MAT0146: Cálculo Diferencial e Integral I para Economia

B 2 : Derivada: Regras de derivação e Exponencial

Prof. M Alexandrino (IME-USP)

Alerta: Este é apenas um guia resumido de parte das transparências das aulas. Ele não substitui as aulas (onde existem discussões, resoluções de exercícios, figuras, ideias de demonstrações, etc) e não substitui a leitura da bibliografia recomendada. O GeoGebra http://www.geogebra.org (aqui utilizado) é uma ótima ferramenta, porém o aluno deve também tentar fazer as figuras a mão para compreende-las melhor.

Objetivo:

- (D) Motivação:taxa de variação média
- (12) Definição de derivada
- (Reta tangrente
- (Derivada das funções básicas
- (P5) Regras básicas de derivações
- (D) Regra da cadeia
- (Função exponencial e logarítma

Motivação:taxa de variação média

Dado uma função $f:I\subset\mathbb{R}\to\mathbb{R}$ uma taxa de variação média em x_0 é definida como $m(x_0)=\frac{\Delta y}{\Delta x}=\frac{f(x_1)-f(x_0)}{x_1-x_0}$

Ex: Se $f=-x^2+4$, observamos que a taxa $\frac{f(0)-f(-2)}{0-(-2)}=2>0$ e olhando o gráfico vemos que de fato a função é crescente. Este exemplo **sugere** que quanto menor Δx mais informação a taxa pode conter sobre o comportamento de f próximo a x_0 , em particular sobre seu crescimento ou descrescimento próximo a x_0 . Isto nos **motiva** a considerar o limite das taxas de variação média quando $\Delta x \to 0$ e assim introduzir o conceito da derivada de f, a qual será utilizada nas aulas não só para determinar crescimento e decrescimento da função mas também para detectar candidatos a máximos e mínimos locais.

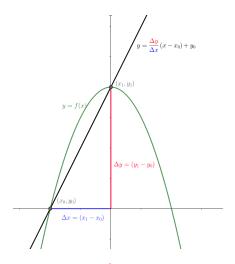


Figura: $y = \frac{\Delta y}{\Delta x}(x - x_0) + y_0$

Definição de derivada

Definição 1

Dado uma $f:I\subset\mathbb{R}\to\mathbb{R}$. O limite abaixo (quando existir) é chamado **derivada** no ponto $x_0\in I$.

$$\frac{df}{dx}(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Obs:

$$f'(x_0) = \frac{df}{dx}(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

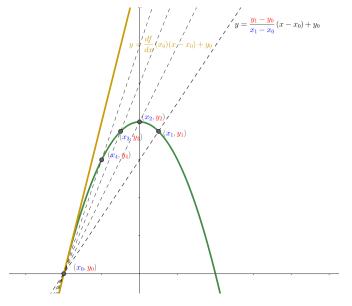


Figura: a medida que $x_i \to x_0$ as inclinações $m_n = \frac{y_n - y_0}{x_n - x_0}$ convergem para $\frac{df}{dx}(x_0)$

Reta tangrente

Proposição 2

Seja $f:I\subset\mathbb{R} o\mathbb{R}$ função diferenciável em x_0 . Então

$$f(x) = f(x_0) + \frac{df}{dx}(x_0)(x - x_0) + R(x - x_0)$$

onde $R:(-\epsilon,\epsilon) o\mathbb{R}$ é uma função tal que $\lim_{x o x_0}rac{R(x-x_0)}{x-x_0}=0$

Definição 3

Dado $f:I\subset\mathbb{R} o\mathbb{R}$ função diferenciável em x_0 a reta

$$y = f(x_0) + \frac{df}{dx}(x_0)(x - x_0)$$

é chamada reta tangente.

Obs Toda função $f:I\subset\mathbb{R}\to\mathbb{R}$ diferenciável é continua, mas nem toda função continua é diferenciável.

