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Abstract

In this work we analyze the asymptotic behavior of the solutions of the p-Laplacian equation
with homogeneous Neumann boundary conditions posed in bounded thin domains as

R ={(z,y) eR*:2€(0,1) and 0 < y < G (z,z/c)}

for some o > 0. We take a smooth function G : (0,1) x R — R, L-periodic in the second variable,
which allows us to consider locally periodic oscillations at the upper boundary. The thin domain
situation is established passing to the limit in the solutions as the positive parameter € goes to zero
and we determine the limit regime for three case: a <1, a =1 and a > 1.
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1 Introduction

Partial Differential Equations on thin domains (domains in which the size in some directions is much
larger than the size in others) appear naturally in biological systems and industrial applications [13]
14, 24]. In most of the applications, the boundary of those domains is not perfectly flat and one can
see irregularities. Then, the influence of such boundary distortions might not be neglected because
its effect on the effective equation of the considered system, even far from the rough boundary, can
be meaningful [I, ©, II]. This motivates researchers to employ different homogenization techniques
and try to determine the effective flow behavior on a lower-dimensional domain which captures the
influence of the geometry, roughness and thickness of the perturbed domain on the solutions of such
singular boundary value problems. The obtained equations are then suitable for numerical simulations
and provide rigorous justification of various natural phenomenon seen in such complex systems.
A simple manner to consider such irregularities is to stody domains of type

Qsz{(a:,y)e}Rzzxe(O,l) and0<y<€g<€%>} for e > 0,

where g is a positive, bounded and periodic function satisfying some regularity hypothesis and £ > 0 is
a small parameter which goes to zero. Thereby, in the limit ¢ — 0, the open set Q¢ degenerates to the

*e-mail: jean.carlos.nakasato@math.hr. Partially supported by CNPq 141675/2015-2 (Brazil), INCT/CAPES
88887.507830/2020-00 (Brazil) and Croatian Science Foundation under the project AsAn (IP-2018-01-2735).

fe-mail: marcone@ime.usp.br. Partially supported by CNPq 308950/2020-8, FAPESP 2020,/04813-0 and 2020,/14075-
6 (Brazil), PID2019-103860GB-100 MICINN (Spain) and MultiFM IP-2019-04-1140 (Croatia).



unit interval presenting oscillatory behavior on the upper boundary (see for instance [Il, 22] 211, 5] [3]
where similar approach are performed).

The periodic rough boundary considered above is certainly a first step, but usually not enough,
since most of the irregularities present in real applications are not periodic. In this work we are
interested in the following family of rough thin domains

R ={(z,y) eR*:2€(0,1) and 0 < y < G- (z)} fore>0 (1.1)

where
G.(z) =G (a: ﬁ)

50&

for some parameter o > 0 with function G satisfying the conditions given by hypothesis (H) set in
Section 2] This kind of domain perturbation is called in the literature locally periodic thin domain
and it is illustrated in figure [I] below.
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Figure 1: A locally periodic thin channel with rough boundary.

As an example, one can consider G.(x) = a(z)+b(z)g(x/e%) where a, b : (0,1) — R are C'-piecewise
positive functions and g : R — R is a L-periodic function of class C'! also positive. This includes the
case where a, b are positive constants recovering the perturbed regions discussed for instance in [3] [5].
Notice that in the case in which oo = 0, we also recover the open sets considered in [13] where evolution
equations on thin domains without roughness were studied. We observe that the hypothesis (H)
considered here is as general as possible for our framework.

In a unified way, we treat the three cases of roughness that can be modeled by the parameter o > 0.
We analyse our boundary value problem for 0 < @ < 1, « = 1 and a > 1, which represents weak,
resonant and strong harshness on the upper boundary respectively. In each case, we have a different
effective equation featuring the roughness induced effects on the perturbed model for small values of
the parameter €.

Several references treat issues related to the effect of thickness and rough boundaries on the feature
of the solutions of partial differential equations. Indeed, thin structures with oscillating boundaries
appear in many fields of science: fluid dynamics (lubrication), solid mechanics (thin rods, plates or
shells) or even physiology (blood circulation). Therefore, analyzing the asymptotic behavior of models
set on thin structures understanding how the geometry and the roughness affect the problem is of
considerable current interest in applied science. In these directions, let us mention |7, 10, 15, 21| and
references therein.

In this paper, we are interested in analyzing the asymptotic behavior of the solutions of a p-
Laplacian equation given by

(1.2)

—Apue + ueP"2ue = f° in R®
|Vue|P~2Vuen. = 0 on OR®

where 7, is the unit outward normal vector to the boundary OR®, 1 < p < oo with p~! +p/~! =1, and

Ay =div (|V-[P72V)

denotes the p-Laplacian differential operator. We also assume f€ € Lp/(RE ) is uniformly bounded.
Such quasilinear equations play an important role in applications, given the fact that many models

cannot be described by linear equations. In this sense, considering the p-Laplacian equation becomes

natural. Moreover, the p-Laplacian is strongly related to non-Newtonian fluids, which arise in many



applications related to polymer processing, hydrology, food processing, turbulent filtration, glaceology
(see e.g. [0, 25 [16, 17]). Here, differently from many works [I1} 12], we deal also with the case
1 < p < 2, which is the most relevant range of p in applications (e.g. [6]) and, of course, the case p > 2.

We improve the results from [3] (where the Laplacian operator in locally periodic thin domains were
considered) dealing with the p-Laplacian equation for any p € (1, 00). Moreover, we are improving our
previous results from [2] where the purely periodic case in bidimensional thin regions were studied. It
is worth noticing that the techniques developed in [2] [3] cannot be directly applied in this case. On
the one hand, the results concerning the unfolding operator obtained in [4] do not guarantee strong
convergence in LP for the unfolding operator applied on solutions of quasilinear operators. On the other
hand, the analysis performed in [3] just works on L?-spaces. Our goal here is to overcome this situation.
We discretize the oscillating region passing to the limit using uniform estimates on two parameters:
one associated to the roughness, and other given by the variable profile of the thin domain. In this
way, a continuous dependence property for the solutions with respect to the function G in LP-norms
is crucial and it is obtained in Theorem We point out that these techniques also work for the
dimension reduction from 3-dimensional thin sets to two-dimensional ones. The main change is in the
limit problem. In 3D, we somehow lose the explicit p-Laplacian form, as in the unidimensional limit,
but, clearly, the monotonicity of this limit operator is preserved (it will be done in a forthcoming work).

Notice that our work also goes a step further from [23] where the p-Laplacian operator is studied in
standard thin domains. Let us emphasize that the standard thin domains were previously introduced
and rigorously studied in the paper [13] of J. Hale and G. Raugel where the continuity of the family
of attractors set by a semilinear parabolic equation in thin domains was considered.

According to [I] and references therein, it is expected that the sequence . will converge to a function
of just one variable x € (0,1) satisfying a one-dimensional equation of the same type. Combining
boundary perturbation techniques [3} 4, [5] and monotone operator analysis [17], we identify the effective
limit model of at e = 0.

The paper is organized as follows. In Section [2] we state the main result of the paper. In Section [3|
we introduce some notations and state some basic results which will be needed in the sequel. In Section
we prove the continuous dependence of the solutions in LP-spaces with respect to the function G
uniformly in the parameter ¢ > 0 improving [3, Theorem 4.1] from L? to LP-spaces. In Section [5| we
perform the asymptotic analysis of in piecewise periodic thin domains (that is, in thin domains
set by functions G which are piecewise constants in the first variable x, and L-periodic in the second
one). See Figure [2| below which illustrates piecewise periodic open sets.
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Figure 2: A piecewise periodic thin domain.

Next, we provide in Section |§| the proof of the main result of the paper (namely Theorem [2.1]) as
a consequence of the analysis performed in the previous sections. Finally, we discuss in Section [7}
the convergence of the resolvent and semigroup associated to the equation under the additional
assumption p > 2. As we will see, it is obtained combining the classical result |8, Theorem 4.2] and our
main result Theorem Furthermore, we include an Appendix where the dependence of the auxiliary
solution v on admissible functions G is analysed.



2 Hypothesis on function G and the main result

First, recall that the variational formulation of (1.2)) is given by
/ {]VUEIP_QV%VQO - ]uglp_Quacp} dxdy = / feodxdy, o € WHP(R®). (2.1)
Re Re

Moreover, existence and uniqueness of the solutions are guaranteed by Minty-Browder’s Theorem

setting a family of solutions wu..
Next, we state the main hypothesis on function G setting the main conditions on our rough thin

domain R® introduced in (L.1]).

