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Abstract

This paper investigates the challenging problem of encoding the common sense
knowledge involved in the manipulation of spatial objects from a reasoning about
actions and change perspective. In particular, we propose a formal solution to
a puzzle composed of non-trivial objects (such as holes and strings) assuming
a version of the Situation Calculus written over first-order Equilibrium Logic,
whose models generalise the stable model semantics.
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1. Introduction

Real life situations where we must deal with strings tying objects and passing
through holes appear from time to time in very different contexts. Examples
range from tying shoelaces, to handling ropes in a sailboat or organising the
cable connections map inside an office, a building or a whole city. Although
humans show an amazing intuition for solving problems of this nature, a formal
representation for reasoning about holes and strings is still a relatively unex-
plored area. To understand the complexity of this problem, note for instance
that using a fully detailed mathematical model of the involved objects (assuming
them as rigid) does not seem feasible for computational purposes, let alone when
we consider deformable objects like a string. Moreover, humans typically de-
scribe solutions to spatial reasoning problems in terms of qualitative descriptions
instead. This is, in fact, the orientation followed by Qualitative Spatial Reason-
ing (QSR) [1][2][3], a field that attempts the logical formalisation of spatial
knowledge based on primitive relations defined over elementary spatial entities.
In general QSR approaches, however, lack a formal treatment of actions and
change (apart from a few exceptions [4][5]). The formal treatment of actions
are of central interest to the Reasoning about Actions and Change (RAC) com-
munity [6][7]. In this work we formalise a spatial domain from the perspective

Preprint submitted to Elsevier May 7, 2010



of RAC, aiming to provide a step in the direction of a rigorous treatment of
reasoning about actions, change and qualitative space. This work falls within
the logic-based knowledge representation subfield of Artificial Intelligence [8, 9],
whose main goals are: the logical formalisation of reasoning processes capable
of inferring knowledge from representations of the world; the construction of a
medium for pragmatically efficient computation, in which the formal represen-
tation provides the means to organise domain knowledge allowing for efficient
(and consistent) queries, updates and revisions of the knowledge base; or the
rigorous treatment of ontological commitments, which provide the base rules
that guide reasoning about the world (for instance, what should or should not
be considered as the effects of actions, to which extent should ramifications of
these effects be considered, how to assume the persistence of objects through
time and so on) [10]. In particular the problem of correctly inferring the effects
(and non-effects) of actions has received much attention by the AI community
under the heading of the Frame Problem.

In a nut-shell, the challenge of solving the Frame Problem is to find a com-
pact representation of the non-effects of actions, such that the complexity of the
representation is at the order of the number of actions in the domain, and not of
the number of domain elements times actions. Much solutions to this problem
were related to the development of non-monotonic reasoning formalisms [11]
and the definition of a law of inertia, which states that actions do not change
properties of a domain unless explicitly written [12]. Attempts to solve the
Frame Problem stumbled on the existence of multiple possible models for sound
domain representations, some of which were counter-intuitive as exemplified by
the so-called Yale Shooting problem [13]. In this work we tackle the formalisa-
tion of a spatial scenario within a logic that has built into it an elegant solution
to the Frame Problem as one of its ontological commitments, as exemplified in
the simple solution to the Yale Shooting scenario presented in Section 4.

To obtain a suitable representation of spatial domains containing strings and
holes we have adopted the following methodology. We begin from specific for-
malisations of particular scenarios, what usually implies a more abstract and
simplified description level, and advance then towards more general represen-
tations to cover different domains, what necessarily implies a more fine-grained
ontology. As a starting point, puzzle-like examples constitute a good test bed,
as they offer a small number of objects while keeping enough complexity for a
challenging problem of knowledge representation. Thus, puzzles involving phys-
ical objects are our drosophila1, i.e. our base line from which we develop AI
research.

In this paper, we take as a starting point the work developed in [16], which
presented an automated solution to the classical puzzle called Fisherman’s Folly
introduced below. The approach taken in [16], however, falls short on the formal
treatment of fluents, actions and the problematics surrounding these concepts
(such as inertia). The present paper tackles these issues by presenting a for-

1Following the metaphor used in [14] and [15].
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(a) Initial state (b) Goal

Figure 1: The Fisherman’s Folly puzzle

malisation of the Fisherman’s Folly puzzle into an Equilibrium Logic version of
the Situation Calculus (SC). Here Situation Calculus [17][6] provides the syn-
tactical tools to formalise the domain and Equilibrium Logic [18], a suitable
semantics to the problem, which identifies its minimal models by means that
resemble circumscription [19][20]. We shall deal with these concepts in more
details below.

In this context, the original contributions of the present work include the
following:

• a novel formalisation of the Situation Calculus in Equilibrium Logic. The
main advantage of this formalisation over the traditional classic logic SC
is the first-order encoding of predicate extension minimisation providing
a rigorous solution to the frame problem (which in classic logic is accom-
plished by a fragment of the second-order calculus);

• the first logical formalisation of a scenario composed of a string and rigid
objects (hosting holes or not). This formalisation allows the representation
of string segments, as well as their creation (and annihilation), depending
on the action evoked. It is worth mentioning that the necessity to handle
fragments of objects in this way brings a new challenge to Knowledge
Representation formalisms;

• in this paper we define a notion of connectivity as a fluent within an action
formalism (the fluent linked in Section 5.1), an issue that has not been
considered before in the field of Qualitative Spatial Reasoning.

The Fisherman’s Folly puzzle
The elements of the Fisherman’s Folly puzzle are a holed post (Post) fixed

to a wooden base (Base), a string (Str), a ring (Ring), a pair of spheres
(Sphere1, Sphere2) and a pair of disks (Disk1, Disk2). The spheres can be
moved along the string, whereas the disks are fixed at each string endpoint.
The string passes through the post’s hole in a way that one sphere and one
disk remain on each side of the post. It is worth pointing out that the spheres
are larger than the post’s hole, therefore the string cannot be separated from
the post without cutting either the post, or the string, or destroying one of the
spheres. The disks and the ring, in contrast, can pass through the post’s hole.

In the initial state (shown in Figure 1(a)) the post is in the middle of the
ring, which in its turn is supported on the post’s base. The goal of this puzzle
is to find a sequence of (non-destructive) transformations that, when applied on
the domain objects, frees the ring from the other objects, regardless their final
configuration. Figure 1(b) shows one possible goal state.
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Figure 2: The Rope Ladder puzzle in its initial state.

A crucial observation is that the puzzle actually deals with four holes: the
post hole, the ring hole and the two sphere holes. Note that in a natural language
description we would probably identify holes with their host objects, saying that
“the string passes through the sphere” (hole) or that “the post passes through
the ring” (hole). Furthermore, we would talk about “sliding the ring up the
post,” rather than “moving the post down through the ring hole”.

