
Parsing Natural Language using

LDS: A Prototype

MARCELO FINGER, Departamento de Ciência da Computação,
Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,
Brazil. E-mail: mfinger@ime.usp.br

RODGER KIBBLE, Department of Linguistics, School of Oriental and
African Studies, University of London, United Kingdom.
E-mail: rk8@soas.ac.uk

DOV GABBAY, Department of Computing, Imperial College,
University of London, United Kingdom. E-mail: dg@doc.ic.ac.uk

RUTH KEMPSON, Department of Linguistics, School of Oriental and
African Studies, University of London, United Kingdom.
E-mail: rk@soas.ac.uk

Abstract

This paper describes a prototype implementation of a Labelled Deduction System for natural lan-
guage interpretation [11], where interpretation is taken to be the process of understanding a natural

language utterance. The implementation models the process of understanding wh-gap dependencies
in questions and relative clauses for a fragment of English. The paper is divided in three main sec-

tions. In Section 1, we introduce the basic architecture of the system. Section 2 outlines a prototype
implementation of wh-binding and indicates its potential for explanation of linguistic phenomena,

and in Section 3 we briefly set the model within a larger theoretical perspective, comparing it to
other type-logical approaches to natural language analysis.1

Keywords : labelled deduction, dynamic interpretation, categorial type deduction, incrementality,

natural language parsing

0 A Brief Background on LDSNL

In LDSNL, natural language understanding is modelled as a syntactic process map-
ping lexical items onto representations in some logical system. The outcome of the
interpretation process is taken to be a well-formed formula (or set of formulas) in
the selected logical system. The input provided by lexical items drives the incremen-
tal process of establishing the required logical representation. The task of natural
language understanding is thus a metalevel task of reasoning which is in part deduc-
tive (and determined by the linguistic input), and in part abductive, involving extra
choices both at the level of context (anaphora resolution) and also at the level of

1Full version of a paper presented at the 3rd Workshop on Logic, Language, Information and Computation (WoL-

LIC’96), May 8–10, 1996, Salvador (Bahia), Brazil, organised by UFPE and UFBA, sponsored by IGPL, FoLLI, and

ASL.

647L. J. of the IGPL, Vol. 5 No. 5, pp. 647–671 1997 c© Oxford University Press

648 Parsing Natural Language using LDS: A Prototype

structure (wh-gap binding).
The approach is an extension of the ‘parsing as deduction’ methodology familiar

in both computational linguistics [37] and categorial grammar [29, 16, 33]. Inference
is defined over declarative units each of which consists of a pair: a type-logical for-
mula and an algebraic label . The label has two constituents, namely the formula’s
semantic interpretation and a list containing any extra control specifications on the
step of inference to be carried out. The formal system is a Labelled Deductive System
in the sense of [10]. Interpretation is defined as a left-to-right process with lexical
input projecting both declarative and procedural content, namely type-logical formu-
las, quantifier-free predicate-logic expressions and control information. The output
consists of a database recording the proof steps with linked databases representing rel-
ative clauses and nested databases for complement clauses [13]. An innovative feature
is that certain items such as wh-operators are not incorporated into the interpretation
at the point where they are encountered but contribute a license to create an assump-
tion at a later stage when syntactic material ‘expected’ by the preceding context is
absent (a ‘gap’). This procedural account blocks illicit dependencies without a need
to stipulate configurational constraints. The implications of this approach for issues
in theoretical linguistics are discussed in detail in Section 2.1.

Some examples of the end product of sentence interpretation (omitting intermediate
deductions):

(1) John upset Mary

>> john upset mary

Succeeds for: upset(mary)(john):t

(2) John upset Mary who fainted

>> john upset mary who fainted

Linked DB

Succeeds for: faint(gap(mary)):t

Succeeds for: upset(mary)(john):t

(3) Who upset the man who upset John?

>> who upset the man who upset john

Linked DB

Succeeds for: upset(john)(gap(the:man)):t

Succeeds for: upset(the:man)(gap(#unknown#)):t

(4) * Who did John upset the man who saw?2

>> who did john upset the man who saw

no

2An asterisk is placed in front of incorrect sentences/interpretations.

0. A BRIEF BACKGROUND ON LDSNL 649

The formal system has been further developed to handle crossover phenomena and
ellipsis [19, 21]. The prototype program does not cover the full range of crossover
data but has been extended with a treatment of pronouns which is at least consistent
with the following key assumptions of the LDSNL account:

(i) Pronouns are handled by a free-choice mechanism: they are treated as intro-
ducing a premise of type e labelled with a ‘meta-variable’. This meta-variable
must be resolved by identifying an appropriate labelled item in the database,
with the sole restriction that the resolvent may not also be a label associated
with a premise of type e in the current local database. 3

(ii) Pronoun resolution is handled ‘on-line’ at the lexical analysis stage and so does
not have access to information projected by items in the input string following
the pronoun.

(iii) In view of the account of wh-gap dependencies mentioned above, a wh-operator
is not ‘visible’ for purposes of anaphoric dependency until the ‘gap’ licensed
by wh has been encountered.

These last two factors account for the contrast between (5) and (6) below. In (5)
we have the sequence wh-gap-pronoun, and so the pronoun may be interpreted as if
‘bound’ by the wh-operator. In (6) the sequence is wh-pronoun-gap and so the pronoun
he can’t be interpreted as dependent on who. Instead it is given an arbitrary identifier
indicating that its reference is unresolved, pending an extension of the implementation
to a more comprehensive account of pronominal anaphora.

(5) Whoi does John think ei thinks hei upset Mary?

>> who does john think thinks he upset mary

Nested DB

Nested DB

Succeeds for : upset(mary)(pro:wh):t

Succeeds for: think(upset(mary)(pro:wh))(gap(#unknown#)):t

Succeeds for: think(think(upset(mary)(pro:wh))(gap(#unknown#)))

(john):t

(6) Whoi does John think hej thinks ei upset Mary?

>> who does john think he thinks upset mary

Nested DB

Nested DB

Succeeds for: upset(mary)(gap(#unknown#)):t

Succeeds for: think(upset(mary)(gap(#unknown#)))

(pro:#137):t

Succeeds for: think(think(upset(mary)(gap(#unknown#)))(pro:#137))

(john):t

Further details of pronoun resolution and wh-binding in the prototype program will
be found in Section 2.

Deduction is forward-chaining, ‘goal-directed’ application of Modus Ponens over
labelled formulas, also called declarative units. As in linear logic, each premise has to

3If the lexicon is extended to include pronominal and wh determiners such as his, whose, the restriction on

antecedent choice has to be stated as a conditional restriction that if the pronoun projects a formula of type e, its

resolvent may not also be of type e within that current local database.

650 Parsing Natural Language using LDS: A Prototype

be used exactly once. Processing terminates with the derivation of the labelled goal
formula ?:t, provided that all premises licensed by lexical input and all intermedi-
ate deductions have been used. The labelling algebra ensures that in the process a
grammatical sentence has been recognised, without explicitly constructing a syntactic
parse tree. For example the derivation of (1) proceeds as follows:

(john, [use last]):e

(upset,[]):e -> (e -> t)

(mary,[]):e

(upset(mary),[]):e -> t

(upset(mary)(john),[]):t

Note that the first declarative unit contains the control information [use last],
which precludes the construction of (upset(john),[]):e -> t. How this control
information is generated and used in the deduction process will be detailed in the
next section. Also note that both the lexical item john and the control information
[use last] are formally the two constituents of the label. However, for clarity pur-
poses, in the samples of program output shown below control information such as
[use last] will be displayed separately from the labelled formulas.