(H)
Let G : (0,1) x R — R be a function satisfying that there exist a finite number of points
0= <& < <éna1<én=1

such that G : (§-1,&) x R — (0,00) is C! and such that G, 9,G and 9,G are uniformly bounded
in (§-1,&) X R getting limits when we approach &1 and ;. Further, we assume there exist two
constants Gg and (1 such that

0<G0§G($7y) Sle V(.T,y) € (071) XR?

and a real number L > 0 such that G(z,y + L) = G(z,y) for all (z,y) € (0,1) x R[]

*G(z,-) is a L-periodic function for each = € (0,1).

As we will see, the homogenized limit equation is a one-dimensional p-Laplacian equation with variable
coefficients ¢(z) and r(z). It assumes the following form

{ — (q(@) [P~ + r(@)uff2u=f  in (0,1),
u'(0) = /(1) =0,

where the homogenized coefficients are given by

1
L/ ( )|Vv|p_2aylvdy1dy2, if a=1,
Y*(x
1
q(z) = , —if a<l,
(1/GP~1(z, ')>I()0,£)
Go(z) = IrleiﬂlgG(x,y), it a>1,
y

(2.2)

and

Y*(x
) = T i) .

We emphasize here the dependence of the function ¢(z) with respect to Athe parameter o > OAand
variable x € (0,1) which generalizes our previous work [2]. The function f is the weak limit of f¢ in
L' (0,1) with f¢ defined by the family of known forcing terms f¢ € LP (R?) in the following way

. eG(x,x/e)
fo(z) = 1/0 fe(z,y)dy.

9

|Y*(x)| denotes the Lebesgue measure of the representative cell

Y*(x) = {(y1,92) : 0 <y1 < L,0 < yo < G(z,91)}



which also depends on variable z € (0,1). The function v used to set the homogenized coefficient g(z)
in ([2.2)) is is the unique solution of the problem

/y*( ) Vol VoVpdydy, =0 Vo € WP (V¥ (@), {phyen) = 0.

(0 =) €W (Y () with {0 42))y.(p =0

(2.3)

where
1, * *
W#p(Y (.T)) = {SO € W17p(Y ('r)) : SolaleftY*(x) = ‘P‘am-ghtY*(a:)}

is the space of periodic functions on the horizontal variable y;, and (¢), denotes the average of any
function ¢ € L} (RM) on measurable sets O C RM.

It is worth noticing that problem is well posed for each x € (0,1), due to Minty-Browder’s
Theorem, and then, the coefficient ¢(z) is also well defined. Further, ¢(x) is a positive function setting a
well posed homogenized equation. Indeed, since v is the solution of (2.3)), there exists ¢ € W#p (Y*(z))

with (1) (,) = 0 for each z € (0,1) such that v =y + ¢ and then
0< / |VolP dy1dys = / |VoP~2VoV (y1 + ) dyidys
Y*(z) Y*(x)

= /Y " [VolP =20y, v dydys = L q(x).

The main result of the paper is the following:

Theorem 2.1. Let u. be the solution of (1.2)) with f¢ € Lp,(RE) uniformly bounded. Suppose that

. 1 eG(z,x/e) .
fo(x) = / fo(z,y)dy
€Jo
satisfies f¢ — f weakly in L¥ (0,1).
Let w € WHP(0,1) be the unique solution of the homogenized equation

1 1
/ @2 + () [ulP~2up) de = / fode, Vo e WW(0,1),
0 0

where the homogenized coefficients q(x) and r(z) depend on the parameter o > 0 and are given by the
expression .
Then,
L

eG(z,x/e®)
oI /0 ue(z,y)dy — u weakly in LP (0,1),

and
5_1/p|]u5—u||Lp(Rs) —0, ase—0.

As mentioned before, we are improving the results from [3] where the Laplacian operator in locally
periodic thin domains were considered. We recover them taking p = 2 in Theorem [2.1] Moreover, we
also have improved our previous results from [2] where the purely periodic case in bidimensional thin
regions were studied to the p-Laplacian operator where constant homogenized coefficients are obtained.
Here, since we are considering locally periodic thin domains, variable homogenized coefficients can be
produced. The main step in the proof is to pass to the limit in the solutions with the representative
cell depending on vairable z € (0,1) assuming different orders of roughness (different values for the
parameter o > 0). To do that, we discretize the oscillating thin region passing to the limit using
uniform estimates on two parameters: one associated to the roughness, and other given by the variable
profile of the thin domain. In this way, a continuous dependence property for the solutions with respect
to the function G in LP-norms is crucial and it is shown in Theorem 1] below.



3 Basic Facts and the unfolding operator

In this section, we introduce some basic facts, definitions and results concerning to the unfolding
method making some straightforward adaptations to our propose. First, let us just recall some basic
properties to the p-Laplacian which can be found for instance in [17].

Proposition 3.1. Let x,y € R".

o [fp>2, then

(lzP~ 2z — |y[P 2y, — y) > cplz — y|P.

o If1 <p<2, then

(a2 = [yl Py, e —y) = cple —yP(lz] + |y)P
> cplw =y (L + [a] + |y
Corollary 3.1.1. Let a, : R — R™ such that a,y(s) = |s|P~2s, % + ]% = 1. Then, a, is the inverse of

a, . Moreover,

o If1<p <2 (ie,p>2), then

’]u\p/_Qu — ]v|p,_20‘ < clu — P71

o Ifp) >2 (ie, 1 <p<2), then

[l 2= o 0| < cfu = vl(ul + fol7 2

< clu—of(L+ Ju + o772

Proposition 3.2. Let z,y € R" and p > 1. Then.
[yl > [af” + pla" "z - (y — 2)
Moreover,
yl? > |2fP + plalP e (y — @) + eply — 2P if p > 2,
[yl = [2f? + pleP e - (y - 2) + cplr — yP (1 + fo] + )P 1 <p<2.
From now on, we use the following rescaled norms
el (rey = €72 1ol ey Voo € LP(RE), 1 < p < oo,
Helllwin(rey = € P llellwrncre) Y € WH(R®),1 < p < oo.
(R*) (R*)

For completeness we may denote |[[][| oo (gey = [0l oo (ge)-
Next, we get the following uniform bound for the solutions of ([1.2)):

Proposition 3.3. Consider the variational formulation of our problem:
/ {]VUEVF2 VuVe + |[u P2 uggo} dxdy = feodxdy, ¢ € WHP(RE), (3.1)
£ RE

where f¢ satisfies
1 ey < €

for some positive constant ¢ independent of € > 0. Then,

el S e Nelllogge <

’Mv%wﬂv%

Ly’ s
(Re)



Proof. Take ¢ = u. in (3.1)). Then,
HusH];Vl,p(Re) = /RE {IVuel’ + |ue|"} drdy < Hf6||Lp/(RE) ||U6”Lp(Rs) .
Hence,
uelllwrogey < c
Therefore, the sequence u. and |Vu.[P~2Vu,, are respectively bounded in LP(R?) and (L¥ (R?))?
under the norm |||-|||. O

3.1 Unfolding operator

Here, we present the unfolding operators for thin domains in the purely and locally periodic settings.
We rewrite it to our context in order to simplify our proofs. They were first introduced in [4, [5] where
details and proofs can be found.

3.1.1 The purely periodic unfolding

Let G; : R — R be a L-periodic function, lower semicontinuous satisfying 0 < go; < Gj(x) < g1; with
go,; = minger Gi(x) and g1 ; = sup,ecg Gi(z) for any i = 1,..., N. Now consider the thin region

R ={(z,y) eR: &1 <2 <§,0<y <eGi(z/e)}.
The basic cell associated to RS is
V¥ ={(y1,92) ER*:0 <y < Land 0 < y2 < Gi(31)}-
By

1
¥o =15 /O o(a) dz,

we denote the average of ¢ € L}OC(R2) for any open measurable set © C R?. We also set functional
spaces which are defined by periodic functions in the variable y; € (0, L). Namely

L) = { € IP(Y)  olyr, ) is L-periodic in gy },
12,((0,1) x ¥7) = {p € I((0,1) X ¥;') = (1, 35) is L-periodic in g },
1 * *
WP (V) = {p € WHP(YY) = @la vy = Plognys )

For each € > 0 and any z € (§;_1,&;), there exists an integer denoted by [%]L such that

r=c¢ [gLL—i—e{g}L where {g}L €[0,L).