We argue that the complexity imposed by the (possibly infinite) states of
the string allied to the necessity of handling void space (holes) makes spatial
puzzles such as Fisherman’s Folly rich benchmark domains to be tackled from
the Common Sense Knowledge Representation standpoint [21][8]. Moreover,
besides the fact that this problem involves both Reasoning about Actions and
Change and Qualitative Spatial Reasoning about objects (that are ubiquitous in
various everyday domains), there are a number of versions of puzzles involving
strings and holes2. Making use of these analogous puzzles we can check whether
the representation and reasoning methods developed for one puzzle could be
applied to other of its variants, thus verifying the elaboration tolerance [22] of
our formalisation.

In this paper we show that the same formalism developed to solve the Fish-
erman’s Folly puzzle solves other puzzles: the Rope Ladder puzzle – Figure 2
(whose solution is presented in Section 7) and the Tricky Dick puzzle (cf. Ap-
pendix C). The way the proposed formalism could be easily applied on distinct
domains suggests that the proposed solution is tolerant to elaborations. How-
ever, we make no claim that the work developed here can solve any problem
involving strings, holes and rigid objects. For instance, the formalism is not
capable of representing the case of a number of rings interlocking (such as in
the symbol of the Olympic games), puzzles where string loops (or knots) are
relevant to the solution, and so forth.

At this point it is worth mentioning some previous work on dealing (sepa-
rately) with holes and strings from a formal standpoint. Reasoning about holes
and holed objects have been discussed in detail in [23] and [24], whereby a formal
ontology for these entities, based on their topological aspects, is developed. In
the present work we assume holes as sharing the same level of existence as rigid
objects, i.e., they are reified individuals that can be involved in actions. In the
present paper we are mostly interested in how these entities could be engaged
in actions, leaving aside some aspects of their precise ontology. A fine grained
spatial ontology of the Fisherman’s Folly (following the guidelines proposed in
[23]) is presented in [25].

The problem of incorporating knowledge about strings and string manipu-

2E.g. http://www.puzzlethis.co.uk/products_mad_cow.htm (last accessed in
12/10/2009).
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lation has been tackled in [26][27] where a robotic system capable of learning to
tie a knot from visual observation is proposed – this system is called the Knot
Planning from Observation (KPO) paradigm. In KPO each state of a string is
represented by a matrix encoding its segments, which are defined by the portion
of the string that lies in between its endpoints and points where it crosses over
itself. Actions on flexible objects in this context were defined as an extension
of the Reidemeister moves in knot theory [28]. This representation is suitable
for the identification of string states from a computer vision system; however, it
falls short in the context of problem solving, which is the main purpose of the
present paper. In contrast to the work proposed in [26], we do not take into ac-
count knots in this paper. Incorporating some of the ideas of the KPO paradigm
in our work shall be investigated in the future. Nonetheless, research on knot
planning and reasoning about strings and holes are some of the issues that the
growing community of robot assisted needle steering are interested about [29].

This paper is organised as follows: Section 2 presents an early solution to the
puzzle in order to provide the intuitions behind the present development; Section
3 introduces Equilibrium Logic; Situation Calculus theories written in Equilib-
rium Logic are developed in Section 4, while Section 5 presents the formalisation
of Fisherman’s Folly in this version of Situation Calculus. The correctness of
the developed formalism is discussed in Section 6; Section 7 presents a formal
solution of a more complex version of the Fisherman’s Folly puzzle and Section
8 concludes this paper. Appendices A, B and C present, respectively, the Prolog
code of the planner developed following the guide lines presented in the paper,
the proofs of this paper’s propositions and a formal solution of a third puzzle.

2. A simple automated solution to the Fisherman’s Folly puzzle

The formalisation of Fisherman’s Folly presented in this paper is based on
a simple automated solution of the puzzle proposed in [16], briefly presented in
this section to provide the intuitions behind this work.

The simple solution presented in [16] relies on distinguishing the puzzle’s
objects into three sorts: holes (which includes the post hole, the ring hole and
the holes through the spheres), long objects (that includes the string and the
post), and regular objects (including all the remainder objects). For each hole
h, its faces are distinguished: h− and h+; and for each long object l its tips l−

and l+ are defined.
The domain objects are represented by the following constants: Disk1,

Disk2 (for the left and right disks), Base (representing the square base), Ring,
Sphere1, Sphere2, PostH (representing the holed objects), and Str and Post,
for the so called long objects: the string and the non-holed part of the post (as
shall be discussed further on the paper).

For helping the reader to figure out a puzzle state, we use schematic rep-
resentations like the one in Figure 3, which shows the initial state. Arrows
correspond to segments of long objects, defined between pairs of hole crossings,
or between a hole crossing and a tip. These arrows point in the direction from
tip l− to tip l+ of a same long object l. Ellipses represent holes and boxes are
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linked regular objects. The positive face of a hole implicitly corresponds to the
“visible” side of the ellipse.

Figure 3: Schematic representation of the initial state.

Central to this simple solution is the definition of a list data structure named
chain(X). This data structure represents the sequence of all hole crossings on a
long object X, when traversing X from its negative tip to its positive one. For
instance, the state shown in Figure 3 is represented by the following two chains:
chain(Post) = [Ring+] and chain(Str) = [Sphere1+, PostH+, Sphere2+]. The
former represents that the long object Post crosses the ring hole and the latter
states that the string crosses the hole on the sphere 1, the post hole and the
hole on the sphere 2, respectively. Note that, for brevity, only the outgoing hole
faces are shown, following the direction negative to positive tip.

An action pass was defined3 to represent the movements of puzzle objects.
The effects of pass either add or delete a hole crossing from the chain on which
it is applied.

Using these definitions, a solution to the Fisherman’s Folly puzzle can be rep-
resented by the sequence of chains shown on Figure 4, whereby each state is iden-
tified by its sequence number plus the pair of lists chain(Post) and chain(Str)
in this order. Note that State 5 has actually reached the goal since, at this
point, the ring hole Ring does not occur in any list, i.e., it is not crossed by any
long object.

3In [16] two actions were defined, one representing the movement of rigid objects and
another the movement of holed objects. As we will see later, in the current paper these two
actions will be replaced by a single one for passing a bundle of elements through a hole. Figure
4 actually shows the solution in terms of this new representation.
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In [16] we also present an iterative deepening planning system that manip-
ulates chains in order to find a solution to the puzzle.

This early approach, however, completely overlooks any formal aspects of the
domain or the system. This lack of formality implies on a number of drawbacks.
First, there was no possibility of proving the correctness of the automated solu-
tions obtained, since we did not have available the mathematical tools to analyse
the system. Second, there was no proper ontology of the domain, the simple
chain definition did not allow any such formal definition. Amongst the defini-
tions we would like our theory to capture are the spatial properties of objects
as three-dimensional regions (including holes). Besides spatial properties, a for-
malisation of a spatial puzzle should have a rigorous treatment of actions and
change, including the indirect effects of actions, the definition of non-executable
actions and the efficient representation of actions’ non-effects (issues that are
virtually impossible to address given the early list-based representation). In con-
trast, the present paper proposes a rigorous logical account for the Fisherman’s
Folly puzzle, from which its solution can follow as a logical proof. Moreover, the
relational nature of the formalism allows for the definition of the spatial extent
of objects (some of which are defined and used in this paper, as we shall see).
On top of all, the theory proposed is defined on a well-known reasoning about
actions and change formalism, which carries built into it a complete account of
the problematics surrounding rigorous definitions of dynamic domains.