A Prolog implementation of the LDSNL system has been built and ported for
both LPA Prolog for Windows and Sicstus Prolog. The system performs rather well,
apparently giving the answers “immediately” after request. It is expected that, if we
had a lexicon larger than what we had at our disposal, the response of the system
would be affected. But that would just mean that we did not have an efficient lexicon
access procedure, not that the LDSNL ideas do not allow an efficient implementation.
On the other hand, the efficiency we achieved might be credited to the left-right
parsing strategy of LDSNL, and on the fact that the parsing tree being built never
has to be re-explored. All the decisions made during the parse are based on the
context information available at the current point of the parsing tree.

Efficiency was not our main goal in the development of the prototype. The main
goal was to test that the LDSNL ideas could be practically implemented. However,
we were not displeased with efficiency matters. It remains to be analysed exactly how
the system performs in the parsing of sentences of various sizes, but we can anticipate
that the number of items stored in the parsing tree for each sentence increases linearly
with the size of the input sentence.

LDS has been used as a basis for other systems’ implementation, mainly for the
construction of theorem provers. For example, [7] presents a general LDS-tableaux
theorem prover for substructural logics whose implementation specialised for Linear
Logic was described in [3]; LDS has been shown to gracefully apply to Natural De-
duction theorem proving [4]; and there are other works under way in the application
of LDS to temporal/modal logics [42]. All these implementations share with ours the
basic LDS principles: (a) both labels and formulas are jointly handled at each de-
duction step as a unique declarative unit; (b) formula manipulation is kept as simple
as possible, putting on the label the burden of taking care of control and semantic
information.

We proceed with a description of the system implemented.

1. SYSTEM DESCRIPTION 651

1 System description

The basic principles of the LDSNL algorithm are the following:

• Parsing is a goal directed deduction process; the goal of parsing a sentence is to
obtain a declarative unit whose formula part is t.

• The string is processed left to right; each word of the input may project data and
a set of expectations. Data is a declarative unit whose formula part represents
the word’s type, and whose label may contain syntactical features, control and
semantic information. Expectations are (descriptions of) declarative units that
are expected to occur in the data generated by preceding a nd subsequent words.

• The set of data projected by words forms a database. Some words, such as wh-
expressions, project no data but only some control information forcing the creation
of a linked database in which parsing continues; a linked database is closed when a
wh-clause has been recognized, and parsing resumes at the original database level.

• Parsing finishes when a declarative unit matching the goal formula has been de-
duced, all input words have been consumed, all data have been used for deduction,
all expectations have been met and no control information (such as use gap) is
unfulfilled.

• Deduction is done between the data accumulated by the process of consuming
words and LDSNL relies on a single deduction rule called Labelled Modus Ponens,
an extension of Modus ponens that copes with control information (use last) and
goal directedness; it also combines the label part of declarative units. Labelled MP
takes two formulas, removes them from the database and inserts a single deduced
formula instead; this guarantees that a formula is never used twice in a deduction.

To exemplify those principles at work, consider again the parsing of example (2)

>> john upset mary who fainted

The complete output trace generated by the program is as follows, showing the se-
quence of deductions annotated with control information from the label.

Goal : ? : t

john : e use_last

upset : e -> e -> t

mary : e

Linked DB

Goal : ? : t use_gap

gap(mary) : e use_last

faint : e -> t

faint(gap(mary)) : t gap_used

Goal succeeds for : faint(gap(mary)) : t

upset(mary) : e -> t

upset(mary)(john) : t

Goal succeeds for : upset(mary)(john) : t

652 Parsing Natural Language using LDS: A Prototype

We now detail and explain all those terms and concepts that have been mentioned
in the description and example above. Some of the definitions and data structures
below correspond directly to structures defined in the formal system [11] and others
result from implementation decisions.

1.1 Basic definitions

The basic building blocks of the system are declarative units (DUs) and databases
(DBs). The declarative units (DUs) of our system are Labelled Formulas (LFs), a
pair l : A where l is a label and A a well formed type-formula built according to the
rules:

(i) e, t are types.
(ii) If a, b are types then a -> b is a type; -> is right-associative, so e -> e ->

t ≡ e -> (e -> t)

Databases generalise the classical notion of a theory. Whereas a theory is a set
of sentences closed under consequence, a database is a set of labelled objects closed
under labelled deduction. Formally, we have:

(i) A declarative unit is a database.
(ii) A set of declarative units closed under Labelled Modus Ponens (see below) is

a database.
(iii) A pair of linked databases is a database. In the formal system a pair of

databases are linked by unification or ‘sharing a variable as the result of some
substitution process’ [11]. We implement such a notion in the prototype system
by means of a feature link(M) in the control label of the shared element in the
primary database (eg the head NP of a relative clause), where M is the linked
DB.

Labels are applied both to type-formulas, generating labelled formulas, and to
databases, generating labelled databases, as described below.

Formula labels
A label on a formula (pure label) consists of a content label (Clabel) and a resource
label (Rlabel).

(i) The Content label consists of quantifier-free predicate-logic expressions such as
upset(mary), john, etc.

(ii) The resource label controls application of the deduction rules. It is represented
as a Prolog list of items such as:
• use last identifies subject NP.
• use first identifies object NP (not implemented).
• link(M) is a pointer to linked database M.

The following features occur only in the label of a Goal Formula: use gap is pro-
jected from wh-operators; and gap used is inserted when a gapped formula has been
used.

Labelled formulas (LFs) are represented as Prolog terms:

1. SYSTEM DESCRIPTION 653

l(Content-label, Resource-label):Formula

For example,

l(upset(mary),[]):e -> t
l(john,[use_last]):e

Database labels

A label on a database includes several sentence properties:

(i) tense is projected from verb inflection;
(ii) gap(l(X,RL):F) indicates a gap specification projected from wh-processing

and stored in the database label until the corresponding ‘gap’ is encountered
in the input string. In the case of relative clauses X is a predicate logical
expression; in the case of wh-questions, X is #unknown#. When the predicted
gap is encountered the embedded LF is inserted into the database as a premise
of the form l(gap(X),RL):F, and gap-used is added to the Goal Formula
label. In the current implementation F is always type e.

Database labels are implemented as the NodeLabel in the construction tree (see be-
low).

Labelled MP

Provided the deduction step is licensed , labelled MP performs the following simple
deduction step:

l(CL1, P1): a -> b l(CL2, P2) : a
l(CL1(CL2), P): b

The deduction step above is licensed whenever:

• use last is not in P1 or P2;
• otherwise the deduction is licensed only if the goal formula under pursuit is b;

this guarantees that the formula marked with use last can be only used in the last
deduction step, i.e. the one that achieves the deduction goal.

If the deduction is licensed then P = (P1 ∪ P2)− {use last}.

Linked databases

We distinguish between three types of databases that may be constructed during a
parse, namely main databases associated to the main clauses, linked databases asso-
ciated to wh-clauses, and nested databases associated to complement clauses.

In example (2), ‘John upset Mary who fainted’, the main clause ‘John upset
Mary’ generates the main database. Initially, this main database contains the data
{l(john, [use last]):e, l(upset, []):e->(e->t), l(mary, []):e}, which is
projected by the data. Then the data is closed under labelled MP resulting in the
addition of the following items to the main database: {l(upset(mary), []):e->t,
l(upset(mary)(john):t}.

654 Parsing Natural Language using LDS: A Prototype

A linked database, on the other hand, is an independent database that is the result
of parsing a wh-clause. As a consequence, besides the declarative unites that are
obtained from the data pertaining to the wh-clause, a labelled formula of the form
l(gap(x), []):e is added to the linked database to represent a gap; furthermore, the
control information use gap is added to the linked database label to enforce that the
gap has to be used in the deduction of a t-typed formula representing the wh-clause.