N:

I'=Tnt (| JkLe+& 1, (k+1)Le + & 4]
k=1

We still set

where N! is largest integer such that e L(N! 4+ 1) + &1 < &, as well
AL = (&1, &\ = [eL(NZ+ 1) + -1, &),
0 = {(:U,y) ER?:z el 0<y<eG; (%)},

i-:{(x,y)ERQ:x€A2,0<y<5Gi (g)}

Now we can introduce the unfolding operator. In the sequel, we point out its main properties.



Definition 3.4. Let ¢ be a Lebesgue-measurable function in R;. The unfolding operator T2 acting on
¢ is defined as the following function in (§—1,&) x Y;*

; [ oele [f]LL+€y1,5yg),for (z,y1,y2) € It X Y,
Teplaunv2) = { 0, for (z,y1,12) € AL x Y7,

Proposition 3.5. The unfolding operator satifies the following properties:
1. T2 is linear;
2. T2 ) = T2@)T-(v), for all p, 1 Lebesque mesurable in R ;
3. Vo e LP(RS), 1 <p < oo, )
70 (v {2} . 2) = @),
for (z,y) € R;,.

4. Let (pe) be a sequence in LP(RS), 1 < p < oo with the norm ||¢c||pp(gey uniformly bounded.
Then, '

1
/ |pe|dxdy — 0.
R,

€ 1
5. Let (<) be a sequence in LP(&_1,&;), 1 < p < oo, such that
P = strongly in LP(&i—1,&).
Then, 4
Tlpe — @ strongly in LP ((&-1,&) x Y;").
Proof. See |5, Proposition 2.5]. O

The above result sets several basic and somehow immediate properties of the unfolding operator.
Property 5 will be essential to pass to the limit when dealing with solutions of differential equations
since it allow us to transform any integral over the thin sets depending on the parameter € and function
G; into an integral over the fixed set (§—1,&;) x Y;*.

3.1.2 Locally Periodic Unfolding

Next we set the locally periodic unfolding operator discussing some properties that will be needed in
the sequel.

Definition 3.6. We define the locally periodic unfolding operator TP acting on a measurable function

@, as the function T ¢ defined in (0,1) x (0,L) x (0,G1) by expression

_ x
TPo(z,y1,10) = & (5a L?a} L+ an1,€y2> for (z,y1,y2) € (0,1) x (0,L) x (0,G1),
where ™ denotes the extension by zero to the whole space.

As in classical periodic homogenization, we have the unfolding operator reflecting two scales. The
macroscopic one, denoted by x which gives the position in the interval (0, 1), and the microscopic scale
given by (y1,y2) which sets the position in the cell (0, L) x (0, G1). However, due to the locally periodic
oscillations of the domain RF, the definition given here differs from the usual ones. In this case, we do
not have a fixed cell that describes the domain R® which makes the extesion by zero needed.

Theorem 3.7. Let ¢. € W'P(R) for 1 < p < oo such that |||¢c|||lwip(ge) is uniformly bounded.
Then, there exists ¢ € WLP(0,1) such that, up to subsequences,

TP = ©X(0,1)xY*(2);
weakly in LP ((0,1) x (0, L) x (0,G1)) where X(01)xy+(z) 95 the characteristic function of the set

{(z,y) €R? : 2€(0,1) and y € Y*(2)}.



Proof. See [4, Theorem 3.14]. O

Remark 3.1. We point out that the convergence above cannot be improved because of the definition of
locally periodic unfolding operator.

Proposition 3.8. 1. Let ¢ € L'(R®). Then,
1

1
/ TP (x, y1,yo)dxdyrdys = / o(z,y)dzdy.
L J0,1)x(0,L)x(0,G1) €

£

2. Let ¢ € LP(0,1). Then,
TP = X(0,1)xy+ ()% strongly in LP ((0,1) x (0,L) x (0,G1)) .
Proof. See [4]. O
Proposition 3.9. Let p. € LP(R®) such that
TPp. — X(0,1)xy+ ()% weakly in LP ((0,1) x (0, L) x (0,G1)),
where p(x,y1,y2) = @(z). Then,

L

eGe(+)
2 ey = YOl weakly in 2(0,1)
0

Proof. Notice that
1

1
/ TP o TP (x)dwdy dys — — P(x) V(@)X (0,1)x v+ (2)dTdY1dY2,
L J0,1)x(0,L)x(0,G1) L J0,1)x(0,L)x(0,G1)

for all ¢» € L¥'(0,1). By the Proposition we have
1

L /(0,1)><(0,L)><(O,G1)

-/ 1 (1 / o soe<x,y>dy> ()

1
PN ev-@drdndie = 7 [V @le@)i@)s

1
TP TPy (x)dadyrdys = - / @e(z,y)(x)dxdy
R€

and
1

L /(0,1)><(0,L)><(0,G1)

for all ¢» € L¥'(0,1). Thus,

1

eGe(x) ly*
ST ey~ v @leta)

weakly in LP(0,1). O

4 A domain dependence result

In this section we analyze how the solutions of ([1.2]) depends on the function G.. Let us take

Gs(x)ZG(x,E%) and @E@):@(gﬁ, )

60{
satisfying hypothesis (H) and considering the associated thin domains R and Re by
R ={(z,y) eR*:2€(0,1),0<y<eG:(z)} and
R = {(a:,y) eER?:2€(0,1),0<y< aée(az)} :

Now, let u. and 4. be the solutions of (|1.2)) for the domains R® and ke respectively with f¢ €
L” (R?). We have the following result.



Theorem 4.1. Let G, and G, be piecewise C* functions satisfying (H) with
HGE - C?EHLOO(OJ) <.

Assume also f€ € LV (R?) satisfying £l p 2y < 1.
Then, there exists a positive real function p: [0,00) — [0,00) such that

|Hu€ UE‘HWlp(RenRe + H|u€|||W1p Rg\Rg + H|u€|HW1p RE\RE) —p((s)? (41)

with p(6) — 0 as 6 — 0 uniformly for all e > 0.

Remark 4.1. The important part of this result is that the function p(§) does not depend on e. As we
will see, it only depends on the positive constants Gy and G1.

In order to prove Theorem we use the fact that u. and @, are minimizers of the the functionals

1 1
vam=1/<Wﬂpuw%mw/‘fwm@
pE Re g Re
| X (4.2)
»qw=/<wmﬂwwmmw— " Fodedy
p€ Re g Re

that is,

Ve(ue) = in V. d Vi(a.) = in V().
(ue) L. =(p) and V(i) el =(#)

We will need to evaluate the minimizers plugging them into different functionals. For this, we set
the following operators introduced in [3]:

Piyy : WHP(U) = WHP (U (L + 1))

y (4.3)
(P1+77§0) («T7y):§0 xaﬁ ) ($,y) GU(l—i_n)a
n
where
Ul +n) = {(z,(L+n)y) €eR*: (z,y) € U} (4.4)
and U C R? is an arbitrary open set. We also consider the following norm in W1P(U)
[wll?, el + 1K ]2 ) (4.5)
@) T T+ Lr(U) T Ve ) '
where
1 0
Kl‘H? ( 0 1 +n )
We can easily see that
P
lelysa) = WPl (4.6)

and

1
m||w||€vl,p(m < HwHWffn(U) <(1+ 77)||w||€vl,p((j) asn > 0.
Also, we need the following result about the behavior of the solutions near the oscillating boundary.

Lemma 4.2. Let u. be the solution of problem (1.2) and let P14, be the operator given by (4.3)). Then,
there ezists a positive function p = p(p,n) satisfying p(p,n) — 0 as n — 0, such that

[ fuel[17

p p
Wlp(RE\RE( )) + H!uelel,p(Rs(Hn)\Ra) + [|[Pronue — uelel,p(Rs) < p(p,n),

1+n

for1 < p < oo.

10



Proof. Since n > 0, we have that R° (ﬁ) C R°. Then,

1 1
Vie) = el = 3 [ FFuedudy

1 1 1
];HI 5|HW1P<R€\R€( n)) 7|Hu€|||§vlp<R5(#n)> —/ ffucdxdy -
4.7
1 1
= I (g + Pl ey~ 2, Py
1
|H 6H’W1P(RE\RE<1_M)) +m|”P1+nUaH’€Vl,p(Rs) - 5/}25 ffugda:dy.