3. First-Order Equilibrium Logic

There exist several alternatives for incorporating nonmonotonicity in a for-
malism for Reasoning about Actions and Change (RAC). One possibility is
using Predicate Circumscription [19], so that, we define a set of auxiliary predi-
cates4 and then minimise their extent using a particular circumscription policy –
that is, deciding which predicates are fixed, minimised or freely varied; deciding
which parts of the theory are circumscribed and which parts are not, etc. These
decisions have proved to be a nontrivial task. In fact, it can be said that the area
of RAC has evolved by a continuous proposal, and later solution, of motivating
examples showing counterintuitive results from an inadequate circumscription
or minimisation policy5.

Another possibility for formalising action domains that has recently gained
some popularity is the use of Logic Programming (LP) as an underlying logi-
cal devise, and in particular, the methodology proposed in [36] that relies on
the Stable Models semantics [37]. The advantages of LP are that: (1) default
negation provides a natural way for representing defaults and, in particular,
the inertia law for solving the frame problem; and (2) unlike classical material

4Many of them have been used in the literature, like Clipped [30], Abnormal [13, 31],
Occluded [32], Causes [33], Affects [34], etc.

5Consider, for instance, the minimal abnormality policy in the Yale Shooting Problem [13]
or in the Ramification Problem as in [35], the chronological minimisation in the Stanford
Murder Mystery [31], etc.
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implication, program rules provide a directional behaviour very convenient for
representing causal effects and, in particular, for avoiding the ramification and
qualification problems in a straightforward way.

Traditionally, there has not been much work in combining Situation Calcu-
lus with LP under stable models semantics (as a pair of exceptions [38, 39]).
Perhaps the main reason for this was the need to resort to a ground theory,
i.e., stable models was essentially a propositional formalism. This limitation,
however, has drastically changed in the last years, thanks to the logical charac-
terisation of stable models in terms of Equilibrium Logic [40] and, in particular,
to its extension to first-order theories, Quantified Equilibrium Logic (QEL) [41].
As a result of this characterisation, the concept of stable model is now defined
for any theory of predicate calculus with equality. In fact, stable models can be
alternatively described by a second-order logic operator [42] similar to Circum-
scription.

In this section we proceed to introduce the main definitions of QEL. For a
better understanding, it is crucial to bear in mind its intuitive connection to
logic programming. In what follows, when talking about logic programs, we
adopt a logical syntax notation, replacing the usual ‘←’, ‘,’ and ‘not ’ operators
respectively by implication, conjunction and negation. In this way, for instance,
a typical logic program rule like:

p(X)← r(X,Y ),not q(Y )

would just be written as the formula R(x, y) ∧ ¬Q(x) → P (x) where all vari-
ables are implicitly universally quantified. This interpretation is extensible to
Equilibrium Logic, where operator ‘¬’ can be informally understood as default
negation.

Let L = 〈C,F, P 〉 be a first-order language where C is a set of constants, F
a set of functions and P a set of predicates. First-order formulae for L are built
up in the usual way, with the same syntax of classical predicate calculus. As in
Intuitionistic Calculus, the formula ¬ϕ will actually stand for ϕ→ ⊥. We write
Atoms(C,P ) to stand for the set of atomic sentences built with predicates in
P and constants in C. Similarly, Terms(C,F ) denote the set of ground terms
built from functions in F and constants in C. From now on, a formula with free
variables is implicitly assumed to be preceded by their universal quantifications.

The definition of Equilibrium Logic has two steps: we start first from a
(monotonic) intermediate logic and then define a model selection criterion on
this logic.

We recall the definition introduced in [18] of the logic of quantified here-and-
there with static domain, decidable equality and Herbrand structures, referring
to it as the logic of here and there (HT ) for short.

The HT logic is an intermediate logic. It can be defined in terms of the
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Intuitionistic Calculus plus axioms:

α ∨ (¬β ∨ (α→ β))
∀x ¬¬α(x)→ ∃x ( α(x)→ ∀x α(x) )

¬¬∃x α(x)→ ∃x ¬¬α(x)
∀x∀y (x = y ∨ x 6= y) (DE)

where the abbreviation x 6= y stands for ¬(x = y). In particular, (DE) is the
axiom for decidable equality and states that the equality predicate behaves in a
“classical” way, satisfying the law of the excluded middle.

The corresponding semantics for HT is described as follows.

Definition 1 (HT -interpretation). An HT interpretation for a language L =
〈C,F, P 〉 is a tuple 〈(D,σ), H, T 〉 where:

1. D is a nonempty set of constant names identifying each element in the
interpretation universe. For simplicity, we take the same name for the
constant and the universe element.

2. σ : Terms(D ∪C,F )→ D assigns a constant in D to any term built with
functions in F and constants in the extended set of constants C ∪ D. It
must satisfy: σ(d) = d for all d ∈ D.

3. H and T are sets of ground atomic sentences such that H ⊆ T ⊆ Atoms(D,P ).
�

Satisfaction of formulae is recursively defined as follows. Given an interpre-
tation M = 〈(D,σ), H, T 〉, the following statements are true:

• M |= p(t1, . . . , tn) if p(σ(t1), . . . , σ(tn)) ∈ H.

• M |= t1 = t2 if σ(t1) = σ(t2).

• M 6|= ⊥.

• M |= α ∧ β if M |= α and M |= β. Disjunction ∨ is analogous.

• M |= α→ β if both:

(i) M 6|= α or M |= β and

(ii) 〈(D,σ), T 〉 |= α→ β in classical logic

• M |= ∀x α(x) if for each d ∈ D, M |= α(d) and 〈(D,σ), T 〉 |= α(d).

• M |= ∃x α(x) if for some d ∈ D, M |= α(d). �

We say thatM is a model of a theory Γ ifM satisfies all the formulae in Γ.
An interpretation like 〈(D,σ), T, T 〉 is said to be total and, moreover, may

be seen as a classical interpretation 〈(D,σ), T 〉. In fact, it is easy to check that:

Proposition 1. 〈(D,σ), T, T 〉 |= Γ iff 〈(D,σ), T 〉 |= Γ in classical logic. �

10



Non-monotonic entailment is obtained by introducing a model-minimisation
criterion. Let us define the following ordering relation among interpretations

Definition 2. We say that an interpretation M = 〈(D,σ), H, T 〉 is smaller
than an interpretation M′ = 〈(D,σ), H ′, T 〉, written M ≤M′, when H ⊆ H ′.
�

That is, to be comparable, M and M′ must only differ in their H component,
so that M≤M′ iff H ⊆ H ′. As usual, we write M <M′ when M≤M′ and
M 6=M′ (that is H ⊂ H ′).

The next definition introduces the idea of minimal models for the HT logic.