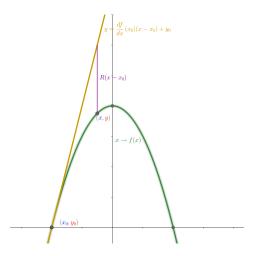


Figura: Reta tangente $y = f(x_0) + \frac{df}{dx}(x_0)(x - x_0)$ aproxima o gráfico de f perto do ponto x_0

Prob: Sejam $f(x) = x^2$.

- 1. Calcule f'(x).
- 2. Calcule $f'(3) \in f'(-3)$
- 3. Qual a inclinação da reta tangente do gráfico de f no ponto (3,9).
- 4. Qual a inclinação da reta tangente do gráfico de f no ponto (-3,9).
- 5. Próximo a $x_0 = 3$ a função f está crescendo ou descrescendo?
- 6. Próximo a $x_0 = -3$ a função f está crescendo ou descrescendo?
- 7. Quanto vale f'(0)?
- 8. $x_0 = 0$ é um ponto de máximo ou mínimo local de f?

Derivada das funções básicas

Proposição 4

- 1. $\frac{d}{dx}(x^n) = nx^{n-1}$ para $n \in \mathbb{Q}$.
- $2. \frac{d}{dx}(\sin(x)) = \cos(x)$
- 3. $\frac{d}{dx}(\cos(x)) = -\sin(x)$
- 4. $\frac{d}{dx}c = 0$.

Prob: Seja $h(x) = x^3$

- 1. Calcule h'(x)
- 2. Calcule h'(2)
- 3. Quanto é a inclinação da reta tangente ao gráfico de h no ponto (2,8)?
- 4. Calcule h'(0)
- 5. $x_0 = 0$ é ponto de máximo, mínimo ou nenhum dos dois?

Regras básicas de derivações

Proposição 5

Sejam $f:I\subset\mathbb{R}\to\mathbb{R}$ e $g:I\subset\mathbb{R}\to\mathbb{R}$ funções diferenciáveis e $k\in\mathbb{R}$. Então:

1.
$$\frac{d}{dx}(f+g)(x) = \frac{df}{dx}(x) + \frac{dg}{dx}(x)$$

2.
$$\frac{d}{dx}(f-g)(x) = \frac{df}{dx}(x) - \frac{dg}{dx}(x)$$

3.
$$\frac{d}{dx}(f \cdot g)(x) = \frac{df}{dx}(x)g(x) + f(x)\frac{dg}{dx}(x)$$

4.
$$\frac{d}{dx}(kf(x)) = k\frac{df}{dx}(x)$$
.

Ex:

$$\frac{d}{dx}(3\sqrt{x} + x^{2}\cos(x)) = \frac{d}{dx}(3\sqrt{x}) + \frac{d}{dx}(x^{2}\cos(x))$$

$$= 3\frac{d}{dx}(x^{\frac{1}{2}}) + \frac{d}{dx}(x^{2})\cos(x) + x^{2}\frac{d}{dx}(\cos(x))$$

$$= (\frac{3}{2})x^{-\frac{1}{2}} + 2x\cos(x) - x^{2}\sin(x)$$

Regra da cadeia

Teorema 6 (Regra da cadeia)

Sejam $g:A\to B$ e $h:B\to \mathbb{R}$ funções diferenciáveis. Então $f=h\circ g$ é diferenciável. Além disto:

$$\frac{df}{dx}(x_0) = \frac{dh}{dy}\Big(g(x_0)\Big)\frac{dg}{dx}(x_0)$$

Ex: Seja $f(x) = \sin(x^2)$. Então $h(y) = \sin(y)$, $g(x) = x^2$, $\frac{dh}{dy}(y) = \cos(y)$, $\frac{dg}{dx}(x) = 2x$. Assim pelo teorema:

$$\frac{d}{dx}\sin(x^2) = \cos\left(x^2\right)(2x)$$

Mais exemplos:

Visto que:
$$\frac{df}{dx}(x_0) = \frac{dh}{dy}(g(x_0))\frac{dg}{dx}(x_0)$$
 para $f = h \circ g$ temos:

$$\frac{d}{dx}\cos(x^3 - \sin(x)) = -\sin(x^3 - \sin(x))(3x^2 - \cos(x))$$

$$\frac{d}{dx}\cos(\sin(x^2)) = -\sin(\sin(x^2))\frac{d}{dx}\sin(x^2)$$
$$= -\sin(\sin(x^2))\frac{d}{dx}\sin(x^2)$$
$$= -\sin(\sin(x^2))\cos(x^2)(2x)$$

Dado uma função g diferenciável, com $g(x) \neq 0$, podemos usar a regra da cadeia para calcular (em termos de g') a derivada do quociente, ou seja: $\frac{d}{dx}(\frac{1}{g(x)}) = \frac{d}{dx}(g(x))^{-1} = \frac{-1}{g(x)^2}\frac{dg}{dx}(x)$. Este resultado junto com a regra do produto, nos permite calcular a derivada do quociente das funções.

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{df}{dx}g - f\frac{dg}{dx}}{g^2}$$

Se $f: A \to B$ admite uma **inversa** $f^{-1}: B \to A$ e ambas são diferenciáveis, quanto vale (em termos de $\frac{df}{dx}(x_0)$) a derivada $\frac{df^{-1}}{dy}(y_0)$ para $y_0 = f(x_0)$?

Uma vez que $f^{-1}(f(x)) = x$ temos, derivando ambos os lados, que:

$$\frac{df^{-1}}{dy} \left(y_0 \right) \frac{df}{dx} \left(x_0 \right) = \frac{dx}{dx} = 1$$

assim concluimos:

$$\frac{df^{-1}}{dy}\left(y_0\right) = \frac{1}{\frac{df}{dx}\left(x_0\right)}\tag{1}$$

Ex:
$$\frac{d\arcsin}{dy} \left(y_0 \right) = \frac{1}{\frac{d\sin}{dx} \left(x_0 \right)} = \frac{1}{\cos(x_0)} = \frac{1}{\sqrt{1 - \sin^2(x_0)}} = \frac{1}{\sqrt{1 - y_0^2}}$$

Resumo: Para f, g, h (e f^{-1} no último item) funções diferenciáveis temos:

1.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 para $n \in \mathbb{Q}$.

$$2. \frac{d}{dx}(\sin(x)) = \cos(x)$$

3.
$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

4.
$$\frac{d}{dx}c = 0$$
.

5.
$$\frac{d}{dx}(f \pm g)(x) = \frac{df}{dx}(x) \pm \frac{dg}{dx}(x)$$

6.
$$\frac{d}{dx}(f \cdot g)(x) = \frac{df}{dx}(x)g(x) + f(x)\frac{dg}{dx}(x)$$

7.
$$\frac{d}{dx}(kf(x)) = k\frac{df}{dx}(x)$$

8.
$$\frac{df}{dx}(x_0) = \frac{dh}{dy}(g(x_0))\frac{dg}{dx}(x_0)$$
 para $f = h \circ g$

9.
$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{df}{dx}g - f\frac{dg}{dx}}{g^2}$$
, com $g(x) \neq 0$,

10.
$$\frac{df^{-1}}{dy}(y_0) = \frac{1}{\frac{df}{dx}(x_0)}$$
 onde $f^{-1} \circ f(x) = x$ e $f \circ f^{-1}(y) = y$

Função exponencial e logarítma

Motivação:

Qual função atende a E.D.O (2) (i.e., equação diferencial ordinária) com condição inicial (3) abaixo?

$$\frac{d}{dx}(f) = f \tag{2}$$

$$f(0) = 1 \tag{3}$$

$$f(0) = 1 \tag{3}$$

Primeiro tentemos algo menos ambicioso. Tentemos encontrar um polinômio P_n tal que $P_n(0)=1$ e $\frac{d}{dx}P_n(x)\approx P_n(x)$ (estejam **próximos**) pelo menos para x pequeno.