Now, let us first assume p > 2. We use the notations of Corollary [3:1.1] to simplify proofs. By
Proposition (4.2) and (2.1) for ¢ = Pi1yu. — ue, we get

p
H‘PI-FWUEW%/LP(}F > |[uell [, p(Re) T E/R [ap(Vue)V (Priqgue — ue)

+ap(ue) (Pranue — ue)] drdy + cp||| Pryyue — uel\lﬁn,p(Re)

(4.8)
= pV (ue) + g . ffusdrdy + }g /RE fe (Progue — ue) dedy + ||| Pronue — ualH’éyl,p(Ra)
p
= pV (ue) + - /RE fEPLyquedzdy + cpl|| Prique — ueHl’évl,p(Re)-
Putting together (4.7) and (4.8]), we obtain
1
_ p 1y >} 5
V(us) > |H Emwlp(Re\RE( )) +p(1+77)H| 1+17U€H‘W1p(Rs / [ruedzdy
+ —V(u
I () + TV )
1
+€(1T77) /RE f€P1+7]U5 —U5H|W1 P (Re) / fgusdl'dy
Consequently
n
— V() = *HI 11
1+77 £ Ue W1P<R5\R€< 77))
1 P1 u
5/ fe [( :_nn; —Us] dedy + —— 1+ | Prnue — ’UJEH@[/LP(RE)
which implies
P
H’ E’HWlp(RE\RE( )) H|P1+nu6 ua\l\wl,p(Rs)
(4.9)

n 1 e Pl.l,.'LLg
<pVe g [ f{ <1+"n>]dxdy'

Now, let us analyze the integral:

1 e P1+77Ug
- — dxdy.
6/5f [ua (T+m)

To do this, notice that
y y
wl9) = (P 2.) = velay) = v (o 2 ) = [ Oueta, s
T

which implies

Y Y 1/p
|ue (2, y) — (Progue) (2, y)| < [/y layua(g;,s)‘pds] ((172377))

1+4+n
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putting the power p, multiplying by 1/e, integrating between 0 and G¢(z) and using that (y/(

n),y) C (eG:(x)), we get
£Ge(z)

& ) (Gel@))?

L rd 0 rd
il — (P < |-
[ e - Al an < |2 [ s (- ;
Thus, we have
1/p'
n G
e = Prsgtlllzncey < Woyudllzscen (1) <o
for € < 1. Consequently, we get
1 P,
/ e [ua— 1+nua] dxdy
€ Jre (L+n)
n e 1 . e
< — dedy + ——— — feP, dxd
= e+ 1) /E‘f ue |dx y+5(1+77) /E‘f us — f 1+nus‘ ray (4.10)
1/p G
€ € n 1
<— 1+ SN Lo ey el Lo (rey + 1L Lot ey |10y tiel | Lo e L )7 il
Hence, due Proposition [3.3] (4.9) and (4.10)), one gets
*||| €|||W1P<RE\RE(1M)) +CP|HP1+VIUE_u€|||€vl,p(Re)
1/p'
n n n (4.11)
< c+ c—+ S C
Tl4n 14 (L4p)Hp
<en+en'l?,
On the other hand, we have
V() = Sl ey~ / Feusdady
— €
pH|P1+77u5|H 1P(R5(1+,’7)) Ref Ugdﬂ?dy

1
—| P P €
pH! 1+77“5|HW11‘+’77,(R5) T /E fCucdady

1
] . / Feucdrdy.
) & Re

= *H’PHWEH\ lp " (RE(140)\Re)
1
> m [|HPlJrnuz-:H|€V1,p(Re(1+n)\Rs)) + |HP1+71“€|HW1p Re

Hence, due to (4.8), we get
1 1
) [|HPl-l-nUaH’€V1,p(Rs(1+n)\Rs)) + |HP1+nUEH|W1 p(Rs - / ffucdzdy

‘/ >
1
/ ’ P1+77Ugd.rdy

1
> ||| P b e € t+ o0
2 s Bl ot ey + )+ e
_1/ ffu-dzdy,
€ JRe

+Cp|HP1+n“E - U6H|€V1,p(36)

and then,
1
ﬁ!HPHnUaIHWlp (Re(14)\R?)) + cpl[| Pryque — U8H|W1p (Re)

n . Py yjue
<1 v)+-= - dzdy.
Wyt [ 7 <“ (1+77)> ey

147 €

Thus, due Proposition and (4.10)), we get for p > 2 that

1
*H|P1+77“6|Hgvl,p(Ra(Hn)\Rs) + cp || Prnue

< en+ent'?’

. p
telllws e (4.12)
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Notice that to the case p > 2, we have mainly estimated the term |x — y|P. Now, for the case
1 < p < 2, we have to estimate (1 + |z| + |y|)?~2|z — y|? in view of Propositions [3.1| and . Indeed,

we can argue as in (4.11]) and (4.12)), to get, for 1 < p < 2 that

1 c 2 -2
Ll 42 [ 9Pyt = Vel (L4 TPyl + [Vl P dady
WLp(Re\Re ( € Jpe
p (r\re(45)) R (4.13)
C _ ’
+;p | P1yyue — Us|2 (14 [Pryqgue| + |ue] )P 2 drdy < cn+ Cnl/p
RE
and

1 c 2 2
};|||P1+77u5||‘a/l,p(RS(l-l-'r])\Re) +7 /RE VP yue — Vue|” (14 |V Pique| + [Vue|)'™ dady

c _ _
+6p/ | P e — ua\2 (1 + |Pryque| + uc|)? 2dacdy <en4enP L
RS

Now, notice that

1 _ p/2
H|P1+17U€ - uEH‘I[;[/l,p(RE)d < <€ /RE |VP1+T]U5 - VU€|2 (1+ |VP1+17U€| + ‘VUEDP 2 dxdy)

] (2—-p)/2

1
. L /g (14 |VPipque| + |Vue|)? dedy

1 _ p/2
(2 1P = (4 1P + a2 dody
RE

1 (2-p)/2
20 1P el oy

€ JRe
Finally, putting together the last inequality and (4.13]), we also obtain

p

wip (RE\RE (ﬁ

1/1?’} p/2

1 /
el )y+mﬂﬂﬂr—%H%mmqécn+w”p+[m+¢n

for 1 < p < 2 finishing the proof. O
Now, we are in condition to show Theorem

Proof of Theorem [{.1. Taking n = 6/Gy, we get under condition |G — G.|| < 6 that

1 . . 1 .
RE|(—— | CR CR(1+ and R°(-—— | CR°CR(1+n). 4.14
(1) (14 ) (1) At @
Applying Lemma [£.2] we get
P P
H|u€|HW1,p(Rs\Rs) < H|UE|HW1»P(R8\RS(ﬁ)) <cp(n) and ( |
4.15
P < P < :
Mheelllyns ey ey < el oy e (2 yy = P00
Now, let us focus to the first term of (4.1)). We have
Ve(ue) < V2 ((Prntic) |re)
1 ) 1 .
= ];||| (Priqte) |Rel|lwiw(rey — R /RE I* (Pryytic) |redxdy (4.16)
1 1 1
< — ||| Pyant fe — = Py pt.dedy + — ¢ Py pt.dady.
< WPl = 7 [ P Prontededy 2 [ 5 Pidray
But from the definition of Pj, (see (4.3)) and a change of variables, we get
Pl ey < 0+ DIy (4.17)
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From Lemma [.2] we get

1 A A

L[ P = ) dady < 1N e 1 Priie = el gy < o). (015)
Also, by ({4.14), (4.15) and Lemma [1.2] we obtain

1 N A
g /R T Preedady < M1 Prell e ey < cpl)'™ (4.19)
e\ Re

Hence, using (£2), (E16), (EI7), Proposition B3} (E18), (E19), we get

(1+77)

1 1 .
Valus) < Mol ey = 7 [ Progicdady 2 [ fPuyiedody

Re\R®

A 1 1
=14+ n)V(t:)+ ( 1_77) / feusdady — / fEPiyptcdrdy + — /R . [ Piyytcdady
. (4.20)
=1 4n)Vo(te)+ i feugdazdy + = / fe (e — Pryntc)dedy + — / [ Piyptcdady

RE\RE
< L+ e e ey + )7
= (1 +n)Ve(te) + p(n),
where p denotes a function such that p(n) — 0 as n — 0.