Definition 3 (Equilibrium model). A total model M of a theory Γ is an
equilibrium model if there is no smaller model M′ <M of Γ. �

Note that an equilibrium model is total, i.e., it has the formM = 〈(D,σ), T, T 〉
and can be seen as a classical interpretationM = 〈(D,σ), T 〉. We name Quan-
tified Equilibrium Logic (QEL) the logic induced by equilibrium models.

A Herbrand HT -interpretation 〈(D, id), H, T 〉 is such thatD = Terms(C,F )
and σ = id, where id is the identity relation. In the rest of the paper, we im-
plicitly assume that we handle Herbrand HT models and Herbrand equilibrium
models.

As usual, a literal is an atom p(t) or its negation ¬p(t). A logic program
is a conjunction of implications α → β where α (the body) is a conjunction of
literals, β (the head) is a disjunction of literals, and all variables are universally
quantified.

Proposition 2 (From [18]). M = 〈(D,σ), T, T 〉 is a Herbrand equilibrium
model of a logic program Π iff T is a stable model of the (possibly infinite)
ground program grD(Π) obtained by replacing all variables by all terms in D in
all possible ways. �

Although QEL is defined for any arbitrary first-order theory, we will use in
most cases a fragment of QEL that fits into the syntactic class of logic program
rules. Furthermore, the rest of the formulae we use that do not belong to this
class can be translated into LP, although their direct QEL representation is
much more compact or readable and requires fewer auxiliary predicates. When
specifying these translations we will say that two theories Γ1,Γ2 are strongly
equivalent with respect to a signature L, written Γ1 ≡Ls Γ2 iff for any theory
Γ in that signature, the sets of equilibrium models of Γ1 ∪ Γ and Γ2 ∪ Γ, when
restricted to signature L, coincide. The idea of strong equivalence is that it
guarantees replacing Γ1 by Γ2 and vice versa, regardless of the context Γ. In [18]
it was shown that checking regular equivalence in the logic of Quantified Here
and There is a necessary and sufficient condition for Γ1 ≡Ls Γ2, provided that
Γ1 and Γ2 also belong to the signature L.

Proposition 3. ϕ→ ψ ∧ γ is HT-equivalent to (ϕ→ ψ) ∧ (ϕ→ γ).
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This proposition states that we can “compress” two program rules like ϕ→ ψ
and ϕ→ γ into a formula ϕ→ ψ ∧ γ with a conjunction in the consequent.

Proposition 4. ¬ϕ is the formula ϕ→ ⊥ by definition.

In fact, this is the definition of ¬ as a derived operator. It asserts that a negated
formula ¬ϕ can be understood or replaced by a constraint with ϕ in its body.

Proposition 5. ϕ→ x = y is HT-equivalent to ϕ ∧ x 6= y → ⊥

This proposition is saying that a rule with an equality in the head can be
understood as a constraint (a rule with ⊥ head) where the negation of x = y
has been moved to the antecedent.

Proposition 6. Let Γ1 be a theory consisting of the single formula

α(x) ∧ ¬∃y β(x,y)→ γ(x) (1)

for language L, being x a tuple with all the variables that occur free in the an-
tecedent or in the consequent. Then Γ1 ≡Ls Γ2 where Γ2 is the pair of formulae:

α(x) ∧ ¬aux(x) → γ(x) (2)
α(x) ∧ β(x,y) → aux(x) (3)

and aux(x) is a fresh auxiliary predicate not included in L. �

In other words, this proposition6 asserts that we can handle the negation of
an existentially quantified formula in a rule body by introducing a new auxiliary
predicate. For example, the formula:

Person(x) ∧ ¬(∃y)(Person(y) ∧ Parent(x, y)) → Orphan(x)

is strongly equivalent to:

Person(x) ∧ ¬aux(x) → Orphan(x)
Person(x) ∧ Person(y) ∧ Parent(x, y) → aux(x)

where aux(x) is taking the intuitive meaning “x has some parent.”
The next section develops Situation Calculus in Quantified Equilibrium

Logic.

6See the recent works [43] and [44] for a detailed description on this technique of removing
existential quantifiers from the rule bodies.
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4. Situation Calculus theories in Equilibrium Logic

We introduce next a version of the Situation Calculus which essentially main-
tains its standard syntax [17][6], but replaces Predicate Calculus by Quantified
Equilibrium Logic as the underlying logical framework. Our formalisation will
be multi-sorted. We define a finite set of action names Action plus a finite
set of fluent names Fluent. A situation is defined in the usual way, that is, it
can be the constant S0 (the initial situation) or a term like do(a, s) where a is
an action and s a situation in its turn. We will use variables a, a′ for the sort
Action, s, s′ for the sort Situation and f, f ′ for Fluent.

Notice that, as we deal with Herbrand models, axioms for unique names
assumption are not needed. However, we do include Domain Closure axioms for
all sorted variables. For instance, for any variable a ranging on sort Action we
have:

(∃x1)[a = A1(x1)] ∨ · · · ∨ (∃xn)[a = An(xn)], (DC)

where the Ai are all the action names included in Action and each xi is a tuple
of variables whose cardinality is the arity of Ai. Analogous axioms are included
for the Fluent sort.

All fluents will be functional, that is, each f(x) has a unique value v among
a range of possible values we denote range(f). The predicate Holds(f(x), v, s)
represents that the fluent f(x) is assigned a value v ∈ range(f) at a situation
s. In order to keep an homogeneous notation, a Boolean fluent f will also be
considered as functional with range(f) = Boolean = {True, False}. As we will
see later, this will be especially convenient7 for specifying the inertia default.

Since the fluent stands for a function, it will have a unique value:

Holds(f(x), v, s) ∧ Holds(f(x), v′, s)→ v = v′ (UV)

Although in Situation Calculus we can always build formulae with any sit-
uation term, we will be usually interested in describing some situations that
are unfeasible, as some of their occurring actions cannot be executed. This is
typically accomplished by a predicate Poss(a, s) to point out when an action
a is possible in a situation s. This predicate is used in so-called unfeasibility
axioms, intuitively describing conditions under which Poss(a, s) is false, and
in effect axioms, where Poss(a, s) is used in the antecedent of an implication,
acting as one more condition for the causal rule to be applied. Note that this
predicate should be true by default, that is, we only want to specify when an
action cannot be executed, rather than explicitly stating all the cases in which
the action can be performed. However, as in Equilibrium Logic all predicates

7Most logic programming formalisations of inertia for boolean fluents make use of a second
negation called strong or explicit. In this sense, an atom like Holds(f(x), False, s) can be
seen as the strong negation of f(x) at situation s. The advantage of our representation is that
the inertia axiom is the same for Boolean and non-Boolean fluents.
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are false by default, we use here the predicate Imposs(a, s) stating the exact
opposite, that is, performing the action a is impossible at the situation s.

