2º Lista de Exercício de MAT5771 (1º semestre 2013)

Esta lista contêm problemas cuja solução poderá ser cobrada em prova. Ela também contêm proposições e teoremas, alguns enunciados e outros **demonstrados em sala de aula** (abreviados aqui por **d.s.a**). A demonstração destes resultados também poderá ser cobrada em prova.

Bibliografia Principal:

- 1. M. do Carmo, Geometria Riemanniana, Projeto Euclides.
- 2. S. Gallot, D. Hulin, J. Lafontaine, *Riemannian Geometry*, Universitext, Springer.
- 3. J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer.
- 4. R.S. Palais, C-L Terng, *Critical Point Theory and Submanifold Geometry*, Lectures Notes in Mathematics 1353, Springer Verlag. (see Terng).

Bibliografia de Apoio:

- 1. R. Bisphop, R. Crittenden, Geometry of Manifolds, AMS, Chelsea.
- C. Gorodski, Notes on Riemannian Geometry, Notas de Aula, IME-USP, 2007.
- 3. W. Kuhnel, Differential Geometry, Curves-surfaces-manifolds. American Mathematical Society, Second Edition 2005.
- 4. P. Petersen, Riemannian Geometry, Graduate texts in mathematics, Springer.
- 5. M. Spivak, A comprehensive Introduction to Differential Geometry, V. 1 Publish or Perish, Inc. 1979.

1 Imersões isométricas

Problema 1.1. Uma subvariedade Riemanniana M de uma variedade Riemanniana $(\tilde{M}, \langle \cdot, \cdot \rangle)$ é chamada totalmente geodésica, se a segunda forma se anula ao longo de M. Mostre que M é totalmente geodésica se e somente se toda geodésica de M é geodésica de \tilde{M} .

Problema 1.2. Seja G um grupo de Lie com métrica bi-invariante e $H \subset G$ subgrupo fechado. Mostre que H é subvariedade totalmente geodésica.

Proposição 1.3 (d.s.a). Seja M subvariedade Riemanniana de uma variedade Riemanniana $(\tilde{M}, \langle \cdot, \cdot \rangle)$ e denote R, \tilde{R} os tensores curvaturas de M e \tilde{M} e B o (1,2) tensor segunda forma de M. Então

$$\langle R(X,Y)X,Y\rangle - \langle \tilde{R}(X,Y)X,Y\rangle = \langle B(X,X),B(Y,Y)\rangle - \langle B(X,Y),B(X,Y)\rangle$$

Problema 1.4. Mostre que as curvaturas seccionais de \mathbb{S}^n são 1.

Proposição 1.5 (d.s.a). Seja ξ um campo normal unitário a uma subvariedade Riemanniana M de uma variedade Riemanniana $(\tilde{M}, \langle \cdot, \cdot \rangle)$. Seja $\Psi : V \subset \mathbb{R}^n \to U \subset M$ parametrização com \overline{U} compacto. Considere $\varphi : U \to \mathbb{R}$ tal que $\varphi|_{M-U} = 0$. Para U^1 compacto com $\overline{U} \subset U^1$ defina $F : (-\delta, \delta) \times U^1 \to \tilde{M}$ como $F(t,x) := \exp_x(t\xi)$ e $\hat{\Psi} : (-\delta, \delta) \times V \to \tilde{M}$ como $\hat{\Psi}(t,x) := F(t\varphi(x), \Psi(x))$. Escolha δ para F ser imersão injetora. Defina $g^t_{i,j} := \langle d\Psi^t e_i, d\Psi^t e_j \rangle$ onde $\Psi^t(x) = \hat{\Psi}(t,x)$. Então:

$$(a) \quad -n\langle H,\varphi\,\xi\rangle \qquad \qquad = \quad \frac{\frac{d}{dt}\sqrt{|g^t_{i,j}|}|_{t=0}}{\sqrt{|g^0_{i,j}|}}$$

$$(b) \quad \ \ \frac{{\it d}}{{\it d}t} {\rm Vol}(\Psi^t(V))_{|_{t=0}} \quad = \quad -n \int_U \langle H, \varphi \; \xi \rangle \; \omega$$

onde H é o vetor curvatura média e ω é a forma volume (com orientação induzida por Ψ .)