On the other hand, by (4.2)), (4.5), (4.6]), (4.14) and Proposition we get, for p > 2,
Valte) = el ey = 3 [ Fouededy

Z;H|P1+nue||\ v faudedy

1 3
2 ﬁlll 141 s|\|W1pRE / frucdzdy

p N N
> = Vi V(P _
= p( ) |:|H €H|”r1 p(Re) | 2 /RE (ap( Us) ( 1+nUe ’LLE)

(RE(L40)) &

+ ap(te) (Pryque — te)) dedy + cpl|| Piyynue — u€||\W1 ) RE / ffusdxdy

1
- p(l+1n)

1
el P = ellly ] = 5 [ FPuedady

[W(am” [ sracdndy+ 2 [ (P — adady
€ JRe € JRe

1 N 1 1
= Vit:) + — ¢ P udxdy — — udxrdy +
(1+n) (@e) € Rgf1+n T e @ty € Rgf sardy p(1+n

C N
7p)’||P1+77u8 - uf”‘gvl,p([:ga)'
(4.21)

Now, due (4.10]), a Holder’s inequality and Lemma we obtain

1
€

1
fE P1+,7uada:dy - = fsugdxdy‘

<

(4.22)

1
- / fe Pyijucdzdy| +
(3 RE\RE

1
(I+mn)e
First, one can put together (4.20]) and ( -7 and then use - ) to lead us to

S < M2

mmplwue Us|||W1p(Rg)— 1+ 7

1
/ fEP1+nusdxdy
Re\Re

+

1
e PLpuedrdy — — fsuedwdy‘ < Cp((s)l/p'
Re € JRe

Va(t) + p(6)'/7 + p(5),
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which implies that
1P sntte = 8l ey < ), (1.23)

for p > 2, where p(n) is a nonnegative function that tends to zero as n — 0.

From Lemma we have |||us — P1+,,u5]H€V1,p(RE) < ¢p(0). It follows from (4.23]) that

p

lle = el ey < 76,

for p > 2, where p(n) is a nonnegative function that tends to zero as n — 0.
For 1 < p < 2, we can perform analogous argument to obtain

Cp 1/ 2 -2
— | = VP -V 1+|VP + [Vu. )P~ dxd
s |2 9P = T (1 19 P 4 Vo dady

€
1 _ n oo
+/ |P1+77uz-: - U5|2 (1+ ‘P1+77u€| + |UE|)p 2 dedy| < ——Vo(u) + p(é)l/p
€ JRe 1 + n
which gives us
e = el ey < 70,
where p(n) is a nonnegative function which tends to zero as n — 0. O

Remark 4.2. It follows from (4.23)) that there exists p : [0,00) — [0,00) such that
11P1es/coue = el 4oy < P(9)

with p(0) — 0 as 8 — 0 uniformly in € and any piecewise C functions G- and G uniformly bounded
with ||Ge — G|l 0,1y < 9 and f° € LP (R?) satisfying ||f‘5]|L,,/(R2) <1

5 The piecewise periodic case

Now, we analyze the limit of {u.}~0 assuming the upper boundary of R is piecewise periodic.
More precisely, we assume G satisfies (H) being independent on the first variable in each interval
(&i—1,&). We suppose that G satisfies

G(z,y) =Gi(y) inz € I; = (&§-1,&) forany y € R (5.1)

with G;(y+ L) = G;(y) for all y € R. Moreover, we assume the function G;(-) is C* foralli =1,..., N
and there exist 0 < Gy < G such that minger G;(y) = GY<Gi() <G foralli=1,...,N.
Notice that the domain R° can now be rewritten as

N N-1
R = (U Rf) U ( U {&y):0<y< Emin{Gi—l(&/E),Gi(fi/&)}}) (5.2)
i=1 i=1

with
R ={(z,y) eR: &1 <z <&,0<y<eGi(x/e)}.
See Figure [2] which illustrates this piecewise periodic thin domain.

Before proving the main result of this section, let us recall an important result proved, for instance,
in [2I]. It is concerned to the purely periodic thin domain situation.

Proposition 5.1. Assume G satisfies the condition (5.1) and let u. be the solution of (1.2)) with f€
satisfying |||f6\||Lp/(R€) < ¢ for some ¢ > 0 independent of € > 0. Suppose that

1

) Gio/=) ) ,
Fa =1 [ P~ F ety in 2V(61,6).
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If a = 1, then there exists (u',ul) € WHP(&_1,&) x LP((0,1); W#p(Y*)) such that

)

Tiue = u strongly in LP((€1, &) WP (Yy),
T2 (Opue) = Opu' + Oy uy (2, Y1, y2) weakly in LP ((§-1,&) X ;)
T2 (Oyue) — Oyyuy (2, y1, y2) weakly in LP ((§i-1, &) x Y7,

with
8xui($)vyvi(y1,y2) = (3xui(:c)7 0) + Vyuil (x,y1,Y2)

where V- = (9y,+,0y,+) and v is the solution of the auziliar problem
i|P=2 i *
/Y* Vo " Vol Vpdyidys =0, Ve € W;gfg(yi ),
(v = 1) € W (7).

where W;%(YZ*) denotes the subspace of W;ép(Yz*) of functions with zero average.
If a < 1, then there exists (u',ul) € WP(&_1,&) x LP ((gi,l,&-); W;’p(Yi*D with Oy,u1 = 0 such
that
Tlue — u' strongly in LP ((&-1,&); WP (Y;))
T2 Optte — Opu + Oy, v weakly in LP ((&-1,&) x Y;¥)

and
8ui(wy):8ui -1
1 y Y1 T , ,
" Gz 1(?/1)<1/GZ 1>

If a > 1, then there exists an unique u* € WYP(&_1,&;) such that

(0,L)

Tiue —u' strongly in LP((&-1,&); WHP(Y)),
Moul — u'  strongly in W'P(R;_),
T Vul P 20,ul) — 0 weakly in  LP ((gi_l,gi) X Yzi) ,

where

Rio={(z,y) eR*:2 € (§-1,&),0 <y < Go},
Vi ={(y1,y2) ER*:0<y1 < L, Go <2 < Gi(w1)},
and the scaling operator 1. : LP((&§-1,&;) % (0,eGo)) — LP(R;_) is defined by

HE(@)(xay) = go(:z:,ey) \V/(.iﬂ,y) € Rif-
Also, we denote by ul = u€|R§\{(§i—1,£i)X(O,EGO)} and uZ = Us’(gi,l,gi)x(o,ec;o)-
Proof. Tt follows from |21, Theorems 3.1, 4.1 and 5.3]. O

Remark 5.1. We point out that the results in [21)] are proved in the unit interval. Here, we just rewrite
it to (&—1,&). The limit problems are stated in the next result.

Now, we are in condition to show the following result.

Theorem 5.2. Suppose G satisfies the assumption (5.1) and let u. be the solution of problem (1.2))
with f¢ € L (RF) and oW Lo (gey < €, for some ¢ > 0 independent of € > 0. Suppose the function

A (e %)
szlﬁ £ y)dy



satisfies f€ — f weakly in ¥ (0,1).
Then, if a = 1, there exist u € WHP(0,1) and u} € LP((&-1,&); W;’p(Y»*)) such that

)

7?u5 — u strongly in LP((§-1,%); Wl’p(Yi*)),
T2 (Opue) — Oyu + Oy uf (2,91, y2) weakly in LP ((§i-1,&); WHP(Y}))
T3 (@y110) — By 0 1,1) weakly i L7 (€1, ) WH(Y7)

and u is the unique solution of the problem

1 1
/ {a@)|' P72’ + 1 (@) [ufPPup} de = / fedr, e Wh(0,1),
0 0
where q, v : (0,1) — R are piecewise constant functions such that

q(z) =q; and r(x)=r; forz e (§,-1,&)
with the homogenized constants r; and q; given by

1

, . Yy
= L/ ]Vv”]p_28ylvz dyrdys  and 1 = il
Yi*

L

where Y;* is the basic cell associated to R;
Y ={(y1,42) ER*:0<y1 < L and 0 < y2 < Gi(y1)}

and v' is the solution of the auxiliary problem

/ ‘Vvi‘p_Q Vo'Vipdyidys =0, Vi € W#p(yi*)a (¥)y- =0
Yi*

i

(v' =) € WY, (v —y1)y. =0.

)

(5.5)

If a < 1, then there exists (u,u}) € WIP(0,1) x LP ((giflafi); W#p(Y*)) with dy,ul = 0 such that

Tlue — u strongly in LP ((&-1,&); W () |
T2 Opuie — Opu + Oy, u weakly in LP ((&-1,&) x Yi¥).