The variable x is instantiated to an e-typed formula from the main database. In
this respect, the database projected by a wh-clause is linked to that e-typed formula.
Apart from that, the linked database is totally independent from the main database.
As a result of this independence, only one gap will ever be allowed in a linked database,
even in the case where there are nested wh-clauses.

In example (2), the clause ‘who fainted’ generates a database linked to l(mary,[]):e
in the main database whose content is {l(gap(mary), [use last]):e, l(faint,
[]):e->t, l(faint(gap(mary)),[]):t}, after closure with labelled MP. The intro-
duction of use last is due to the tense information projected by the verb and will
be detailed when we discuss the lexicon. Note that the gap has been used in the
derivation of the t-typed formula.

On the other hand, sentences such as ‘∗John who Bill loves Mary fainted’ are
blocked even though the database projected from ‘who Bill loves Mary’ can deduce
a t formula; blocking is done by enforcing the use gap feature for the parsing to
succeed.

Nested databases

Finally we need to be able to handle complement clauses as in (7)

(7) John knows Mary fainted.

where the representation of the complement ‘Mary fainted’ in itself includes a database.
This is achieved in the implemented system by generating a ‘derived’ declarative

unit to represent the complement clause. After building the nested DB N which
uniquely proves s:A (has s:A as its unique consequence), we add a DU of form
l(s,N):A to the primary DB where it is available for use as a premise in MP. N
is the ‘root’ of the tree representing the nested database4.

Implementation works as follows.
In general, lexical entries provide data entries to the parser or operational directives

to the parser; for this second case, see the construction of linked databases below. In
example (7), the lexical entry for the verb projects data entries d(l(know,[]):t),
expect(node(RG,N)) where RG is the ‘Root Goal’ of nested database N.

4In the formal system of [11] this is handled by defining a metadeclarative unit which becomes a premise to an

extended Modus Ponens:

Definition: A metadeclarative unit ∆ : A is constructed from a database ∆ which uniquely proves the DU s : A.

A is the type of ∆ and s is its label.

Thus the nested database ∆ is itself treated as a label. An extended version of labelled MP is defined such that

premises can include metadeclarative units. A derivation of John knows Mary fainted (omitting details such as tense,

use last etc) results in the following application of Extended MP:

know:t -> (e -> t) {mary:e, faint:e -> t}:t
know(faint(mary)):e -> t

Here faint(mary) is the label of {mary:e, faint:e -> t} and t is its type. For implementation purposes we chose to

simplify the procedure by leaving MP as it is.

1. SYSTEM DESCRIPTION 655

Data entries are consumed in order. At the point where expect(node(RG,N)) is en-
countered, the construction of the primary DB is suspended and a new database con-
structed from the input string following the verb (i.e. [mary, fainted] in the analy-
sis of (7)). If this completes successfully, the resulting DU (i.e. l(faint(mary),P1):t
in the example) is added to the Data list in the primary DB and subsequently input
to Labelled Modus Ponens as shown in (8).

(8)

l(know,[]):t->(e->t) l(faint(mary),[N]):t
l(know(faint(mary)),[N]):e->t l(john,[]):e

l(know(faint(mary))(john),[N]):t

1.2 Database construction

The construction process builds up a tree structure with one tree for each database.
The main Prolog routine parse lds calls initiate main node to initialise a tree
structure; for each clause of the input, the predicate ldsNL parse sentence is called
and expands the tree under construction. After the content of each lexical item is
added to the tree, control is passed to deductionswhich attempts to apply Modus Po-
nens using the most recently generated LF and an intermediate deduction as premises.

Processing successfully terminates for a node under the following conditions:

(i) The Goal Formula has been deduced and all premises and intermediate deduc-
tions have been used exactly once.

(ii) No unused gap in Goal Label: if use gap is present there must be a matching
gap-used.

(iii) The list of expected data input is empty.

This checking is carried out by predicate achieved goals which is called when the
above mentioned predicate ldsNL parse sentence completes.

A node is the data structure representing a labelled database and its Prolog repre-
sentation is the following:

node(

TreeGoal,

NodeLabel,

Datas,

% a list of labelled formulas (in reverse order)

Expecteds,

% a list of expected nodes (in direct order)

UnusedFormulas,

% a list of labelled formulas not yet used in a deduction

DeducedFormulas

% a list of all labelled formulas, premises or derived

)

The branches of the tree are described below. In [11] the construction process
is modelled via the successor functions n1 . . . ni and d1 . . . di. If M is the primary
database (that is, n = M) then n1(M), n2(M), etc, are databases linked to M , and
d1(x) . . . dj(x) is a sequence of declarative units which constitute a particular database

656 Parsing Natural Language using LDS: A Prototype

at node x. The successor function ni is implemented as the linking mechanism,
and the lists Datas, Expecteds and DeducedFormulas between them do the work
of di. Formulas in Datas are projected directly from lexical content while those in
DeducedFormulas result from application of inference rules.

The TreeGoal is the goal formula of the form Label:t, which is set as follows:

(i) In a primary database the initialisation predicate initiate main node leaves
Label basically empty, to be filled during node construction.

(ii) In a linked database, the lexical processing predicate wh treatment attaches
to Label the use gap control.

(iii) In a nested database, lexical processing process expectations creates a
subnode (ie a database nested in the current structure) if a complement clause
is ‘expected’ — see Expecteds below.

NodeLabel is the database label which contains nesting level, tense and gapping
information, as well as any other control information.

If the primary database label includes a gap specification this is copied to the
subnode label in the subordinate DB for nested but not linked databases. Likewise if
the gap is used while constructing a nested database the feature gap used is copied
to the Goal Formula label of the higher database. The gap used flag is percolated
up the tree until a matching use gap is found. This means that wh-dependencies are
resolved in nested databases but not in linked databases.
Datas and Expecteds are built up by the lexical processing that consumes the

input string. Datas is a list of labelled formulas or control items projected from
lexical items; the formulas are passed to the deduction engine at the end of each cycle
of lexical processing. Lexical items project other information such as tense(T), which
is copied to the database label to indicate that the whole sentence is affected by it,
and wh(Who) which is handled by the specialised predicate wh treatment.
Expecteds is a list of expected nodes (verb arguments) projected from lexical

items, eg expect([l(, []): e]) as the expected complement of see; expect(
[node(RG, N)]) as the expected complement of know . (In the formal system [11],
expectations are handled by allowing the successor function d to generate incomplete
nodes which need to be filled in by subsequent lexical content.) Expectations are
processed as follows.

(i) Expected labelled formulas: if the head of Expecteds is a Labelled Formula
(LF), it is compared against the immediately following LF. For example in
the sentence john upset mary , processing upset causes the LF l(,[]):e to
be added to Expecteds. When the LF projected by mary , l(mary,[]):e, is
added to Datas, a check is made that the formula e and the Rlabel [] match
the expectation.
This mechanism is also used in auxiliary inversion to predict a subject NP. For
example, when processing the sentence who did john see, the lexical entry for
did projects an expectation l(, [use last]):e. If the following item is
e.g. l(john,[]):e then the two are combined to form l(john,[use last]):e,
which is added to the Datas list. More about this in the section on the lexicon
below.

(ii) If the head of Expecteds is a node specification node(RG,N) it is handled by
creating a subnode for a nested database. The nested database has the same

1. SYSTEM DESCRIPTION 657

tree structure as the primary database and inherits gapping information: if
NodeLabel in the primary tree contains an item gap(G) it is copied to the
NodeLabel of the sub-tree. The nested database traces the parse of the com-
plement clause which is processed by calling the predicate ldsNL recursively.