Proposição 1.6. Seja M subvariedade Riemanniana de uma variedade Riemanniana $(\tilde{M}, \langle \cdot, \cdot \rangle)$. Seja $\{e_A\}$ um referencial adaptado a M e denote $\tilde{\omega}_{A,B}$ as 1-formas de conexão e $\tilde{\Omega}_{i,j}$ as 2-formas de curvatura de \tilde{M} associadas a $\{e_A\}$. Então

- (a) $d\tilde{\omega}_{i,j} = \sum_{k} \tilde{\omega}_{i,k} \wedge \tilde{\omega}_{k,j} + \sum_{\alpha} \tilde{\omega}_{i,\alpha} \wedge \tilde{\omega}_{\alpha,j} \tilde{\Omega}_{i,j}$ é a equação de Gauss escrita no referêncial adaptado.
- (b) $d\tilde{\omega}_{i,\alpha} = \sum_k \tilde{\omega}_{i,k} \wedge \tilde{\omega}_{k,\alpha} + \sum_\beta \tilde{\omega}_{i,\beta} \wedge \tilde{\omega}_{\beta,\alpha} \tilde{\Omega}_{i,\alpha}$ é a equação de Codazzi escrita no referêncial adaptado.
- $\begin{array}{ll} (c) \ \ d \ \tilde{\omega}_{\alpha,\beta} = \sum_i \tilde{\omega}_{\alpha,i} \wedge \tilde{\omega}_{i,\beta} + \sum_\gamma \tilde{\omega}_{\alpha,\gamma} \wedge \tilde{\omega}_{\gamma,\beta} \tilde{\Omega}_{\alpha,\beta} \ \ \acute{e} \ a \ \ equação \ \ de \ Ricci \ escrita \\ no \ referêncial \ \ adaptado. \end{array}$

Concluimos então que as equações de Gauss, Codazzi e Ricci são partes da equação de curvatura:

$$d\,\tilde{\omega} = \tilde{\omega} \wedge \tilde{\omega} - \tilde{\Omega}.$$

Teorema 1.7 (d.s.a). Seja $U \subset \mathbb{R}^n$ aberto com métrica Riemanniana g. Considere $\{e_i\}_{i=1}^n$ referencial ortonormal (em relação a métrica g) definido em U, ω_i as formas duais de $\{e_i\}$ e ω_{ij} as formas de conexão Riemannianas da métrica g em relação ao referencial $\{e_i\}$. Seja A um 2 tensor simétrico definido por $A(X,Y) := \sum_i \omega_{i\,n+1}(X) \otimes \omega_i(Y)$. Defina $\omega_{n+1\,i} := -\omega_{i\,n+1}$ e ω a matriz de 1-formas formada por $\omega_{A,B}$ com A, B variando de 1 a n+1. Suponha que ω atende formalmente as equações de Gauss e Codazzi de uma hipersuperfície no espaço Euclidiano, i.e., $d\omega = \omega \wedge \omega$. Então dado $x_0 \in U$, $p_0 \in \mathbb{R}^{n+1}$ e uma base ortonormal $v_1, \ldots, v_{n+1} \in T_{p_0}\mathbb{R}^{n+1}$ existe, para um aberto $\tilde{U} \subset U$ de x_0 suficientemente pequeno, uma única imersão isométrica $\Psi : (\tilde{U}, g) \to (\mathbb{R}^{n+1}, g_0)$ tal que $d\Psi_{x_0}e_i = v_i$ onde $i = 1, \ldots, n$. Além disto $A(X,Y) = \Pi(d\Psi X, d\Psi Y)$, onde Π é a segunda forma da hipersuperfície $M := \Psi(\tilde{U})$ associada ao vetor N normal a M com $N(p_0) = v_{n+1}$.

Problema 1.8. Exercício 9 do capítulo 8 do livro do Carmo. Dado uma submersão Riemanniana $F:M\to B$ o exercício discute a relação entre a conexão Riemanniana de M e a conexão Riemanniana de B.