Also, u is the unique solution of the problem (5.4)) with

q(x)=¢; and r(z)=r; for x € (§,-1,&)

where ) .
P and r; = Vi ‘
L <1 /GP"1> L
AN

q; =

If a > 1, then there exists a unique u € WHP(0,1) such that

7?u5 —u  strongly in  LP((&-1,&); lep(Yi*))’
Heul — u  strongly in WP(R;),
TX(|Vud [P~20,ut) — 0 weakly in  LP ((&-1,&) x i) .

Furthermore, u is the unique solution of the problem (5.4) with

Go(z) =GY  forz e (&.1,6) and r(x) = b .

17
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Proof. By (5.2), we can rewrite (2.1]) taking into account the partition {&}Y | getting

N
Z/ {|Vu5|p_2Vu5Vg0 + |u5|p_2ua¢} drdy = / fetpdl‘dy, pE Wl’p(RE)' (58)
i st Re

Hence, we obtain from (5.8 (with test functions p(x,y) = ¢(z) € W'P(0,1)) and Proposition
that

) B ) L _
Z/ [/ - <|Vu5|p 2 Vug> T2V pdxdyidys + / Ve P2 Vu.Vpdzdy
E fz 17§z XY* 15

Rg;
i p—2 ; L p—2 L c
+ T2 (]ud u5> T pdxdyidys + — |ue | uspdady | = — fEpdxdy.
( i 7EZ)><Y* 3 R*lr2 g Re

By Proposition , we can pass to the limit in each subinterval (§_1,&;). If we assume a < 1, we
obtain

N o & . ) ) ) . . L
2. / / [(Ivyvll””aylvz)Ié’xuz\p‘%uz 2+ ’ul‘p_Qultp} dzdY = L / foda
i=1 7 &i—1 /Y 0

which is equivalent to

AR

for all p € WHP(0,1).
For oo < 1, Proposition guarantees

/ |V, 0! P20, v'dY
1/7:*

1
00 P20, Oip + 7| [l uiso} de=1L / fedz  (5.9)
0

p—2
&i
/ / P’ 1 - p'—1 p'—1 2 p'—1 Outp dix
“lGr- 1 - - 1/G?'~
St /G >(0L) Gi (y1)< /G >(0,L) (5.10)
&i
+Z/ / ‘u }p ubpdr = / fgoda:
Since (p' —1)(p — 1) =1, (5.10)) can be rewritten as
&i L 1 . .
Z/ / Gi(y1)dyr | |01’ P20,u'0pp da:
0 p'—1

Gi y1)<1/G >(0L) (5.11)

N ot oo L
s [ e = [ e
i=1 Y &i—1 0
Hence, for any a < 1, it follows from (5.5)), (5.7), (5.9) and (5.11)) that
1 1
/ [4(2)]05uP~20,udpp + () |ulPugp] dz = / fedz, Yo € WhP(0,1), (5.12)
0 0
with

u(z) = u’(az) a.e. in (§-1,&)

where the functions u’ are glven by Proposition [5.1] E Notice that g; > 0 for each i. Indeed, by (5.6} .,
we can take (v' — 1) € W, P 0(Y7") as a test function in such way that

1 . . A 1 ,
qi = / |Voi P2V’ ((1,0) + Vo' — (1,0)) dyrdys = / |Vu'|Pdy,dys > 0.
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Consequently, we obtain from the Minty-Browder’s Theorem that the problem (5.12)) has a unique
solution in W1P(0,1), and then, we can conclude that u € W1P(0,1) proving the theorem for o < 1.
Now, let us assume « > 1. Then, from ([5.8) and Proposition we obtain that

N

1 . ) 1
Z / T (|Vu5|p_2 VU€> T2V ¢idrdy;dys + / IV [P~ Vu.Vpidady
i=1 L (§i—1,6) XY, € JRs,,

—|—/ L. V. P2, Vu .V dedy
R.

qi—

]. . _ . 1 _ 1
v f T2 (el we) Thoidadyndye + - [ ol wepidady| =2 [ foidady
(Gi—1,8)XY* € JRs, € JRe

where II. is the scaling operator introduced in Proposition [5.1] Hence, by Proposition [5.1] we can pass
to the limit taking test functions p(x,y) = ¢(z) € W1P(0,1). We obtain

N

1 L
E [/ ]8$u\p28zu8xg0dx+L/ |u\p2ugodx] :/ fedx
R; (Ei—1,6) XY 0

i=1 =

for all p € W1P(0,1) with ‘
u(z) = u'(z) a.e. in (§-1,&)
where the functions u’ are given by Proposition Thus,

1 1
/ [Go(x)|8mu|p_28xuaxgp + r(;v)|u|p_2u<p] de = / fodz, Yo e WHP(0,1). (5.13)
0 0

As Gg > 0, it follows from Minty-Browder’s Theorem that (5.13)) is well posed. Hence, we get that
u € WHP(0,1) is the unique solution concluding the proof of the theorem. O

6 The locally periodic case

In this section, we provide the proof of our main result, Theorem

Proof of Theorem[2.1] Using Proposition and Theorem [3.7] there is ug € W1'P(0, 1) such that, up
to subsequences,
TPu, — xug weakly in LP ((0,1) x (0, L) x (0,Gy)), (6.1)

where y is the characteristic function of (0,1) x Y*(z).

We show that ug satisfies the Neumann problem . To do this, we use a kind of discretization
argument on the oscillating thin domains. We first proceed as in [3, Theorem 2.3] fixing a parameter
§ > 0 in order to set a piecewise periodic function G°(z,y) satisfying and 0 < G%(z,y)—G(z,y) <
§in (0,1) x R.

Let us construct this function. Recall that G is uniformly C! in each of the domains (&_1,&;) x R.
Also, it is periodic in the second variable. In particular, for § > 0 small enough and for a fixed
z € (&—1,&) we have that there exists a small interval (z — 7, z + n) with 7 depending only on § such
that |G(x,y) — G(z,y)| + |0,G(x,y) — 0yG(2,y)| < /2 for all x € (z —n,z+n) N (&-1,&) and for all
y € R. This allows us to select a finite number of points: &1 =& | <&, <--- <&, =& with

T — & < nin such way that G%(z,y) = G(&_,,y) + §/2 defined for z € (€] ,,& 1) and y € R
satisfies |0, GO (2, y) —9,G(z,y)| < & in (&7_;,& 1) xR. Notice that this construction can be done for all
1=1,...,N. In particular, if we rename all the constructed points éf by0=20<z21 < - <2zp=1,
for some m = m(d), we get that G%(x,y) = G2(y) for (z,y) € (zi-1,2) x Rand i = 1,...,m is a
piecewise C''-function which is L-periodic in the second variable y.

Finally, we set G2(x) = G°(x,z/e%), for any o > 0, considering the following domains

R = {(x,y) : x € (0,1),0 <y < eGo(z)}.
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In such domains, if we assume a = 1, we obtain from Theorem [5.2] that, for each § > 0 fixed, there
exist u? € WhP(0, 1) and u1 € LP((&-1,%); lp(lﬁ*)) such that the solutions u. 5 of ([.2) in R
satisfy

7;‘5%75 — u® strongly in LP((z;i_1, 2;); WP (Y})),

T2 (Orue.5) — 8wu5‘+ Oylull"s(x, y1,y2) weakly in LP ((zi—1,2); W'P(Y;"))
T2 (Oytte 5) — 8y2u11’5(:v,y1,y2) weakly in LP ((zi_l, Zi); Wl’p(iﬁ*)) ,
TI(|Vue 5P Vue 5) — ¢ap(8,u’) weakly in LP (21, z;) x Y*)2.

On the other side, if we assume o < 1, we get that, for each ¢ > 0 fixed, there exist u® € W1P(0, 1)
and u'’ € LP((¢&_1,&); W P (V")) with 8,,ut® = 0 in such way that the solutions u. s of (T2 (T2) in R*°

7

(6.2)

satlsfy
Tue 5 — u’ strongly in Lp((z, 1,21); WHP(Y)),
T (Opie ) = Oy u® + 8y1u1 (m yl,yg) weakly in LP ((zi_l,zi); Wl’p(Yi*)) ,
T (Vs Ve s) = qPay(0su®) weakly in LP (21, 2) x Y;)?

Finally, if we take a > 1, we have that
Tlues —u’ weakly in LP((§-1,&); WP (Y))),
ou ;ré —u’  strongly in  WYP(R;_),
T2(|VulsP20ufy) =0 weakly in LP ((&-1,8) x Yi1) .