A fluent may have a designated default value default(f) = d, d ∈ range(f).
In order to establish the effect of this default value, we further divide the sort
Fluent into two disjoint subsets: Inert (inertial fluents) and NonInert (non-
inertial fluents or events). For any non-inertial fluent, f ∈ NonInert with
default(f) = d, we include the axiom:

¬(∃v)[v 6= d ∧Holds(f(x), v, s)]→ Holds(f(x), d, s) (DV)

that intuitively captures the meaning of its default value for any situation s. In
the case of inertial fluents, however, the default fluent value will be its value in
a previous situation (this is the inertia assumption):

¬Imposs(a, s) ∧Holds(f(x), v, s) ∧ ¬Released(f(x), s)
∧ ¬(∃w)[w 6= v ∧Holds(f(x), w, do(a, s))]→ Holds(f(x), v, do(a, s)). (INE)

In other words, when an action execution is possible, ¬Imposs(a, s), if a fluent
f(x) had value v in the previous situation s and there is no evidence that the
fluent has a different value w in the next situation do(a, s) then the fluent value
v remains unchanged in do(a, s). The additional condition ¬Released(f(x), s) is
included so that, when convenient, we can “release” a given inertial fluent f(x)
from following the inertia default at a particular situation s. Predicate Released
will be particularly useful for forcing a fluent f(x) to become undefined (that
is, it has no associated value), something we will represent with the negation of
the following derived predicate:

Defined(f(x), s)↔ (∃v)Holds(f(x), v, s) (4)

As we can see, Axiom (INE) does not establish any default assumption for
the fluent value at the initial situation S0. The fluent default value, when
provided, is used for that case. In other words, when f is inertial and has some
default(f) = d we include the following version of (DV):

¬(∃v)[v 6= d ∧Holds(f(x), v, S0)]→ Holds(f(x), d, S0). (DV0)

For a compact description of a fluent, we use the notation8 f : D → R = d
where D is the fluent domain, R the range and ‘= d’ is an optional specification
of a default value default(f) = d.

We write ESC (for Equilibrium Situation Calculus) to denote this multi-
sorted version of QEL including the set of axioms seen before in this section:
(DC), (UV), (DV), (INE) and (DV0).

Since our spatial theory will deal with a relatively complex representation,
it may be convenient to consider first a classical actions’ scenario: the Yale

8The current formalisation for functional fluents with default values has been adapted
from [45].
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Shooting Scenario [13] , for a better understanding of notation and semantics.
It is worth pointing out that the solution of this scenario in ESC shows how the
semantics of Equilibrium Logic, together with the Situation Calculus, solves the
Frame Problem in a rigorous way. This solution is inherited by our formalisation
of the Fisherman’s Folly puzzle, developed below.

Example 1. Consider the classical Yale Shooting Scenario [13] where we have
a gun that must be previously loaded in order to shoot and kill a turkey. Initially
the gun is not loaded and the turkey alive. We load the gun, wait one situation,
and then shoot. �

The formalisation of Example 1 would include the sorts Action = {load, wait, shoot}
and Inert = {loaded, alive}, with both fluents of range Boolean and no default
value. The theory YALE would consist of ESC plus the formulae:

Holds(loaded, True, s) → Imposs(load, s) (5)
Holds(loaded, False, s) → Imposs(shoot, s) (6)

¬Imposs(load, s) ∧ s′ = do(load, s) → Holds(loaded, True, s′) (7)
¬Imposs(shoot, s) ∧ s′ = do(shoot, s) → Holds(alive, False, s′)

∧ Holds(loaded, False, s′) (8)
Holds(loaded, False, S0) ∧ Holds(alive, T rue, S0) (9)

Proposition 7. Theory YALE has a unique equilibrium model whose atoms
for Holds corresponds to the state transition system in Figure 5.
Proof. See Appendix B.

Figure 5: State transition system for the Yale Shooting scenario.

As a result, the following is a QEL consequence of YALE:

Holds(alive, False, do(shoot, do(wait, do(load, S0))))

(it suffices to check it on Figure 5).
Having ESC at our disposal, next section formalises the Fisherman’s Folly

puzzle in Equilibrium Situation Calculus.

5. Formalising the puzzle

In [16] the puzzle entities were classified into three different sorts: regu-
lar objects, holes (actually, single-holed objects) and long objects that we will
respectively represent as Regular, Hole and Long. In the Fisherman’s Folly
domain, these sorts respectively consist of:

Regular = {Disk1, Disk2, Base},
Hole = {Ring, Sphere1, Sphere2, PostH}, and
Long = {Str, Post}. (10)
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Notice that, for notational simplicity, we identify a hole, like the ring hole,
with its host object, like Ring. The whole set of physical objects is simply de-
noted as Object

def
= Regular ∪ Hole ∪ Long. We will also handle additional

derived sorts. The sort of sets of long objects Longset
def
= 2Long will be used to

specify when a given object can pass through a hole currently crossed by several
long objects. To understand the need for this sort, note for instance that the
Sphere1 can pass through the ring, provided that the latter is not being cur-
rently crossed by the Post. We assume we have available the set predicates ‘∈’
and ‘⊆’ with their standard meaning (note that Longset is finite and the whole
extension of these two predicates can be provided explicitly without requiring
further axiomatisation). Similarly, we will use the union operator ∪ which can
be fixed to its usual meaning in a similar way.

We will define the two sides of a hole (we will call them faces) or the two
tips of a long object as follows:

Face
def
= {face(h,+), face(h,−) | h ∈ Hole};

Tip
def
= {tip(x,+), tip(x,−) | x ∈ Long}.

where tip and face are two new constructors or function symbols9. For the sake
of compactness, we will use the abbreviations h+, h−, x+ and x− respectively
standing for face(h,+), face(h,−), tip(x,+) and tip(x,−). In this way, for
instance, the string has the two tips Str+ and Str− whereas the Ring has two
faces denoted as Ring+ and Ring−. The predicate Opposite will be used to
assert that two different hole faces correspond to the same hole:

Opposite(h+, h−) ∧Opposite(h−, h+). (11)

Finally, we define a pair of additional (finite) derived sorts to deal with links

among objects. The sort Node
def
= Tip∪Hole∪Regular captures all the possible

elements that can form a node of a link. The difference with respect to Object
is that, for linking a long object x, we must use one of its tips x+ or x− as the
link node. We also define Nodeset

def
= 2Node that will be used to allow moving

“bundles” of linked objects, and use ∈,⊆,∪ as we did for the sort Longset.

5.1. Spatial predicates and fluents
We begin defining an inertial fluent linked ∈ Inert:

linked : Node× Node→ Boolean = False

whose meaning is self-explanatory. In our scenario, linked will always relate a
tip to a regular or a holed object, and this information will not vary along time.
We prefer to maintain this as a fluent, and not as a static predicate, to allow

9Remember we handle Herbrand models.
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a future inclusion of possible actions that change the degree of connectivity
between objects.

Formulae that describe a particular Fisherman’s Folly puzzle configuration
will be labelled as (FFn). For instance, the initial facts for linked in the puzzle
would be:

Holds(linked(Str−, Disk1), T rue, S0)

∧Holds(linked(Str+, Disk2), T rue, S0)

∧Holds(linked(Post+, PostH), T rue, S0)

∧Holds(linked(Post−, Base), T rue, S0). (FF1)

As we can see in its declaration, linked will be False by default. If we do
not provide further information for this predicate apart from (INE), axiom (DV)
allows deriving that all the rest will be false. The following are some axioms for
the fluent linked:

Holds(linked(x, y), T rue, s) → Holds(linked(y, x), T rue, s) (12)

Holds(linked(x, y), T rue, s)
∧ Holds(linked(y, z), T rue, s) → Holds(linked(x, z), T rue, s) (13)

Holds(linked(x+, x−), False, s) (14)

They respectively assert that the relation linked is commutative, transitive, and
that the two tips of a long object are never linked10.