Problema 1.9. Exercício 10 do capítulo 8 do livro do Carmo. Dado uma submersão Riemanniana $F:M\to B$ o exercício discute a relação entre a curvatura de \tilde{M} e a curvatura de B.

Problema 1.10. Exercício 12 do capítulo 8 do livro do Carmo. O exercício discute como calcular a curvatura do espaço projetivo complexo.

Problema 1.11. Seja $F: M^{n+k} \to B^k$ uma submersão Riemanniana. Mostre que os itens abaixo são equivalentes.

- (a) Para todo $c \in B$, a conexão normal da subvariedade $F^{-1}(c)$ é flat.
- (b) A distribuição normal $\mathcal H$ é integrável. Em particular, as folhas tangentes a $\mathcal H$ são totalmente geodésicas.

Problema 1.12. Considera a ação isométrica $\mu: \mathbb{S}^1 \times \mathbb{S}^3 \to \mathbb{S}^3$ definida por $\mu(\lambda, (z_1, z_2)) := (\lambda z_1, \lambda z_2)$. Mostre que a distribuição normal \mathcal{H} as órbitas de μ não é integrável.

1.1 Sugestões

Problema 1.11

Para provar que (a) implica (b) considere $\{e_A\}$ referencial local adaptado a submersão, i.e, e_i $(i=1,\ldots,n)$ é tangente as pre-imagens e e_{α} $(\alpha=n+1,\ldots,n+k)$ é normal projetável. Pelo teorema de Frobenius se $[e_{\alpha},e_{\beta}]_x \in \mathcal{H}_x$ para qualquer $\alpha,\beta>n$ e para qualquer x então \mathcal{H} será integrável, i.e., existe uma folheação $\{\Sigma\}$ cujas folhas são tangentes a distribuição \mathcal{H} . Seja ω_i é o dual de e_i . Note que $\mathcal{H}=\bigcap_{i=1}^n \ker \omega_i$. Assim para mostrar que \mathcal{H} é integrável, basta mostrar que $0=\omega_i([e_{\alpha},e_{\beta}])=\langle \nabla_{e_{\alpha}}e_{\beta}-\nabla_{e_{\beta}}e_{\alpha},e_i\rangle$ para todo i,α,β .

Por outro lado, usando o fato da conexão normal ser flat, i.e., $\langle \nabla_{e_i} e_{\alpha}, e_{\beta} \rangle = 0$ e o fato de e_{α} ser projetável temos:

$$\begin{split} \langle \nabla_{e_{\alpha}} e_{\beta}, e_{i} \rangle &= -\langle e_{\beta}, \nabla_{e_{\alpha}} e_{i} \rangle \\ &= -\langle e_{\beta}, \nabla_{e_{i}} e_{\alpha} + [e_{\alpha}, e_{i}] \rangle \\ &= -\langle e_{\beta}, \nabla_{e_{i}} e_{\alpha} \rangle \\ &= 0 \end{split}$$

De forma analoga temos $\langle \nabla_{e_{\beta}} e_{\alpha}, e_{i} \rangle = 0$ e isto prova que $0 = \omega_{i}([e_{\alpha}, e_{\beta}])$.

Afim de provar que (b) implica (a) considere uma folha Σ tangente a distribuição \mathcal{H} . Seja $v \in T_p\Sigma$ e $\alpha(t) := \exp_p(tv)$. O fato de F ser uma submersão Riemanniana implica que a geodésica α é ortogonal a todas as subvariedades $F^{-1}(c)$ que ela encontra. Em particular é sempre tangente a \mathcal{H} e assim deve estar contida em Σ . Em particular note que α também é geodésica de Σ . Assim vemos que Σ é totalmente geodésica. Considere $\{e_A\}$ referencial adaptado a submersão. Como Σ é totalmente geodésica, temos que:

$$\begin{array}{rcl} 0 & = & \langle \nabla_{e_{\alpha}} e_{i}, e_{\beta} \rangle \\ & = & \langle \nabla_{e_{i}} e_{\alpha} + [e_{\alpha}, e_{i}], e_{\beta} \rangle \\ & = & \langle \nabla_{e_{i}} e_{\alpha}, e_{\beta} \rangle \end{array}$$

e a última igualdade implica que a conexão normal é flat.