Furthermore, we have that w9 is the unique solution of the Neumann problem

[ @I 2w o) e = [ fedn, voe w01, (63)
0 0

with
Vot / VUi P20, 0" dyrdys  if a =1,
1« v
i=1 ’
1/GP'~ (6.4)
(ve > o
N-1
¢ (x) = Z x,(2)GY and O (x Z i it a>1.
i=1 =1

X1, is the characteristic function of (&_1,&;) and v® is the solution of (5.6)) in Y;* which is given by
Y ={(y1,92) €ER?:0<y; < Land 0 < y2 < Gi(y1)}.

Now, we pass to the limit in (6.3)) as 6 — 0. From Lemmas and we have the uniform
convergence of ¢° and 7 to ¢ and r where

1
E L T oy it o=,
q(z) = . ! if a<l, and r(x) = | [(/ )‘ (6.5)

L (1/G(a, W'~ ]
Go(z) =minG(z,y) if a>1
yeR

Notice that g(x) > 0. Furthermore, we have that the solutions u® € WP(0,1) of (6.3) are uniformly
bounded in 6. Thus, there exists u* € WP(0,1) such that u® — u* weakly in W'P(0,1) and strongly
in LP(0,1). Indeed, we have the strong convergence

u? — u* in WHP(0,1). (6.6)

To prove this, we set the following norm

1
I o = /O |- Pde.
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By Proposition and equation (6.3)), we get for ¢ = u® — u* and p > 2 that

1) = @Y Iy < c/olqﬁ[ap(< )~ ap ((@))] @) ~ (u >} v
T ! N/ *\/
= o[ F-a@) —w)z—c [ da, (@) [@) - @)]da

— 0.
Hence, using the equivalence of norms, we get
J * 6 *
1) = @) e,y < N() = () 201y = O,
as § — 0, which implies . Thus, we have that u* € WP(0, 1) satisfies
1
/ {a@)| @) P72 (@)@ + (@) [u*P?u o} do = / fedz, (6.7)
0
for all o € WP(0,1) and p > 2. For 1 < p < 2, one can show using similar arguments.

Now, let us see that u* = ug in (0, 1) where ug is given by (6.1)). Let n be a positive small number
and let ¢ € C§°(0,1). Notice that

1 § B 1 L eGe(x)
/0 (up — u*)pdr = /0 <u0 - |Y*(;U)|<’—:/0 ug(:v,y)dy> o(z)dzx

1 L eGe ()
e ) - Prseusstendy | oo

(6.8)
1 L eGe () s
e Prseste - v@d ) s
1 1’ eGe(x) 5
- [ @ - @ay) e
[V*(x)[e
where Py 5/q, is the operator defined in (4.3]).
Now, due to definition (4.3]), notation (4.4)) and an appropriated change of variables, we get
1/ eGe () 5 5
/ 6/ Prys/aoues(x,y) —u’(2)dy | o(@)dz < c|[|Pris/qotes — vl Lr(re)
0 0
< CH|P1+6/G0U6,6 - u6|||LP(R5’5(1+6)) = f|ue,s — uémLP(REﬁ)
for some ¢ > 0 independent of § and € > 0. Thus, we can rewrite (6.8)) as
1 1 L eGe(x)
/ (uo — u*)pdz| < / up — / ue(z,y)dy | o(v)dz
0 0 €Jo
+cll|ue — Prys/a, )+ clllues — u(smLP(REvé) +cl|u’ — u*| e (0,1)-
From (6.2) and Remark we can take § > 0 small enough such that
lue = Prys/c, y<n o and llues — |l poges) <71 (6.9)

uniformly in & > 0. Also, from (6.6), we can choose £; > 0 such that |[|u* — ué‘”Lp(O’l) < n for
0<e<er.
Moreover, from (6.1]) and Proposition we have

1 L eGe(x)
U — o5 ue(x,y)dy | p(x)de -0, as e —0.
[l e, o) oo
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Therefore, there exists €9 > 0 such that

1 eGe ()

whenever 0 < € < 9. Hence, setting & = min{eq, e} we get

1
/ (ug — u*)pdz| < 4n.
0
Since ¢ and 7 are arbitrary, we conclude that u* = wy.
Finally, let us see that the convergence
lfus — wolll ogary — 0 (6.10)

holds. Notice that

5 5
) I Prys/aoties — wllloore) + [[u” — wolllLr(re)-

[|ue — woll|Lr(rey < [llue — Pigsaq

Hence, we can argue as in (6.9)) getting (6.10]) from (6.2] , Remark-and . And then, we conclude
the proof of the theorem. O

7 Convergence of the Resolvent and semigroups

In this Section, we show the convergence of the resolvent and semigroup associated to the p-Laplacian
operator given by the equation (|1.2) under the additional condition p > 2. For that, let us first consider
the operator M, : LP(R®) — LP(0, 1) given by

1 eG(z,x/e™)
MJ%@ZA F (. y)dy.

9

Next, let A. : WHP(R®) — (WLP(R?))" and Ag : WHP(0,1) — (WP(0,1))" be given by

(Acu,v)e / {|VulP2VuVo + [ulP?uv} dzdy

(7.1)

(Agu,v)p = / {a(2)|0pulP~20,ud,v + r(z)|ulP " *uv} dz.
0

We consider the L?-realization of A, and Ay, that is,

D(Acp) = {ue W' (R®) : Acu € L*(R°)}),
Acou=Au, Yue D(A.p), and
D(App) = {u e W'(0,1) : Agu € L*(0,1)}),
A(]’Qu = Aou, Yu € D(Ao’g).

Then, for any p > 2, A > 0 and forcing terms f¢ € L?(R?), we can consider the following problems

(I + MA)u. = f° (7.2)
and X

(I+MNo)u=f (7.3)

which are well posed (existence and uniqueness of solutions) by the Minty-Browder’s Theorem. Notice
that here, we are using the dual products (-,-). and (-,-)o from W1P(R®) and W1P(0, 1) respectively

to set the equations (|7.2)) and .
Hence, with the addltlonal conditions ||[f¢|[|z2(ge) uniformly bounded and M, fE — f weakly in

L?(0,1), it follows from Theorem [2.1| that the family of solutions defined by (7.2]) converges to the
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solution of (7.3) as e — 0. Consequently, we obtain the convergence of the resolvent operators defined
by the equation (1.2)). In fact, we have for any A > 0 that

(I + XA 7L fe — (I—i—)\Ao)*lf\HLQ(RE) = |[|ue — ulllr2(rey = 0 ase — 0.

In the next, let us obtain the convergence of the semigroup associated to the equations (|7.2]) and
(7.3). As we will see, it is a consequence of [8, Theorem 4.2, p. 120]. First, let us write the resolvent
operators convergence in appropriate spaces. For this purpose, we use the unfolding operator. We
have

1
(Acu, w)e = + / I TPVulP2TPVUTPVw + |TPuP 2 TPuTPodadY
w

(7.4)
= (T Acu, TPw) = (Bou, w),
where W = (0,1) x (0, L) x (0,G1) and (-, -) is the dual product in W1P(W). Next,
1 . __
- p—2 g |P—2
(Agu, w)y = L/W [\&cuvyv\ O uVyvo,w + Xy+|ulP ™ “uw| dedY (7.5)

= (Byu, w).

Notice that

D(By) C D(B.), Ve>0.
It remains to observe that
(I+AB.)~'f = (I+ABo)~'f Vfe D(By),

wich holds due to Theorem 2.11
Therefore, thanks to Neveu-Trotter-Kato Theorem, the semigroup S, () associated to — B, satisfies

Se(t)f — S@)f, Vfe D(Bo),
where S(t) is the semigroup associated to —By. We have the following theorem.

Theorem 7.1. Assume p > 2 and consider the operators Ac and B defined respectively by (7.1]) and
(7.4). Then,

(a) For any f¢ € L*(R®) with £l 2(re) uniformly bounded and M. f& — f weakly in L*(0,1), we
have R
1T+ XA = (T+Mo)  flllp2(rey = 0, ase— 0.