The deduction engine
Deductions are carried out with the help of the data structures UnusedFormulas
(formulas not yet consumed in a Labelled Modus Ponens step) and DeducedFormulas
(premises or formulas generated by a Labelled Modus Ponens step). Both consist of
a list of labelled formulas, initially empty. Since deductions always occur after the
introduction of a labelled formula LF in Datas, the deductions predicate attempts
to use LF plus some member of UnusedFormulas in application of Labelled Modus
Ponens.

If a deduction is licensed, the deduced labelled formula is added to both
DeducedFormulas and UnusedFormulas to be used as a premise in subsequent deduc-
tions; the formula used from UnusedFormulas is removed from that list. Otherwise
LF is simply added to UnusedFormulas. Note that no elements are ever removed
from Datas. Labelled Modus Ponens differs from standard Modus Ponens in that
it enforces the use last protocol: if one of the premises has this feature in its Rla-
bel then a check is made that the deduced formula is of the same type as TreeGoal
(normally of type t); if this is not the case, the inference fails.

The lexicon
A lexical entry consists of a pair of an orthographical string and a list containing
a labelled formula and possibly control information. Lexical items are processed by
the predicate process lex which calls analyse lex to decide how to update the
construction tree. The simplest case is the entry for a proper name. e.g. John, which
consists of the string ‘john’ paired with data l(john,[]):e where the Resource Label
is empty.

lexicon(john,

[

d(l(john, []) : e)

]).

Verb inflection is handled by a lexical rule which splits the verb into inflection and
stem, having separate lexical entries. For instance the verb-form saw is handled by
the rule:

expand_lex(saw, [’-ed’, ’see ’]).

The entry for the suffix -ed contains tense information and a Labelled Formula of
type e with an empty Content Label and the feature use last in the Resource Label.

lexicon(’-ed’,

[

tense(past),

d(l(_, [use_last]) : e)

]).

658 Parsing Natural Language using LDS: A Prototype

The last data entry is to be unified with the LF representing the immediately
preceding NP, i.e. the subject. This ensures that for example in processing a sen-
tence john saw mary, the LF representing john is processed after the LF for mary :
upset(mary):e-> t and john:e combine to give upset(mary)(john):t. If john:e
were allowed to combine with the first available formula of type e -> a we would
have the unwanted derivation

john:e upset:e-> (e -> t)
upset(john):e -> t mary:e

upset(john)(mary):t

This can be seen as a proof-theoretic analogue of the ‘obliqueness’ account of gram-
matical relations from [9]. When the partial LF, i.e. one containing an anonymous
variable as its Content Label, is added to the Datas list, predicate
legal data insertion determines that it is to be unified with the current head of
the list (immediately preceding NP) rather than added as a new item.

The entry for the base form see contains a Labelled Formula of type (e -> (e ->
t)) and the information that an argument of type e is ‘expected’.

lexicon(’see ’,

[

d(l(see, []) : (e -> (e -> t))),

expect([l(_, []) : e

]).

Determiners are represented as labelled formulas of type e with an empty slot for a
common noun, and nouns are represented as LFs of type e with a slot for a determiner.
These are unified to form a single declarative unit of type e which represents a noun
phrase.

lexicon(the,

[

d(l(the:N, []) : e),

expect([l(the:N, _) : e

]).

lexicon(book,

[

d(l(_:book, []) : e)

]).

This is a deviation from a strictly type-theoretical account, with unification rather
than type-inference used to process NPs. This results from a decision to treat all NPs
as denoting primitive entities of type e.

Pronouns appear in the lexicon as names with additional control information. For
example, the entry for he appears below.

lexicon(he,

[

d(l(pro, [pro, case:nom]) : e)

]).

As was stated in Section 1, the formal system [11] treats pronoun resolution as a
free-choice mechanism which selects a suitable labelled item from outside the local

2. EXAMPLES 659

database. This is only partly implemented in the prototype system, the reason being
that lexical processing in a nested or linked database does not have direct access to
declarative units in higher-level databases. To demonstrate how pronoun resolution
interacts with wh-binding, the requisite information is made available in a nested
database by means of a feature wh bind which is inserted in the label of a nested
database just in case a ‘gap’ has already been resolved. Pronoun resolution is handled
at the lexical analysis stage: if the wh bind feature is present the pronoun translates
as prowh:e, otherwise it is given an arbitrary identifier.

The ‘case’ feature can be used to ensure correct morphology; it would be trivial to
implement a constraint such that only case:nom may co-occur with use last in a
LF of type e.

In summary, the different types of lexical information are handled as follows:

(i) Labelled formulas represented as d(l(CLabel,Rlabel):Formula) are copied
to the list Datas. If Rlabel includes the feature pro then a check is made for
wh-binding.

(ii) Tense information tense(Tense) is copied to the database label (NodeLabel).
(iii) Expectations expect(LF) are copied to the Expecteds list.
(iv) Wh-operators wh(Wh) are handled by the specialised predicate wh treatment.

This allows for two special cases:
• If wh- is the first word in the sentence (Datas is empty) it is assumed to be

a wh-question. The Goal Formula label is updated with use gap and the
item gap(l(’#unknown#’, []) : e) is added to the Node Label. The
embedded LF is retrieved when a ‘gap’ is encountered in the input string.

• Otherwise it is assumed that wh- is a relative pronoun. In that case a subor-
dinate database tree is initialised and linked to the LF representing the head
NP in Datas; the tree is built up by parsing the embedded clause. The label
for the linked database contains the item gap(LF) where LF represents the
head NP.

2 Examples

The following examples are selected to illustrate the processing of wh-gap dependen-
cies in both questions and relative clauses, and the corresponding distinction between
linked and nested databases. This section concludes with a more general discussion
of crossover phenomena and an indication of how they are handled in the LDSNL

system.
The examples below exhibit output from the program, which is structured as in

the following example of a parse of (9):

(9) Who did John upset?

(i) input string, e.g

>> who did john upset

(ii) Type of database: Root, Nested or Linked:

ROOT

Node

660 Parsing Natural Language using LDS: A Prototype

(iii) Database Label and Root Goal:

Label : #3 tense(<(utterance)), level(1)

Goal : ? :t gap_used, use_gap

(iv) List of Deduced Formulas

john : e use_last

upset : e->e->t

gap(#unknown#) : e

upset(gap(#unknown#)) : e->t

upset(gap(#unknown#))(john) : t

(v) Goal Formula: end result of deductions.

Succeeds for : upset(gap(#unknown#))(john):t

Examples (10) and (11) exhibit the use of linked databases in the analysis of relative
clauses. (In subsequent examples we will omit details of intermediate deductions for
reasons of space.)

(10) John upset Mary who fainted.

>> john upset mary who fainted

ROOT

Node

Label : #4 tense(<(utterance)), level(1)

Goal : ? :t

john : e use_last

upset : e->e->t

mary : e

Linked DB

Label : #5 tense(<(utterance)), level(2), subnode(#4)

Goal : ? :t gap_used, use_gap

gap(mary) : e use_last

faint : e->t

faint(gap(mary)) : t

Succeeds for : faint(gap(mary)):t

upset(mary) : e->t

upset(mary)(john) : t

Succeeds for : upset(mary)(john):t

(11) Who did John upset who saw Mary?