Problema 1.12

Seguindo a notação introduzida no Problema 1.10 considere $N=(1+0\mathbf{i},1+0\mathbf{i})$. Então $iN=(0+\mathbf{i},0+\mathbf{i})$ é o vetor tangente a órbita que passa pelo ponto N. Considere agora os vetores $\overline{X}=(\frac{1}{\sqrt{2}}+0\mathbf{i},-\frac{1}{\sqrt{2}}+0\mathbf{i})$ e $\overline{Y}=(0+\frac{1}{\sqrt{2}}\mathbf{i},0-\frac{1}{\sqrt{2}}\mathbf{i})$. Note que \overline{X} e \overline{Y} são ortogonais a N e assim tangentes a esfera. Por outro lado \overline{X} e \overline{Y} são ortogonais a $\mathbf{i}N$ e assim ortogonais a órbita que passa por N. Por fim note que $\langle \overline{X},\mathbf{i}\overline{Y}\rangle=-1$. Assim Pelo Problema 1.10 temos que K(X,Y)=4. Como $K(\overline{X},\overline{Y})=1$ segue da fórmula do Problema 1.9 que $[\overline{X},\overline{Y}]^{\nu}$ é diferente de zero. Assim a distribuição normal \mathcal{H} não é integrável.

2 Variedades completas e o teorema de Hadamard

Teorema 2.1 (d.s.a). Seja $(M, \langle \cdot, \cdot \rangle)$ variedade Riemanniana.

- (a) Então as afirmações abaixo são equivalentes
 - (a.1) Existe $p \in M$ tal que $\exp_p : T_pM \to M$ está bem definida.
 - (a.2) Os limitados fechados de M são compactos.
 - (a.3) M é completa como espaço métrico.
 - (a.4) M é geodesicamente completa, i.e, $\exp_x: T_xM \to M$ está bem definida para todo $x \in M$.
- (b) Se M é completa, i.e., uma das afirmações do item (a) é satisfeita, então dado p e q em M existe um segmento de geodésica minimizante ligando p a q.

Problema 2.2. Seja $(M, \langle \cdot, \cdot \rangle)$ variedade Riemanniana homogênea, i.e, para qualquer $x, y \in M$ existe uma isometria $g \in \text{Iso}(M)$ tal que g(x) = y. Mostre que M é completa.

Problema 2.3. Mostre que \mathbb{R}^n , \mathbb{S}^n e \mathbb{H}^n são variedades Riemannianas completos.

Problema 2.4. Seja G um grupo de Lie com métrica bi-invariante. Mostre que G é variedade Riemanniana completa.

Problema 2.5. É possivel mostrar que a aplicação exponencial de Lie de $SL(2,\mathbb{R})$ não é sobrejetora. Use este <u>fato</u> para concluir que $SL(2,\mathbb{R})$ não admite métrica bi-invariante.

Proposição 2.6 (d.s.a). Seja $F: \hat{M} \to M$ uma isometria local sobrejetora. Suponha que \hat{M} é completa. Então F é recobrimento isométrico.

Lema 2.7 (d.s.a). Seja M variedade Riemanniana completa com $K \leq 0$. Então para qualquer $p \in M$ a aplicação $\exp_p : T_pM \to M$ é difeomorfismo local.

Teorema 2.8 (d.s.a). Seja M variedade Riemanniana completa, simplesmente conexa com $K \leq 0$. Então, para todo $p \in M$, $\exp_p : T_pM \to M$ é difeomorfismos.

2.1 Sugestões

Problema 2.3: Para mostrar que \mathbb{H}^n é variedade Riemanniana completa, pode-se mostrar que ele é homogeneo (vide e.g. Sec 1.E ou Sec. 3.L do livro de Gallot, Hulin, Lafontaine, ou Teorema 5.2 e Teorema 5.3 Cap 8 do livro do. Carmo).