In principle, information about what can or cannot pass through a hole
will not vary along time. For this reason, we just consider a static predicate
CannotPass(x, h, y) to represent that the object x cannot pass through the
hole h when the latter is currently crossed by the set of long objects y. In the
Fisherman’s Folly example we include the following facts:

CannotPass(disk, sphere, ∅) ∧ CannotPass(disk,Ring, ∅)
∧ CannotPass(Base,Ring, ∅) ∧ CannotPass(Base, PostH, ∅)

∧ CannotPass(Base, sphere, ∅)
∧ CannotPass(Post, sphere, ∅) ∧ CannotPass(Post, PostH, ∅)

∧ CannotPass(sphere, PostH, ∅) ∧ CannotPass(sphere, sphere′, ∅)
∧ CannotPass(sphere,Ring, {Post})
∧ CannotPass(PostH, sphere, ∅)

∧ CannotPass(Ring, sphere, ∅) (FF2)

10In this paper we disregard handling circular long objects or, similarly, linking the negative
and positive tips of a same long object. This possibility is left for future study.
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with disk varying on {Disk1, Disk2} and sphere, sphere′ on {Sphere1, Sphere2}.
Note, for instance, that under any circumstance, any string can be passed
through any hole. Note also that the spheres can pass through the Ring, unless
the Ring is crossed by the Post. In order to guarantee this latter constraint,
the following two axioms are also included:

CannotPass(h, h, y); (15)
CannotPass(x, h, y) ∧ y ⊆ z → CannotPass(x, h, z), (16)

respectively stating that a single holed object h cannot pass through itself, and
that once x cannot pass through h when crossed by y, the same will hold for
any superset of y. We also assert that if a long object x cannot pass through a
hole, then none of its tips can do so by default:

CannotPass(x, h, y) ∧ ¬CanPass(xv, h, y)→ CannotPass(xv, h, z), (17)

where CanPass is an auxiliary predicate used to assert exceptions to this rule.
It is worth pointing out that, as predicates are false by default and CannotPass

is a “negative” predicate, we are assuming that objects can pass through holes
as a default. Apparently, this does not seem to be well chosen for the Fish-
erman’s Folly scenario, where there actually exist more cases in which objects
cannot pass through holes than those that can – in other words, (FF2) would be
smaller for a CanPass predicate. However, in a more complex scenario, it may
be the case that we do not have this information in a complete way. If so, the
advantage of our representation is that an hypothetical planner could go finding
“optimistic” plans that, when tried on the physical object, could perhaps be
unfeasible at some point of their execution, but could help us to find out a new
fact for CannotPass(x, h, y) we had not realised before. In this way, we could
go refining our information for CannotPass until some obtained plan actually
solves the physical problem.

5.2. Crossings and segments
When representing a long object, the relevant information we will be inter-

ested in is the set of hole crossings. It is important to notice that the same
long object can cross the same hole several times and in different directions
(this is especially common when the long object is flexible, like a string). If
we understand long objects and holes as three-dimensional regions, a crossing
is the overlapping region between a hole and a long object. We can define a
segment as a maximal continuous portion of a long object not overlapping with
any hole. An important assumption about long objects will be made:

For any long object x, there cannot be a segment of x connecting
more than two hole crossings.

Our representation of the domain, and in particular, of the state of a long
object in a given situation, will rely on this concept of segment. Thus, when
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writing formulae, we will require a way to refer to a given segment. The rep-
resentation of segments of a long object x will be done using segment labels. A
segment label i is a term that must uniquely identify each segment in a long
object x. In the textual or graphical explanations, we will represent a segment
as x : i where x is a long object and i a label.

Intuitively, a good candidate sort for segment labels could be the natural
numbers 0, 1, 2, . . . , or equivalently their Peano-like representation 0, s(0),
s(s(0)), . . . so that we use their ordering to follow the sequence of crossings in
the long object from tip x− to tip x+. In this way, for instance, the string would
have the four initial segments Str : 0 (from Disk1 to Sphere1), Str : 1 (from
Sphere1 to PostH), Str :2 (from PostH to Sphere2) and Str :3 (from Sphere2
to Disk2). An important problem, however, is that the set of segments will vary
along time depending on the actions performed. When segments disappear this
is not a real problem, as this just means that we will “stop using” a label in
the relevant fluents that represent the long object state. Unfortunately, we
also need to create new segments, which sometimes must be included between
two existing segments. In this way, we should be able to partition a segment
into new fragments as many times as needed. One possibility could be using
rational numbers to this aim11. However, in order to avoid their axiomatisation,
we adopt a simpler choice. We will use four new Herbrand functions or label
constructors pred(i), mid1(i, j), mid2(i, j) and succ(i), so that:

• x :pred(i) denotes a predecessor segment to x : i;

• x :succ(i) denotes a successor segment to x : i and

• x : mid1(i, j) and x : mid2(i, j) denote a pair of segments that are posi-
tioned in this same ordering, in the middle of x : i and x :j.

We assume that there exists a way to assign a different label to each object
segment occurring in the initial situation S0. Let us call InitLabel this finite
set of initial labels. The sort Label is recursively defined as: l ∈ Label iff
l ∈ InitLabel or l has any of the forms pred(i), succ(i), mid1(i, j) or mid2(i, j)
with i, j ∈ Label.

As said before, we will represent the list of segments and crossings following
the chain from the negative tip x− to the positive one x+. To this aim we can
imagine a linear graph where each node is a segment and each arc is labelled
with the crossing that connects both segments, represented by the corresponding
outgoing hole face. Following this notation, the initial situation of the string
Str would correspond to the graph:

Str :0
Sphere1+

−→ Str :1 PostH+

−→ Str :2
Sphere2+

−→ Str :3

11Another possibility we have not explored is the use of existential quantifiers, but this
would surely mean a more difficult reading and longer formulae to guarantee that segment
labels are pairwise different.
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The representation of this graph will be done with a pair of inertial fluents:

next : Long × Label→ Label ∪ {End}
towards : Long × Label→ Face

so that, for instance, a pair of facts like

Holds(next(Str, 0), 1, s) ∧Holds(towards(Str, 0), Sphere1+, s)

represent the labelled graph edge Str : 0
Sphere1+

−→ Str : 1. For convenience, the
last segment in the list will further point to a special constant End – in our
example, Holds(next(Str, 3), End, S0).

It must be noticed that not any possible pair x : i will form a real object
segment in any situation. For instance, in the goal situation, the long object
Post does not cross any hole and so, it has a unique segment, labelled in this case
as Post :0. Thus, for instance, there are no segments Post :1 or Post :2 in that
situation, although 1 and 2 are possible labels. The “existence” of a segment x : i
at a given situation s is captured by the fact that no atom Holds(next(x, i), z, s)
or Holds(towards(x, i), y, s) is true at that situation, i.e., the segment is not
referenced as argument of any true atom.