>> who did john upset who saw mary

ROOT

Node

2. EXAMPLES 661

Label : #49 tense(<(utterance)), level(1)

Goal : ? :t gap_used, use_gap

john : e use_last

upset : e-> e-> t

gap(#unknown#) : e

Linked DB

Label : #51 tense(<(utterance)),

level(2) subnode(#49)

Goal : ? :t gap_used, use_gap

gap(gap(#unknown#)) : e use_last

see : e-> e-> t

mary : e

see(mary) : e-> t

see(mary)(gap(gap(#unknown#))) : t

Succeeds for : see(mary)(gap(gap(#unknown#))):t

upset(gap(#unknown#)) : e-> t

upset(gap(#unknown#))(john) : t

Succeeds for : upset(gap(#unknown#))(john):t

Example (11) demonstrates that wh-gap dependencies are resolved in the local
database where they are introduced, where a linked database does not count as ‘local’.
The first who causes the feature use gap to be stored in the label of the Goal Formula
and gap(#unknown#) to be stored in the node label with the identifier #49. The gap
is resolved by when the second who is encountered at the point where the object of
upset is expected. The subtree at the node labelled #51 is linked to the control label
of the formula gap(#unknown#):e and the goal specification use gap projected by
the second who is resolved in the domain of the subordinate (linked) database.

(12) * Who did John upset the man who saw?

>> who did john upset the man who saw

no

The fact that wh-dependencies are resolved within the local database prevents ex-
ample (12) from being successfully processed. At the point where the second who is
encountered a linked database is initialised with the Goal Formula l(,[use gap]):t
and with the Node Label

l(#ID, [gap(l(the:man,[]):e), level(2), subnode(#3)]).

As in example (5) the node label of the primary database includes gap(#unknown#)
but this is not passed down to the linked database. So the subordinate clause cannot
be successfully parsed as it is impossible to derive the goal formula ?:t.

(13) Who did John think upset Mary?

>> who did john think upset mary

ROOT

662 Parsing Natural Language using LDS: A Prototype

Node

Label : #52 tense(<(utterance)), level(1)

Goal : ? :t gap_used, use_gap

Node

Label : #53 level(2), subnode(#52),

tense(<(utterance))

Goal : ? :t gap_used

Succeeds for : upset(mary)(gap(#unknown#)):t

Succeeds for : think(upset(mary)(gap(#unknown#)))(john):t

Example (13) above illustrates that the use gap specification can be resolved in
a nested database. Note that successful completion requires use gap to be matched
by a ‘local’ occurrence of gap used and this is accomplished by percolating gap used
up to the primary database. The gap specification is threaded down to the nested
database by copying the control item gap(l(#unknown#,[]):e) into the subordinate
node label5. It is notable that the resulting system presents the information needed
to project this result without any ancillary nonlogical syntactic restrictions. The
significance of this lies in the fact that data such as these are standardly said to require
such semantically-blind syntactic restrictions. (Such claims have been familiar since
[41] but see [6] for a recent restatement.) This result is achieved by the combination of
analysing wh-expressions as a look-ahead device, imposing a filter on the output, and
the analysis of relative clauses as linked databases, adjuncts to the principal database
and not contained within it.

(14) Whoi does John think ei thinks hei upset Mary?

>> who does john think thinks he upset mary

ROOT

Node

Label : #162 tense(now), level(1)

Goal : ? :t gap_used, use_gap

Node

Label : #163 tense(now), level(2), subnode(#162)

Goal : ? :t gap_used

Node

Label : #165 tense(<(utterance)), wh_bind

level(3), subnode(#163)

Goal : ? :t

Succeeds for: upset(mary)(pro:wh):t

Succeeds for: think(upset(mary)(pro:wh))(gap(#unknown#)):t

Succeeds for: think(think(upset(mary)(pro:wh))(gap(#unknown#)))(john):t

5Note that this does not appear in the node label in the above printout of the database, since the gap specification

is removed from the node label once it has been used in order to prevent over-generation.

2. EXAMPLES 663

This is a case where the wh-operator appears to bind a pronoun in a comple-
ment clause. In fact the ‘binding’ is mediated by the process of gap-resolution:
the initial who licenses the presence of the gap ei in the example sentence, caus-
ing gap(#unknown#):e to be added to the database and gap used to be inserted in
the Node Label. At the point where the nested database is initialised the feature
wh bind is added to the Node Label, and the presence of this feature allows lexical
analysis to translate he as (pro:wh):e.

(15) Whoi does John think hej/∗i thinks ei upset Mary?
>> who does john think he thinks upset mary

ROOT

Node

Label : #169 tense(now), level(1)

Goal : ? :t gap_used, use_gap

Node

Label : #171 tense(now), level(2), subnode(#169)

Goal : ? :t gap_used

Node

Label : #173 tense(<(utterance)), level(3),

subnode(#171)

Goal : ? :t gap_used

Succeeds for: upset(mary)(gap(#unknown#)):t

Succeeds for: think(upset(mary)(gap(#unknown#)))(pro:#172):t

Succeeds for: think(think(upset(mary)(gap(#unknown#)))(pro:#172))(john):t

This example contrasts with the previous one in that he may not be interpreted as
dependent on who (as indicated by the subscript j/∗i), even though it is within the
c-command domain of the wh-operator. In fact this restriction falls out naturally if
we assume that wh-items do not add content to the database but license the creation
of a data item at the point where the gap is resolved. In this case the gap comes after
the pronoun and so there is nothing to set up a suitable resolvent. This is indicated
by attaching an arbitrary ID to the label of the declarative unit representing the
pronoun, in this case the numeral #172. In actual fact the pronoun in this example
could be resolved to John, but this is not catered for in the current state of the
implementation. The reason for this is simply that in the prototype system operations
on a nested database do not have direct access to higher-level databases, which is why
the feature-passing mechanism has been set up for wh-binding.

2.1 Crossover phenomena

This interaction between wh and pronoun construal is part of a larger phenomenon
known as crossover, which continues to prove puzzling under orthodox perspectives
[5, 1, 38] in which the wh-expressions are analysed as variable-binding operators al-
beit with idiosyncratic binding properties. The principal difficulty is not simply as we

664 Parsing Natural Language using LDS: A Prototype

have seen that wh does not behave like a regular quantifier, binding any pronominal
that it c-commands, but that the restrictions associated with these binding properties
are partially context-sensitive. In general, the correlation between some initial wh-
expression and the “gap” where its interpretation is projected, is identical in the two
different environments of wh-question and wh-relative. For example, restrictions asso-
ciated with wh-gap binding displayed in a question such as (12) are equally displayed
in relative constructions. (16) is no less illformed than (12), for the same reason:

(16) *The book which John upset the man who criticised e was very poor.

However in crossover constructions this parallelism between relatives and questions
breaks down. In questions, the sequence ‘wh . . . pronoun . . . gap’ is invariably pre-
cluded, as (15) and (17) show:

(17) *Whoi did hisi mother ignore ei?

But in relatives, the restriction is sensitive to the type of pronominal. Though the
relative construction in (18) also precludes the construal of the pronoun as dependent
on the wh (the so-called “strong crossover” restriction), the relative in (19), in which
the pronoun is in a determiner position freely allows such dependency:

(18) *Johni, whoi Sue thinks that hei believes that Bill liked ei, fell ill during the
exam period.

(19) Johni whoi hisi mother regularly ignored ei, fell ill during the exam period.

Furthermore, the crossover restriction extends to cases in which the wh-expression
is contained within some larger expression and it is this and not the pronoun that is
coindexed with the gap:

(20) Whosei exam resultsj ej confirmed that hei was better than everyone else?
(21) *Whosei exam resultsj was hei certain ej would be better than everyone else’s

?

Again the pronoun must follow the gap if it is to be construed as “bound” by the
wh-expression even though the pronoun and gap are not construed as bound by the
same operator (the wh-operator is contained within the expression which binds the
gap). These cases too are context sensitive, with the restriction that precludes (21)
disappearing in the very same type of relative as the so-called “weak crossover” cases:

(22) John, whosei exam resultsj hei had been certain ej would be better than
everyone else’s, failed dismally.