Por exemplo para $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ temos que ter $P_3(0) = a_0 = 1$. Como desejamos:

$$\frac{d}{dx}P_3(x) = a_1 + 2a_2x + 3a_3x^2 \approx P_3(x) = 1 + a_1x + a_2x^2 + a_3x^3$$

Devemos igualar as potências (da menor para a maior). Concluimos que: $a_1 = 1$, $a_2 = \frac{1}{2}$ e $a_3 = \frac{1}{6} = \frac{1}{3!}$.

Podemos continuar a calibrar polinômios de grau n>3, e quanto maior o n melhor a aproximação. E se o polinômio for um polinômio infinito? Tal discussão **motiva** a definição a seguir:

Definição: Considere o polinômio

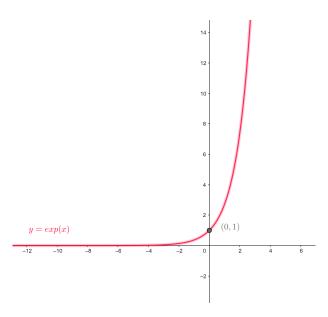
$$P_n(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n$$
$$= \sum_{j=0}^n \frac{x^j}{j!}$$

A função exponencial é definida como

$$\exp(x) = \lim_{n \to \infty} P_n(x)$$

É possível demonstrar não só que $f(x) = \exp(x)$ está bem definida, mas também que ela é a **única função** que atende a E.D.O

$$\frac{df}{dx}(x) = f(x)$$
$$f(0) = 1$$



Teorema 7

Dado uma função $g:I\to\mathbb{R}$ classe C^1 e um ponto $y_0\in I$. Então existe uma única função $f:(-\epsilon,+\epsilon)\to\mathbb{R}$ tal que

$$\frac{df}{dx}(x) = g(f(x))$$
$$f(0) = y_0$$

Do teorema acima podemos concluir o resultado:

Proposição 8

$$\exp(a+b) = \exp(a)\exp(b)$$

$$e := \exp(1)$$
 (número de Euler)

$$e^x = \exp(x)$$
 (notação) Assim $e^{a+b} = e^a \cdot e^b$

Proposição 9

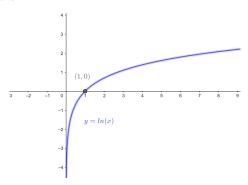
$$\lim_{x\to+\infty}\frac{\exp(x)}{x^n}=+\infty$$



Definição 10

Dado a função $\exp: \mathbb{R} \to (0,\infty)$ definimos a função **logarítmo** (natural) In: $(0,\infty) \to \mathbb{R}$ como a função inversa da exponencial ou seja:

$$\ln \circ \exp(x) = x \\
\exp \circ \ln(y) = y$$



Aplicando a derivada de função inversa (vide Eq. (1))

Proposição 11

$$\frac{d}{dy}\ln(y) = \frac{1}{y}$$

Da definição de In e da Proposição 8 temos:

Proposição 12

$$\ln(a \cdot b) = \ln(a) + \ln(b)$$

Da proposição acima concluimos:

Proposição 13

$$\ln(a^n) = n \ln(a)$$
 onde $n \in \mathbb{Q}$

Definição 14

Dado a > 0 definimos $a^x = \exp(x \ln(a))$

Pela regra da cadeia (Teorema 6) concluimos:

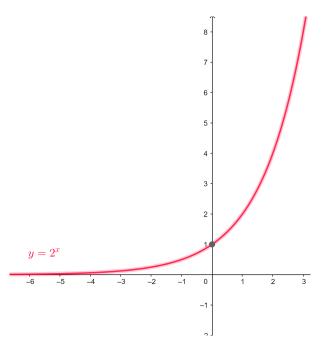
Proposição 15

Para a > 0 temos $\frac{d}{dx}a^x = a^x \ln(a)$

Ex: $\frac{d}{dx}2^x = 2^x \ln(2)$

Obs $\sqrt[x]{x} = x^{1/x} := \exp(\frac{1}{x}\ln(x))$ ou mais geralmente $(f(x))^{g(x)}$ para f(x) > 0 podemos **definir**

$$(f(x))^{g(x)} := \exp(g(x)\ln(f(x)))$$



Definição 16

Seja a>0, definimos a função $\log_a:(0,\infty)\to\mathbb{R}$ como a função inversa de a^{\times}

$$\log_a(a^x) = x$$
$$a^{(\log_a(y))} = y$$

Aplicando a derivada da função inversa (vide Eq. 1)

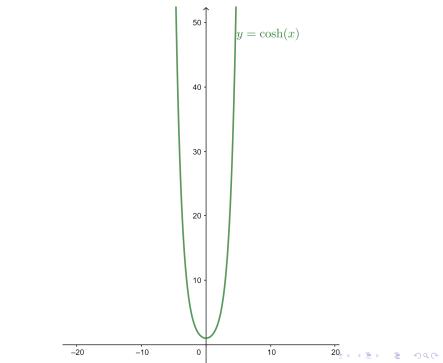
$$\frac{d}{dy}\log_{a}(y) = \frac{1}{y\ln(a)}$$

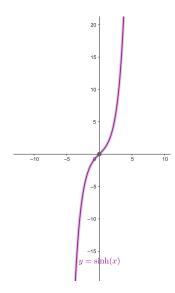
Definimos:

$$cosh(x) := \frac{e^x + e^{-x}}{2}; \quad sinh(x) := \frac{e^x - e^{-x}}{2}$$

Obs:
$$cosh(0) = 1 sinh(0) = 0$$

Obs:
$$\frac{d}{dx} \sinh(x) = \cosh(x)$$
 $\frac{d}{dx} \cosh(x) = \sinh(x)$





Defina as funções:

$$\alpha_1(t) = x(t) = \cosh(t); \quad \alpha_2(t) = y(t) = \sinh(t)$$

Observe que $x(t)^2 - y(t)^2 = 1$. Assim a imagem da curva parametrizada $\alpha : \mathbb{R} \to \mathbb{R}^2$ definida como $\alpha(t) = (\cosh(t), \sinh(t))$ está contida no ramo da **hiperbole**

$$C = \{(x, y) \in \mathbb{R}^2 | x^2 - y^2 = 1, x > 0 \}$$

ou seja lpha é uma parametrização da curva C.

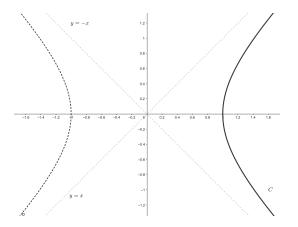


Figura: $C = \{(x, y) \in \mathbb{R}^2 | x^2 - y^2 = 1, x > 0\}$

Prob: Verifique que $f(x) = a_0 \cos(x) + a_1 \sin(x)$ é solução da E.D.O de segunda ordem com condições iniciais

$$\frac{d^2f}{d^2x}(x) + f(x) = 0$$

$$\frac{df}{dx}(0) = a_1$$

$$f(0) = a_0$$

Comentário: $f(x) = a_0 \cos(x) + a_1 \sin(x)$ é de fato **única** solução da E.D.O.

Prob: Verifique que $f(x) = a_0 \cosh(x) + a_1 \sinh(x)$ é solução da E.D.O de segunda ordem com condições iniciais

$$\frac{d^2f}{d^2x}(x) - f(x) = 0$$

$$\frac{df}{dx}(0) = a_1$$

$$f(0) = a_0$$

Comentário: $f(x) = a_0 \cosh(x) + a_1 \sinh(x)$ é de fato única solução da E.D.O.