3 Isometrias e espaços de curvatura constante

Proposição 3.1 (d.s.a). Sejam (M,g) e (\hat{M},g) variedades Riemannianas completas e $A: T_pM \to T_{\hat{p}}\hat{M}$ isometria linear. Seja $B_{\epsilon}(p)$ bola normal. Defina $F: B_{\epsilon}(p) \to \hat{M}$ como $F(x) := \exp_{\hat{p}} \circ A \circ (\exp_{p}|_{B_{\epsilon}(0)})^{-1}(x)$. Para cada $x \in B_{\epsilon}(p)$ defina $P: T_pM \to T_xM$ o transporte paralelo ao longa da única geodésica minimizante γ com $\gamma(0) = p$ e $\gamma(r) = x$ e $||\gamma'|| = 1$. Defina $\hat{\gamma}(t) := \exp_{\hat{p}}(A\gamma'(0))$ e $\hat{P}: T_{\hat{p}}\hat{M} \to T_{F(x)}\hat{M}$ o transporte paralelo ao longo de $\hat{\gamma}$ do ponto $\hat{\gamma}(0)$ a $\hat{\gamma}(r) = F(x)$. Por fim defina $\phi := PAP^{-1}$. Suponha que

$$g(R(X,Y)Z,W) = \hat{g}(\hat{R}(\phi(X),\phi(Y)),\phi(Z),\phi(W))$$

Então F é isometria local e $dF_p = A$.

Proposição 3.2 (d.s.a). Sejam $F_i:(M,g)\to (\hat M,\hat g)$, com i=1,2 duas isometrias locais da variedade Riemanniana conexa M na variedade Riemanniana $\hat M$. Suponha que existe $p\in M$ tal que $F_1(p)=F_2(p)$ e $d(F_1)_p=d(F_2)_p$. Então $F_1=F_2$.

Teorema 3.3 (d.s.a). Seja (M,g) variedade Riemanniana completa simplesmente conexa com curvaturas seccionais K constante iguais a c. Então M é isométrica a M(c) onde $M(c) = \mathbb{H}^n$ se c = -1, $M(c) = \mathbb{R}^n$ se c = 0 e $M(c) = \mathbb{S}^n$ se c = 1.

Teorema 3.4 (d.s.a). Seja S superfície compacta conecta, orientável. Então:

- (a) S admite métrica com K = 1 se e somente se g(S) = 0.
- (b) S admite métrica com K = 0 se e somente se g(S) = 1.
- (c) S admite métrica com K = -1 se e somente se g(S) > 1.

4 Variação da Energia

Proposição 4.1 (d.s.a). Sejam (M,g) variedade Riemanniana completa, $p,q \in M$ e $\gamma:[0,a] \to M$ uma geodésica minimizante ligando p a q. Então para qualquer curva $\beta:[0,a] \to M$ ligando p a q temos $E(\gamma) \leq E(\beta)$. A desigualdade vale se e somente se β for geodésica minimizante.

Proposição 4.2 (d.s.a). Sejam (M,g) variedade Riemanniana completa, $\alpha:[0,a]\to M$ curva suave por partes, $f:(-\epsilon,\epsilon)\times[0,a]\to M$ uma variação de α , $E_f(s)$ a energia da variação, i.e., $E_f(s):=\int_0^a g(\frac{\partial f}{\partial t}(s,t),\frac{\partial f}{\partial t}(s,t))\,dt$ e $V(t):=\frac{\partial f}{\partial s}(0,t)$. Então

$$\frac{1}{2}\frac{d}{ds}E_f(s) = \sum_{i=0}^k g(\frac{\partial f}{\partial s}(s,t), \frac{\partial f}{\partial t}(s,t))|_{t_i^+}^{t_{i+1}^-} - \sum_{i=0}^k \int_{t_i}^{t_{i+1}} g(\frac{\partial f}{\partial s}(s,t), \frac{\nabla}{\partial t}\frac{\partial f}{\partial t}(s,t))dt$$

$$\frac{1}{2} \frac{d}{ds} E_f(0) = \sum_{j=1}^k g(V(t_j), \alpha'(t_j^+) - \alpha'(t_j^-)) + g(V(a), \alpha'(a)) - g(V(0), \alpha'(0)) \\
- \sum_{j=0}^k \int_{t_i}^{t_{i+1}} g(V(t), \frac{\nabla}{dt} \alpha'(t)) dt$$

Proposição 4.3 (d.s.a). Seja (M,g) variedade Riemanniana completa. Uma curva diferenciavel por partes $\alpha: [0,a] \to M$ é uma geodésica se e somente se para toda variação própria f de α temos $\frac{d}{dt}E_f(0) = 0$.