The initial situation in the puzzle can be represented now by the formula:

Holds(next(Str, 0), 1, S0) ∧Holds(towards(Str, 0), Sphere1+, S0)

∧ Holds(next(Str, 1), 2, S0) ∧Holds(towards(Str, 1), PostH+, S0)

∧ Holds(next(Str, 2), 3, S0) ∧Holds(towards(Str, 2), Sphere2+, S0)
∧ Holds(next(Str, 3), End, S0)

∧ Holds(next(Post, 0), 1, S0) ∧Holds(towards(Post, 0), Ring+, S0)
∧ Holds(next(Post, 1), End, S0) (FF3)

where, as we can see in the fifth line of the previous statement, the post has
also a crossing (towards Ring+) and so it has been divided into two segments,
Post : 0 and Post : 1. We include the following axiom, to check that in S0 no
segment x : k is preceded by two different crossings:

Holds(next(x, i), k, S0) ∧Holds(next(x, j), k, S0) → i = j (18)

At this point we would like to recall the schematic representation introduced
in Section 2 (Figure 3), reproduced on Figure 6 for convenience. Note the
representation of segments: x : i.

Figure 6: Schematic representation of the initial state showing the long object segments.
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An additional non-inertial fluent (from below) will be useful for specifying
action preconditions in a more readable12 way.

from : Long× Label→ Face

Its meaning is fixed by the axiom:

Holds(next(x, j), i, s) ∧Holds(towards(x, j), p, s)→
Holds(from(x, i), p, s) (19)

that is, towards and from respectively indicate the next and the previous hole
crossing of a given segment x : i.

5.3. Actions
From a physical point of view, the solution to the Fisherman’s Folly puzzle

can be exclusively described in terms of actions for passing objects through holes
in a given direction. In principle, this would lead us to consider some action like
pass(x, p) meaning that we pass object x through some hole towards its face
p, such as for instance, pass(Ring, PostH+). Although in principle x could be
of any type Regular ∪ Long ∪ Hole, in practice some objects are not relevant
to be passed through a hole, w.r.t. the puzzle’s states. For example, assume
we have a disconnected disk and we decide to pass it through the post hole: it
is not difficult to see that this action has no effect on our state representation
at all. Generally speaking, passing a regular object x through a hole is only
really relevant when x is linked to some tip of a long object. For this reason, we
disregard the case x ∈ Regular in favour of passing long object tips instead, x ∈
Tip. Note that, by passing tips, we can also disregard pass(x, p) for a whole long
object x ∈ Long, as it can be replaced by a sequence of pass(x+, p), pass(x−, p)
or pass(x−, p), pass(x+, p). The only remaining possibility is pass(x, p) for some
x ∈ Hole, that is, some single holed object. In fact, the most difficult part of
the formalisation has to do with the case in which x is currently crossed by one
or more segments of one or more long objects.

Apart from individually passing tips and holed objects, we must also bear
in mind one more feature that is present in the problem: linked objects. In our
puzzle, we have four pairs of linked elements: three of them are linking tips to
regular objects, but one is linking a tip to a holed object. It is not difficult to
imagine other scenarios (see, for instance, the Tricky Dick puzzle discussed in
Appendix C) where we may also link two tips of (different) long objects or two
linked holed objects. When elements are linked one each other, passing them
through a hole implies passing each of their individual components. We will
define the concept of object bundle as a (maximal) set of linked objects. The
non-inertial fluent:

bundle : Nodeset→ Boolean = True,

12In fact, references to this additional fluent in action preconditions could be replaced by a
suitable use of quantifiers.
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will be used to reflect that a given set of objects B forms a bundle at some
situation. This fluent is True by default because it is easier to specify when an
arbitrary set of objects b does not form a bundle. Its meaning is captured by
the following axioms:

x ∈ b ∧ y ∈ b ∧Holds(linked(x, y), False, s)
→ Holds(bundle(b), False, s) (20)

x ∈ b ∧ ¬(y ∈ b) ∧Holds(linked(x, y), T rue, s)
→ Holds(bundle(b), False, s) (21)

Holds(bundle(∅), False, s) (22)

Axiom (20) asserts that the set b does not form a bundle when it contains two
unlinked objects x and y. Axiom (20) captures the bundle maximality: a bundle
b cannot contain an object x linked to an external element y not in b. Finally,
(22) asserts that the empty set cannot be a bundle.

Example 2. Axioms for bundle (20)-(22) and linked (12)-(14) plus the initial
state of linked in the Fisherman’s Folly puzzle (FF1) and the default values for
linked and bundle allow deriving the facts:

Holds(bundle({Str−, Disk1}), T rue, S0)
∧ Holds(bundle({Str+, Disk2}), T rue, S0)
∧ Holds(bundle({Post−, Base}), T rue, S0)
∧ Holds(bundle({Post+, PostH}), T rue, S0)

and no other bundle is formed at situation S0. �

To sum up, our main action will have the form pass(b, p) meaning that we
pass the bundle b towards the hole face p. We will first describe the unfeasibility
axioms, that is, conditions for which it is impossible to perform action pass(b, p)
at a given situation. To this aim, we define an auxiliary non-inertial fluent:

crossedBy : Hole× Longset→ Boolean = False,

with axioms

Holds(towards(x, i), hv, s)→ Holds(crossedBy(h, {x}), T rue, s), (23)

Holds(crossedBy(h, a), T rue, s) ∧Holds(crossedBy(h, b), T rue, s)
→ Holds(crossedBy(h, a ∪ b), T rue, s). (24)
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In other words, crossedBy points out all the long object sets that are crossing
a given hole h at situation s. The unfeasibility conditions are then specified as
follows:

Holds(bundle(b), False, s) → Imposs(pass(b, p), s) (25)

x ∈ b ∧Holds(crossedBy(h, a), T rue, s) ∧ CannotPass(x, h, a)
→ Imposs(pass(b, hv), s). (26)

Axiom (25) asserts that we cannot pass a set b that does not form a bundle.
Axiom (26) says that a bundle b cannot pass through a hole h if b contains some
node13 x that cannot currently pass through h.

