauchy’s formula, Bull.

Amer. Math. Soc. 67 (1961) 177–181.
10. ———, An algorithm of J. Schur and the Taylor series, Proc. Amer. Math. Soc. 13 (1962)

232–235; available at http://dx.doi.org/10.2307/2034474.
11. J. B. Conway, Functions of One Complex Variable I, second edition, Graduate Texts in Math-

ematics, Vol. 11, Springer-Verlag, New York, 1978.
12. O. R. B. de Oliveira, The fundamental theorem of algebra: an elemen-

tary and direct proof, Math. Intelligencer 33 no. 2 (2011) 1–2; available at
http://dx.doi.org/10.1007/s00283-011-9199-2.

13. ———, Some simplifications in the presentations of complex power series and unordered sums
(2012), available at http://arxiv.org/abs/1207.1472.

14. ———, The fundamental theorem of algebra: from the four basic operations, Amer. Math.

Monthly (forthcoming).
15. S. Haruki, On the mean value property of harmonic and complex polynomi-

als, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981) 216–218; available at
http://dx.doi.org/10.3792/pjaa.57.216.

16. A. Hurwitz and R. Courant, Allgemeine Funktionentheorie und elliptische Funktionens, fourth
edition, Grundlehren der Mathematischen Wissenschaften 3, Springer-Verlag, Berlin, 1964.

17. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971)

469–474; available at http://dx.doi.org/10.1112/jlms/s2-3.3.469
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