Proposição 4.4 (d.s.a). Sejam (M,g) variedade Riemanniana completa, $\gamma:[0,a]\to M$ geodésica, $f:(-\epsilon,\epsilon)\times[0,a]\to M$ uma variação de $\gamma, E_f(s)$ a energia da variação, i.e., $E_f(s):=\int_0^a g(\frac{\partial f}{\partial t}(s,t),\frac{\partial f}{\partial t}(s,t))\,dt$ e $V(t):=\frac{\partial f}{\partial s}(0,t)$. Então

$$\frac{1}{2} \frac{d^{2}}{ds^{2}} E_{f}(0) = g(\frac{\nabla}{\partial s} \frac{\partial f}{\partial s}(0, a), \gamma'(a)) - g(\frac{\nabla}{\partial s} \frac{\partial f}{\partial s}(0, 0), \gamma'(0))
+ \sum_{i=0}^{k} g(V(t), \frac{\nabla}{dt} V(t))|_{t_{i}^{+}}^{t_{i+1}^{-}}
- \sum_{i=0}^{k} \int_{t_{i}}^{t_{i+1}} g(V(t), \frac{\nabla^{2}}{dt^{2}} V(t)) + g(R(\gamma'(t), V(t))\gamma'(t), V(t)) dt$$

ou de forma equivalente

$$\frac{1}{2} \frac{d^2}{ds^2} E_f(0) = g(\frac{\nabla}{\partial s} \frac{\partial f}{\partial s}(0, a), \gamma'(a)) - g(\frac{\nabla}{\partial s} \frac{\partial f}{\partial s}(0, 0), \gamma'(0)) + I_a(V, V)$$

onde Ia é a forma do índice, i.e.,

$$I_a(V,W) := \int_0^a g(\frac{\nabla}{dt}V(t), \frac{\nabla}{dt}W(t)) - g(R(\gamma'(t), V(t))\gamma'(t), W(t)) dt$$

Problema 4.5 (d.s.a). Enuncie o teorema de Indice de Morse e conclua que dado uma geodésica $\gamma:[0,a]\to M$ minimizante, então $\gamma(t)$ não pode ser ponto conjugado a $\gamma(0)$ para 0< t< a.

Teorema 4.6 (d.s.a). Seja (M,g) variedade Riemanniana completa. Suponha que $\operatorname{Ric}_p(X) \geq \frac{1}{r^2} > 0$ para todo $p \in M$ e todo $X \in T_pM$ com ||X|| = 1. Então:

- (a) M é compacta com diametro menor ou igual a πr .
- (b) O recobrimento universal de M é compacto e assim $\pi_1(M)$ é finito.

Problema 4.7. Seja G um grupo de Lie e $\mathfrak g$ sua algebra de Lie. Dados $X,Y\in\mathfrak g$ definimos a forma de Killing como

$$\Phi(X,Y) := \operatorname{tr} \operatorname{ad}(X) \circ \operatorname{ad}(Y)$$

onde $\operatorname{ad}(X)Y := [X,Y]$. O grupo (algebra de Lie) é chamado semi-simples se Φ é não degenerada. Mostre que se $\mathfrak g$ é semi-simples e Φ é negativa definida então $-\Phi$ é metrica bi-invariante. (**Dica** Pode-se usar (sem demonstrar) que $\Phi(\operatorname{Ad}(g)X,\operatorname{Ad}(g)Y) = \Phi(X,Y)$.)

Problema 4.8. Seja G um grupo de Lie que admite métrica bi-invariante. Mostre que $\mathrm{Ric}(X,Y) = -\frac{1}{4}\Phi(X,Y)$ para $X,Y \in \mathfrak{g}$. Em particular conclua que Ric não depende da métrica bi-invariante.

Problema 4.9. Seja G um grupo de Lie conexo semi-simples. Mostre que G é compacto se e somente se a sua forma de Killing é negativa definida.