These data have proved recalcitrant for orthodox binding analyses, some of which
have postulated up to 4 discrete phenomena to account for such interaction [22, 40].

The present analysis allows a straightforward account of the data. The starting
point is the data in questions already displayed in (13) and (14), where there is
no variation according to context. Because the initial wh-expression projects a goal
specification, it is a mere target on the outcome, a license for some assumption to be
constructed later, and so cannot be visible for anaphoric dependency. Once the as-
sumption necessary to meet that target has however been constructed, it is visible for
purposes of anaphoric dependency within the domain within which that assumption
has been constructed. Hence the pattern (23)-(26):

3. COMPARISON WITH OTHER TYPE-DEDUCTION SYSTEMS 665

(23) *Whoi does Joan think that hei worries ei is sick ?

(24) Whoi does Joan think ei worries hei is sick ?

(25) *Whoi does Joan think that hisi mother worries ei is sick ?

(26) Whoi does John think ei worries hisi mother is sick ?

In relative clauses, it is the linking of information in the two databases that makes a
critical difference, though again, the analysis of wh as a goal specification is central.
When a second database is linked to a first through an initiating wh-expression, it
is the wh-variable identified with the corresponding term in the first database, and
its status as a goal specification in the second database, which provides a means of
carrying down the information from the first database through the construction of the
second database. As before, the information projected by the instruction wh bind pro-
jected as a goal specification is copied into each database nested as a subpart of some
initial containing database. The effect is that a fully identified declarative unit will
be treated as projecting a putative entry in each subordinate database it gets carried
through in the building up of this linked database. And with this information being
locally available in each of these subordinate databases, we can explain the context-
sensitivity of the crossover phenomenon as a locality clash between a pronoun within
that database and the information in the presented goal specification. The locality
condition imposed by the pronoun is the restriction that a pronoun, if functioning as
a minor premise in a given database, may not select as antecedent the label of any
other minor premise of type e in that database. Because who, identified as ‘Johni’
in the interpretation of (18) and carried down from one subordinate database to the
next, projects a putative entry of the form Johni:e in each succeeding database, a
pronoun projecting an incomplete premise of type e in any such database will not
be able to use the information projected by the wh. Correctly in these wh-structures
a clash is predicted between the wh-expression and a pronoun in the database being
built if the pronoun precedes the gap. Hence (18) is precluded. And, also correctly,
no clash is predicted in structures such as (19) and (22) in which either the pronoun
or the wh-element is internal to a determiner.

The success of these predictions turns on the incremental nature of the interpreta-
tion process. The data are predicted because the analysis not only defines a relation
between the initial wh-expression and the position from which its semantic contri-
bution is defined, but also defines the information available at each step in between
the projection of that initial position and the position of the gap. So from the twin
assumptions that wh-initial expressions project a goal specification and that the link-
ing of the concept of linked databases provide a means of transferring of information
from one database to another, the LDSNL system succeeds in predicting data which
remain puzzling from more orthodox nonprocedural perspectives.

3 Comparison with other type-deduction systems

3.1 The categorial landscape

Incorporating as it does the concept of type deduction, the LDSNL system falls within
the family of categorial grammar systems all related in various ways to the Lambek
calculus.

666 Parsing Natural Language using LDS: A Prototype

According to the use made of the Lambek calculus in categorial grammar, the
family of syntactic types is defined in terms of the two primitive types, n - denot-
ing entities, s - denoting truth-values, with the two order-sensitive connectives left-
and right- application ‘\’, ‘/’ and any combination of ‘a/b’, ‘a\b’ for ‘a’ a type ‘b’ a
type. As formulas in a well-founded logical system, syntactic and semantic properties
are defined strictly in tandem. A string of category ‘a/b’ combines with a string of
category ‘b’ to its right to yield a string of category ‘a’, a move which is paralleled
by functional application in the semantics. The result is a strong compositionality
requirement that denotations of all complex expressions are based solely on deno-
tations of the constituent parts and their mode of combination, a restriction which
constitutes the heart of a categorial system. Modifications of this Lambek system
have involved departures which loosen the tightness of the syntax-semantics match.
We give first an overview of the types of modification that have been proposed, and
then an indication of how LDSNL fits within this family of systems.

The first problem facing a Lambek-based system is how to characterise the dis-
continuity phenomena prevalent in natural language. The rigidity of the connectives
‘/’, ‘\’, allows discontinuity effects only when the “gap” position is left- or right- pe-
ripheral; and a number of alternative ways of characterising non-peripheral gaps have
been explored:

(i) The directionality of the connectives ‘/’, ‘\’, can be removed, replacing them
with a semi-directional or direction-neutral →, and characterising linear order
restrictions either within the prosodic algebra directly [35], or as part of the
construction algorithm [11, 8].

(ii) The directional operators are retained but additional operators are defined
such as permutation, associativity or more recently infixing operations which
locally remove their effect [29, 33].

(iii) Additional inference postulates are added to the axioms that define a basic
set of combinatorial operators, which have the effect of mapping one string
sequence into another [43].

(iv) Combinatorial processes over units larger than individual typed expressions
can be defined, giving a mixed-level system [17, 11, 23]. This last alternative
allows operations which may interpolate one such macro-unit within another
in ways redolent of Tree-Adjoining Grammars (TAG).

The syntactic problem of discontinuity is part of the more general problem of how
to preserve a concept of compositionality of meaning given the uncontroversial as-
sumption that natural languages have denotational semantics. On the one hand, the
strict syntax-semantics correspondence is not fully preserved in natural language phe-
nomena. Not all syntactic operations induce a corresponding denotational operation;
and some syntactic restrictions appear to have no denotational reflex. On the other
hand, natural language expressions display a context-dependence in their interpreta-
tion which is not expressible without some extension of the denotational semantics
carried over from orthodox formal logics (which by definition display no such variation
for a single string). Furthermore language interpretation takes place in real time, and
interpretation is built up on a left-right basis.

At least two forms of modification have been envisaged within the family of cate-
gorial systems to address these problems.

3. COMPARISON WITH OTHER TYPE-DEDUCTION SYSTEMS 667

(i) Modes of syntactic combination can be licensed which do not correspond to
semantic operations. These may carry out syntactic operations which have no
semantic reflex, eg permutation, or they may define domains within which se-
mantic operations take place, enabling syntactic restrictions without semantic
consequence to be defined [16, 33].

(ii) Some categorial systems impose an additional requirement of left-right com-
positionality over the string as a whole [43, 26, 27], making use of type lifting
and composition of function operators to define types from which a denota-
tional semantics can be incrementally projected. The infinity of types for a
linguistic string allowed by all pure categorial formalisms, the so-called phe-
nomenon of “spurious ambiguity”, is taken to be problematic, but not pro-
hibitive [16, 31, 14].

Further, more radical, liberalisation is required if the system is to incorporate the
widely-observed partiality of information presented by natural language expressions.
This phenomenon poses two distinct types of problem. On the one hand, at any
sub-point in the interpretation process, the intrinsic content of the expression may
not be sufficient to determine its structural role within the configuration in which it
occurs. On the other hand, the encoded content of any individual expression may
not fully determine the denotation to be assigned to it under an interpretation, but
it may contribute, rather, to the way in which interpretation is built up (as in the
data considered in Section 2 above). Phenomena such as these conflict with the
compositionality requirement strictly construed. Two solutions might be envisaged
within a broadly categorial system: 6

(i) A denotational semantics can be preserved, while using the syntax nontrivially
to narrow down the class of interpretations made available by an over-broad
semantic characterisation. This approach [26] allows the partiality of informa-
tion projected at any subpart of the interpretation process to be captured as
an appropriate semantic abstraction (unspecified as to possible syntactic forms
of completion).