(b) The semigroup S:(t) associated to

{ Oue + Beue = f:
u5(07 x? y) = ug(x7 y)

satisfies

Se(t)f — S(t)f, Vf e D(By),

where S(t) is the semigroup associated

8tu + Bou = f,
u(0,2) = u®(x)

with By given by (7.5)).
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A  Appendix

In the proof of the main result, we used ¢° — ¢ uniformly to obtain (6.7)). Recall that ¢° and ¢ are
given by and (6.5 respectively. Here we prove such convergence. For this sake, let us first set

AM)={G e C*R): G is L — periodic, 0 < Gy < G(-) < Gy with |G'(s)| < M }. (A1)
Hence, for any G € A(M), we can consider the problem
/ V[P 2VoVpdyidys =0, Yo € WP (V)
G
where W;’% (Y2

(A.2)
) is the space of functions W;’p (YZ) with zero average

Vi ={(y1,y2) ER*:0<y; <L,0<y; <G(y2)}

and we are looking for solutions ¥ such that (v —y1) € W, (Y2)
Now, for any G, G € A(

), let us consider the following transformation

L Yo o o= YZ
(21,22) — (21, F(21)22) = (Y1, 92)
where &
F=—
G
The Jacobian matrix for L is
1 0
JL(ZlaZ2) = < F/(Zl)ZQ F(Zl) )
with det(JL) = F. Also, we can consider
1 _F F’ 1
LVU = T2 | VU= (ale — —290,,U, 8Z2U> and
0 1/F F F
F'z F’ 1
BVU = (ale + = 205..U, - FZ2 0.,U +

It is not difficult to see that B

ﬁ [1 + (ZQF,)2] 822U> .
=LTC.

Then, we can use the change of variables given by L to rewrite in the region Y as

/ ILVo[P2LVELY (f) Fdzdz = 0,Yp € WEP (YE)
Y F

(A.3)
Notice that this problem still has unique solution ¥ € WHP(Y3) with (v — z1) € Wy 1P 0(YZ) by Minty-
Browder’s Theorem.

By the coercivity of (A.3]), we get

19512 v _/ ILVo|P~ %vuﬁv( )Fdzlsz

/ Vavoill 2£Vv£V< )Fdzldzg
< LYo < cVal.

)’

which means that the solutions are uniformly bounded by a constant independent on G and G
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Now, let us compare the solutions of (A.2)) for G = G and (A.3)). We need to analyze
/ [|LVD[P2LVD — VP2 Vo] (LVD — Vv)dzidzs
Ye
= / [1LVD[P2LVED — |Vu[P~2Vo] (LVD — (1,0) + (1,0) — Vo)dzidzo.
Ye

Notice that £(1,0) = (1,0). We will distribute the terms finding estimative for each one.
First, observe that for any test function ¢ € W#%(YG*) in (A.3), we have

!/

F
/ |LVG|P2LV LY pdzidzy = / |vayp2cvw<
Y4 \

f7 0) ledZQ.

Now, take ¢ = (0 — 21) in (A.5). Then,

/

F
/ |[,V17|p72,CVTJEV(T) — Zl)lede = / |£V17’p72[,VQ7(17 — 21) (F, O) dz1dzs
Y

Ya

On the other side, we can compute
/ LVEP-2LV5((1,0) — Vo)dordzs
v
- / LVEP2LV5((1,0) — Vo + LYo — (1,0) + (1,0) — LV)dz1dz
v

= / |LVTP 2LV (Vv + LVv)dzd2s +/ |LVBP 2LV LY (21 — v)dz1d2s
Yy Y

FI
= —/ |LVT|P 2LV (L — I)Vudzidzy + / |LVT|P2LV (2 — v) (F’ O) dz1dzs
Ya Ye

by (&) with ¢ = (21 — v).
Next, take (0 — 21) € W#% (YZ) as a test function in (A.2)). Then,

/ |VoP2Vo (VD — (1,0))dz1dze = 0.
Ye
Finally, due to (A.8), we have
/ |VoP2Vo(LVT — (1,0))dz1dzo
Ye
= / |VolP~2Vu(LVD — (1,0))dz1dzg — / |VoP2Vu(Vo — (1,0))dz1dzo
Ye

Y

= / \Vol|P~2Vu(L — I)Vidzidzs.
Y*

G

Hence, putting together (A.4), (A.6), (A.7), (A.8) and (A.9), we obtain

/ [|£V17]p_2£V17 - ]Vv|p_2Vv] (LVY — Vv)dzi1dze
Ye

F/
= / |LVT|P 2LV (0 — 21) (,o> dz1dzy
g F

/

—/ |LVOBIP 2LV (L — I)Vvdzidz, +/ |LVOIP 2LV (21 — v) (?,O) dz1dzo
Y

Ya

- / |Vo|P~2Vu(L — I)Vidzidzs.
e
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Now, one can apply Holder and Poincaré-Wirtinger’s inequalities in (A.10)) to obtain

/ [|LVD[P2LVD — |Vu[P~2 Vo] (LVD — Vv)dzidzs

_ F'

< HEVUHLp yollVolog || 7|+ H'CV”HLp vy 1€ = lpee V0l Loy (A.11)
L
/
—|—||£VU||L,, ¥2) IVl o (v "‘ ||VU||Lp(y
Note that
F - -
’ || <elG = Glier and £~ T~ < €G- Gl (A.12)
LOO

Also, Vvl ey IVl ovgys 1LVl Lo vy and [|LV 0| Lo (v are uniformly bounded. Thus, by (A.11)
/ [|LVD[P 2LV — |Vu[P~2Vo] (LVD — Vo)dzidzs < ¢|G — Gl|en. (A.13)
G

If p > 2, we get from Proposition and (A.13]) that

|LVD — W||LP(Y <ec / [|LVDP2LV D — |Vu[P2 Vo] (LVD — Vo)dzidzs
e

S C”G — GHCI'
On the other side, if 1 < p < 2, we get from Holder’s inequality, Proposition and (A.13)), that

1£75 Vol ) < c{/
Y*

G

p/2
[1LVD[P2LVE — |Vou[P~2 Vo] (LVD — Vv)dzleQ}

(2—p)/2

[/*(1+ |LVD| + |[Vu|)P

< |G - GlIg?,
Therefore, for 1 < p < oo, we have
1£95 — Vol o) < G — Gl (A1)

wherea =1/2if l1<p<2and a=1/pif p> 2.
Finally, since

V0 = Vol Lovs) < [[EVO = V| Loy + |1LVD = Vo (v,
we conclude by (A.14) and (A.12)) that
Vo = Vol Loy < cllG = Gllor + |G = Gl

We have the following lemma:

Lemma A.1. Let us consider the family of admissible functions G € A(M) for some constant M > 0

where A(M) is defined by (A.1]).
Then, for each € > 0, there exists § > 0 such that if G,G € A(M) with ||G — G|| <6, then

VO = Vol L) < cle +€%),

where « = 1/2if 1 <p <2 and a=1/p if p > 2 and c is a constant which depends only on p, Go, G1.
In particular, we have that

9(G) — q(G)| < (e + %),
where
¢(G) = / V5[P20,, oy dys
Y*

G

and v is the solution of (A.2)) in the region Y} set by G.
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Lemma A.2. Let us consider the family of admissible functions G € A(M) for some constant M > 0
where A(M) is defined by (A.1)). Then

1

(1 /Gp'—1>f&£)

q(G) =

for any G,G € A(M) with g # G,
9(G) —q(@)| < |G - G|
for a constant that depends on p, Gy and G1.

Proof. Notice that
1 1

WG (WG,
= —1 \ P71 B i_\P1
<1/Gp > | <1/GP >

9(G) — q(G) =

(0,L (0,L)
- ’_ —1 ! -1
(1/G" o) (1/G")o

Suppose that 1 < p < 2. Then, due to Corollary we get

<1/G*P/—1>pf1 - <1/GP’—1>1”71

(0,L) (0,L)
-1
<el(ver),, - (e,
p—1

Lgr=1(s) — G¥'—1(s)
o GVTH(s)GY(s)

Cc
< =
- L

p—1

C L = /2 A
< L[ asiee+ ) 260 - ollas
<l -Gl

where C' is a positive constant that depends on p, Go, G1.
Now, suppose p > 2. Then, by Corollary

<1/@p/—1>p71 _ <1/Gp’—1>p*1

(0,L) (0,L)

<c (1 + <1/Gpl71><o,m [+ <1/pr71>(07” ‘)M <1/Gpl71><o,L) - <1/Gp/71><0»L>

Lar'=1(s) — GP'~1(s)
o GFTl(s)GP(s)

ds

<ec

L
/ 1G(s) — G(s)P~'ds
0
<c|G - aP.

O

Remark A.1. We remark that the result of the Lemma above, works in a more general framework, that
is, the functions do not need to be in A(M). On the other hand, to perform the discretization of the

domain in the locally periodic case, in the previous section, we need the hypothesis of A(M) functions
defining the domains.
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