(ii) The possibility of a new definition of semantics might be explored, enriching
the denotational semantics with forms of interpretation which reflect the in-
cremental procedure whereby the interpretation is built up. (cf. the work by
Lecomte and Retore [23]). It is this latter route which is being explored in
ongoing LDSNL work [12].

3.2 LDSNL and other current models compared

LDSNL departs from Lambek assumptions in allowing operations other than type
deduction, in adopting an explicitly procedural perspective, and also in assuming a
structural approach to interpretation. It licenses two modes of combinatorial opera-
tion, that defined as steps of type deduction and that defined as operations on sets of
premises taken as a unit (a database). These structural operations are explicitly de-
fined to be part of the interpretation process, and an ineliminable level of structure is

6The problem of compositionality has been a primary focus of attention since the work of Barwise, Perry and

Kamp in the early 1980’s [18, 2]. However work in Situation Theory and DRT does not in the main seek to sustain

a matching of syntactic and semantic generalisations.

668 Parsing Natural Language using LDS: A Prototype

assumed, the projection of which requires a process-oriented form of semantics. With
the shift of the semantics to a procedural perspective, a stricter form of the com-
positionality principle can however be retained, with the assumption of systematic
word by word incrementation of structure as interpretation. A relatively orthodox
model-theoretic evaluation can then be defined in a familiar bottom-up way upon the
output of this structural process, preserving assumptions about the form of such a
semantics but defined n ot for the natural language string directly, but rather for the
wellformed formula onto which the parsing process defines a projection.

Several consequences follow from this shift. Because the compositionality require-
ment is now met at the level of building an appropriate logical structure, there is no
need to impose a left-right bottom-up projection of model-theoretic content on the
string (as guaranteed by the ‘/’, ‘\’ connectives). To the contrary, this requirement is
abandoned in favour of an assumption of strictly incremental accumulation of struc-
ture from lexical input. Furthermore type deduction no longer needs to be defined to
be sensitive to linear order as in the Lambek system. Nor is there any call to assign
higher type specifications to enforce left-right compositionality as in the Steedman or
Milward systems [43, 27].

The essence of the LDSNL account is that it procedurally builds up structure as
interpretation in a top-down (and structural) way in which information about the Wh-
phrase can be made available at intermediate points in virtue of the way information
is accumulated and transmitted between the initial position and the position of the
”gap”. Indeed this is what critically distinguishes our account of ”crossover” from
others available (including the categorial account of crossover). The categorial account
of Wh is a classical binding account, which can manipulate information about the
Wh-expression only at the position of the gap and the position of the binding operator.

Of the number of categorial type-logical formalisms available, the LDSNL formal-
ism is most closely related to Milward’s implementation of incremental parsing algo-
rithms for categorial grammar and dependency grammar, in its conceptualisation of
the relationship between grammar and parser. [26] presents a parsing algorithm for
Lexicalised Dependency Grammar in terms of a dynamic specification of the state
transitions licensed by the grammar. It turns out that the dynamic specification is
sufficiently general to form the basis of a grammar in its own right, Dynamic Depen-
dency Grammar, where the resulting grammar generates transition sequences rather
than parse trees. LDSNL is also related to the term-labelled categorial type system
of [35]. Both systems make explicit use of the Gabbay LDS methodology, using labels
not merely as a semantic reflex of steps of type-deduction, but as an additional control
mechanism. There are also similarities with the TAG-influenced system of Joshi and
Kulick [17]. Like LDSNL, Joshi and Kulick restrict the problem of spurious ambiguity
faced by systems which allow associativity, permutation, and infixing operations by
replacing the simple mono-level type-deduction system with a richer inference system,
allowing inference to be defined over sets of premises, taken as proof objects, in addi-
tion. In particular adjunct structures, and raising constructs are defined in this way.
There are also interesting correlations with Lecomte and Retore who define words as
projecting partial proof objects, as Joshi and Kulick but in an explicitly linear logic
(POMSET) framework [23].

There is also at least a superficial parallelism between the LDSNL formalism and the
more orthodox Flexible Categorial Grammar (FCG) formalisms such as [33]. Like the

4. ISSUES TO BE ADDRESSED 669

LDSNL formalism, Morrill uses a natural-deduction format for displaying the projec-
tion of prosodic string plus semantic content, (moreover he uses a system of labelling
to present this ordered pair of information at each stage of the projection). Further-
more, the projection of wh-containing strings is characterised in terms of the licensing
of constructed assumptions, with required discharge of all such assumptions by ap-
propriate steps of conditional introduction immediately prior to their combination
with some suitable operator. The LDSNL system might therefore be construed as a
procedural analogue of the natural deduction variant of the FCG formalism. However
FCG is committed to the strongest form of syntax-semantics correspondence, with the
syntax characterised exclusively in the model-theoretic terms presented by the two
dimensions of interpretation - prosodic and denotational. Against this background,
the interpretation of wh expressions within FCG has to explained exclusively in terms
of the interpretation of the position filled by the assumption as determined by the
wh operator which binds it, for this is the only dimension of interpretation which
the formalism makes available. Because the syntax is epiphenomenal, no reference
can be made to structural properties of intermediate steps in the process of compil-
ing that interpretation. The claim that such reference is essential to characterising
the context-dependency effects of crossover therefore remains a puzzle yet to be ad-
dressed within the FCG formalism. More generally, FCG has not addressed the issue
of the context-dependency intrinsic to natural language interpretation, which is the
principal focus of LDSNL.

4 Issues to be addressed

In comparison with FCG formalisms, the system outlined here faces a major problem
— the definition of an appropriate semantics. The language needed to define the
type-logical formulas is unproblematic. It comprises a set with just two primitives
combined within a logical system whose only connective is → (and possibly :). Such
a system is familiar — an impoverished relative of much richer current categorial
systems [33, 31, 16, 15]. The language of the labelling algebra is however extremely
heterogeneous. A quantifier-free predicate logic expresses concepts associated with
natural language expressions. But there are a number of additional features of this
labelling language, none of which is unproblematic.

Firstly, there are metavariables whose status within the predicate logic language
remains to be defined. Secondly, the labelling algebra also contains control specifica-
tions such as ‘use me last’ and a range of restrictions on how to instantiate individual
metavariables, whose semantics will have to be in terms of the process of building the
tree structure. Thirdly, entire databases can act as labels; and this involves a blurring
of the label-formula distinction, since type-logical formulas have a role not only within
the formula system but also (within a database) in the labelling algebra. Without an
associated semantics for this complex system, its formal properties remain unclear.
Yet the heterodox nature of the various labelling devices makes the possibility of a
revealing semantics seem remote.

Confronted with this problem, more recent work of Gabbay, Kempson & Meyer-
Viol has led to a revised system, in which predicate algebra expressions are built up as
formulas, and all controls on that operation, including type specifications, are defined
in the labelling algebra, whose sole purpose is to drive the incremental construction

670 Parsing Natural Language using LDS: A Prototype

of a logical formula as interpretation for the natural language string. The semantics
of the revised label-formula pairs is exclusively procedural. It is only its output, a
form of epsilon calculus, which has an orthodox model-theoretic semantics. A partial
implementation of this system has been developed; see [25].

Despite the shift of balance as between label and formula, the underlying motiva-
tion of the earlier system is carried over unchanged in this revised system. The goal
remains that of modelling the process of natural language understanding, with the ac-
companying commitment to modelling the asymmetry between some relatively weakly
specified linguistic input and the representation corresponding to some assigned in-
terpretation. The interpretation of natural language expressions qua expressions is,
as before, strictly syntactic — a set of meta-level procedures on the building of logical
configurations. In so far as it is successful in predicting natural language data, this
LDSNL system is of interest in being a parser without any independent grammar.
The concept of structure defined for the natural language system is by definition the
structure of the parse process through which a configuration corresponding to a fa-
miliar model-theoretic concept of interpretation is projected. Syntax here is no more
and no less than the internal structure associated with the deductively driven pars-
ing mechanism. The significance of the model will lie in whether this claim remains
sustained across a broader array of “syntactic” data than so far addressed.

Acknowledgements

This research was in part supported by the UK Engineering and Physical Sciences
Research Council under grant reference GR/K67397, “A Labelled Deduction System
for Natural Language Understanding” and by the Economic and Social Research
Council award no. R000-23-2069. M. Finger is partly supported by Brazilian CNPq,
grant 300597/95-9.

The authors wish to thank the anonymous reviewers for their helpful comments.

References

[1] Aoun, J & Li, A. 1993. Wh-elements in situ: syntax or LF? Linguistic Inquiry 24.2, pp.199-238.

[2] Barwise, J & J Perry, 1983. Situations and Attitudes.

[3] Broda, K & M Finger, 1995, KE-Tableaux for a Fragment of Linear Logic, in Proc 4th Interna-

tional Workshop on Analytic Tableaux and Related Methods. Koblenz.

[4] Broda, K, M Finger & A Russo, LDS: Natural Deduction for Substructural Logics, Submit-

ted to the Journal of the IGPL, Special Issue Workshop “Logic, Language, Information and
Computation”, 1996.

[5] Chomsky, N. 1985. Knowledge of Language. Praeger.

[6] Chomsky, N. 1995. On minimalism. MIT Press, Cambridge MA.

[7] D’Agostino, M & D Gabbay, 1994, A generalisation of analytic deduction via labelled deductive

systems. Part I: Basic substructural logics. Journal of Automated Reasoning 13.

[8] J.Doerre, E.Koenig, D.Gabbay, 1996. Fibred semantics for feature-based grammar logic. Journal

of Logic, Language and Information vol.5 nos.3-4. pp.387-422.

[9] Dowty, D. 1991. Thematic proto-roles and argument selection. Language

[10] Gabbay, D. 1996. Labelled Deductive Systems, vol. 1 . Oxford University Press.

[11] Gabbay, D. & Kempson, R. 1992. ‘Natural-language content: a proof-theoretic perspective’

Proceedings of 8th Amsterdam Semantics Colloquium. Amsterdam.

[12] Gabbay, D., Kempson, R. & Meyer-Viol, W. ‘Labelled deduction for natural language under-

standing’.

4. ISSUES TO BE ADDRESSED 671

[13] Gabbay, D., Kempson, R. & Pitt, J.V. (1994) ‘Labelled abduction and relevance reasoning’
in Demolombe & Imielinski, T. (eds.) Nonstandard queries and nonstandard answers, 155-96.

Clarendon Press, Oxford.

[14] Hendriks H. 1993. Studied Flexibility. Ph.D ILLC Amsterdam.

[15] Hepple, M. Hybrid Categorial Logics. IGPL Vo.3 Nos.2-3, pp.343-55.

[16] Hepple, M. 1990. The Grammar and Processing of Order and Dependency: A Categorial Ap-
proach. Ph.D Edinburgh.

[17] Joshi, A and S Kulick 1995. Partial proof trees as building blocks for a categorial grammar.

(Revised version Jan. 1996 skulick@linc.cis.upenn.edu, joshi@linc.cis.upenn.edu).

[18] Kamp, H, 1981. A Theory of truth and semantic representation. In J. Groenendijk et al (eds),

Formal Methods in the Study of Language, Mathematisch Centrum, Amsterdam.

[19] Kempson, R. 1995. ‘Ellipsis: a natural deduction perspective’ in ed. Kempson, R.Bulletin of The
Interest Group of Pure and Applied Logics: special edition on Language and Deduction. Vol.3,

nos.2-3.

[20] Kempson, R. 1996. ‘Semantics, pragmatics, and natural-language interpretation’ in Lappin, S.

(ed.) Handbook of Contemporary Semantic Theory. Blackwell.

[21] Kempson, R. & D.Gabbay (forthcoming) Crossover: a unified account. Journal of Linguistics.

[22] Lasnik, H. & Stowell, T. 1991. ‘Weakest crossover’. Linguistic Inquiry 22:687-720

[23] Lecomte and Retore 1995. Pomset Logic as an alternative categorial Grammar. Formal Gram-

mar. Proceedings of the Conference of the European Summer School in Logic, Language and
Information, Barcelona. email lecomte@shm.grenet.fr, retore@loria.fr

[24] Meyer-Viol, W. 1995. Instantial Logic: An Investigation into Reasoning with Instances. ILLC

Dissertation Series 1995 -11. ILLC. Amsterdam.

[25] Meyer Viol W, R Kibble, R Kempson & D Gabbay, 1997, Indefinites as Epsilon Terms: A

Labelled Deduction Account, in Bunt, Kievit, Muskens & Verlinden (eds), Proceedings of the
Second International Workshop on Computational Semantics, Tilburg University.

[26] Milward D, 1994. Dynamic Dependency Grammar. Linguistics and Philosophy 17.6:561–606.

[27] Milward D, 1995. Incremental interpretation of categorial grammar. EACL proceedings.

[28] Montague 1974 Formal Philosophy. Yale University Press.

[29] Moortgat, M. 1988. Categorial Investigations. Foris. Dordrecht.

[30] Moortgat, M. 1992. ‘Labelled deductive systems for categorial theorem proving’ in Dekker, P.

& Stokhof, M. (eds.) Proceedings of Eighth Amsterdam Colloquium.

[31] Moortgat, M. 1995. ‘Multimodal Linguistic Inference’ in Kempson, R. (ed.), Deduction and

Language Special Issue of Bulletin of the Interest Group in Pure and applied Logics. Vol. 3, Nos.
2-3. London.

[32] Morrill, G. et al 1990.‘Categorial deductions and structural operations’ in Barry, G. & Mor-

rill, G.(eds.) Studies in Categorial Grammar. Edinburgh Working Papers in Cognitive Science.
Edinburgh.

[33] Morrill, G. 1994. Type-logical Grammar. Kluwer.

[34] Morrill G. 1995. Clausal proofs and discontinuity. IGPL. Vo. 3. Nos2-3, pp.403-27

[35] Oehrle, R. 1994. Term-labelled categorial type systems. Linguistics and Philosophy 17.

[36] Oehrle, R. 1995. ‘Some three-dimensional systems of labelled deduction. IGPL. Vol.3, Nos.2-3,

429- 48.

[37] Pereira, F & D Warren, 1980. ‘Definite clause grammars for language analysis’, Artificial Intel-
ligence 13: 231-278.

[38] Pollard, C. & Sag, I. 1994. Head-Driven Phrase-Structure Grammar. University of Chicago,
Chicago & London.

[39] Postal, P. 1972. Crossover Phenomena. New York: Holt, Rinehart & Winston.

[40] Postal, P. 1993. ‘Remarks on weak crossover effects’ Linguistic Inquiry 24, 539-56.

[41] Ross, J.R. 1967. ‘Constraints on Variables in Syntax’ PhD dissertation, Massachusetts Institute
of Technology.

[42] Russo, A.M. 1996, ‘Modal Logics as Labelled Deductive Systems’, PhD dissertation, Imperial

College, University of London.

[43] Steedman, M. 1993. Categorial grammar. Tutorial overview’. Lingua 90. 221-258.

Received 30 July 1996. Revised 10 April 1997