Let us proceed now with the effect axioms, that is, the causal rules describing
effects of an action. To this aim, the effects and constraints for passing a tip or a
holed object inside a bundle are described separately. For instance, for passing
a positive tip x+ to some face p, we get:

¬Imposs(pass(b, p), s) ∧ x+ ∈ b ∧ s′ = do(pass(b, p), s) ∧Opposite(p, p′)
∧Holds(next(x, i), End, s) ∧ ¬Holds(from(x, i), p′, s)

→ Holds(next(x, i), succ(i), s′) ∧Holds(towards(x, i), p, s′)
∧Holds(next(x, succ(i)), End, s) ∧Released(towards(x, i), s). (PR)

Axiom name (PR) stands for Positive tip to “Right”. This axiom asserts
that if x : i is the last segment and there is no preceding crossing through the
same hole in the opposite direction p′, then we add a new crossing from x : i
passing through p to a new (last) segment x :succ(i). The analogous movement
for a positive tip (Positive tip to Left) would be covered by:

¬Imposs(pass(b, p), s) ∧ x+ ∈ b ∧ s′ = do(pass(b, p), s) ∧Opposite(p, p′)
∧Holds(next(x, i0), i1, s)∧Holds(towards(x, i0), p′, s)∧Holds(next(x, i1), End, s)

→ Holds(next(x, i0), End, s′) ∧Released(towards(x, i0), s)
∧Released(next(x, i1), s) (PL)

which states that when we execute pass(x+, p) but the last crossing of x was in
the opposite direction p′, we must remove this crossing and the last segment.
Figure 7 schematically shows the effects of movements (PR), (PL).

Analogous axioms are included for passing the tip x−. Passing Negative tip
to Left is stated as follows:

¬Imposs(pass(b, p), s) ∧ x− ∈ b ∧ s′ = do(pass(b, p), s) ∧Opposite(p, p′)
∧ ¬Defined(from(x, i), s) ∧Defined(next(x, i), s) ∧ ¬Holds(from(x, i), p, s)
→ Holds(next(x, pred(i)), i, s′) ∧Holds(towards(x, pred(i)), p′, s′), (NL)

13To be precise, we could modify CannotPass to reflect when a set of objects cannot pass
altogether through a hole currently crossed by another set of objects, but this is not really
needed for the current puzzles and is disregarded in this paper.
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Figure 7: Movements for passing the positive tip pass(x+, p).

that is, if i is the first segment (there are no previous crossings) and it is not
followed by a crossing p then we add a new (first) segment pred(i) passing
through p′ towards i. Note that we require Defined(next(x, i), s) so that x : i is
an existing segment, i.e., it is followed by a crossing or by End (in this case, it
would be the sole object segment). Finally, the action for passing the Negative
tip of a long object to the Right of a hole is represented as follows:

¬Imposs(pass(b, p), s) ∧ x− ∈ b ∧ s′ = do(pass(b, p), s) ∧Opposite(p, p′)
∧Holds(next(x, i0), i1, s)∧Holds(towards(x, i0), p, s)∧¬Defined(from(x, i0), s)

→ Released(next(x, i0), s) ∧Released(towards(x, i0), s) (NR)

which means that, if x : i0 is the initial segment (it has no previous crossing)
and it points to x : i1 through face p, then this crossing is removed, so x : i1
implicitly becomes the first segment. Figure 8 graphically represents the effects
of (NL), (NR) – notice that the figure is almost symmetrical to Figure 7.

Figure 8: Movements for passing the negative tip pass(x−, p).

We move now to consider the effects of passing a holed object h through an-
other hole towards the outgoing face p of the latter. For instance, pass(b, Ring−)
with PostH ∈ b would pass the post hole towards the bottom side of the ring
(in other words, slide the ring upwards along the post hole). The execution of
this action will affect all crossings of any long object x towards any face hv of
h. Note that the same long object may cross the same hole several times and
in different directions.

¬Imposs(pass(b, p), s) ∧ h ∈ b ∧Opposite(p, p′) ∧ s′ = do(pass(b, p), s)
∧ ¬Holds(from(x, i0), p′, s) ∧ Holds(next(x, i0), i1, s)

∧Holds(towards(x, i0), hv, s) ∧ ¬Holds(towards(x, i1), p, s)
→ Holds(next(x, i0),mid1(i0, i1), s′) ∧Holds(towards(x, i0), p, s′)

∧Holds(next(x,mid1(i0, i1)),mid2(i0, i1), s′)
∧Holds(towards(x,mid1(i0, i1)), hv, s′)

∧Holds(next(x,mid2(i0, i1)), i1, s′)∧Holds(towards(x,mid2(i0, i1)), p′, s′).
(1R)

This first movement is applicable when segment x : i0 crosses h towards x : i1
but the former is not preceded by a crossing through p′ (the opposite of p) and
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the latter is not followed by a crossing through p. The effect of pass(b, p) in
this part of the list is the insertion of two new crossings, one through p before h
and one after h through p′. This also implies the creation of two new segments
labelled with mid1(i0, i1) and mid2(i0, i1). The opposite movement is captured
by the axiom:

¬Imposs(pass(b, p), s) ∧ h ∈ b ∧Opposite(p, p′) ∧ s′ = do(pass(b, p), s)
∧Holds(next(x, i0), i1, s) ∧Holds(towards(x, i0), p′, s)
∧Holds(next(x, i1), i2, s) ∧Holds(towards(x, i1), hv, s)
∧Holds(next(x, i2), i3, s) ∧Holds(towards(x, i2), p, s)
→ Holds(next(x, i0), i3, s′) ∧Holds(towards(x, i0), hv, s′)
∧Released(next(x, i1), s) ∧Released(towards(x, i1), s)
∧Released(next(x, i2), s) ∧Released(towards(x, i2), s). (1L)

When we have a sequence of crossings p′, hv, p (with p′ opposite face of p), action
pass(h, p) implies removing crossings p′ and p from the list. Movements (1R),
(1L) are schematically represented in Figure 9.

Figure 9: Movements (1R), (1L) for action pass(h, p).

The remaining movements do not create or destroy segments, but just swap
crossings:

¬Imposs(pass(b, p), s) ∧ h ∈ b ∧Opposite(p, p′) ∧ s′ = do(pass(b, p), s)
∧ ¬Holds(from(x, i0), p′, s) ∧ Holds(next(x, i0), i1, s)

∧ Holds(towards(x, i0), hv, s) ∧ Holds(towards(x, i1), p, s)
→ Holds(towards(x, i0), p, s′) ∧ Holds(towards(x, i1), hv, s′), (2R)

¬Imposs(pass(b, p), s) ∧ h ∈ b ∧Opposite(p, p′) ∧ s′ = do(pass(b, p), s)
∧Holds(next(x, i0), i1, s) ∧ Holds(towards(x, i0), p′, s)
∧ Holds(next(x, i1), i2, s) ∧ Holds(towards(x, i1), hv, s)

∧ ¬Holds(next(x, i2), p, s)
→ Holds(towards(x, i0), hv, s′) ∧ Holds(towards(x, i1), p′, s′). (2L)

The graphical representation of these movements is shown in Figure 10.

Figure 10: Movements (2R), (2L) for action pass(h, p).
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The goal can be specified as a ground situation s that satisfies the formula

GOAL(s)
def
= ¬(∃x, i, v)[ Holds(towards(x, i), Ringv, s) ]

which is entailed from our scenario description. GOAL(s) asserts that the Ring
hole is not referenced in any crossing and so, is completely free.

We define the Holes and Strings Theory, HST, as the set of formulae ESC ∪
{(11)− (26), (PR), (PL), (NR), (NL), (1L), (1R), (2L), (2R)}. An HST scenario
consists of axioms in HST plus the definition of sorts Regular, Hole, Long and
domain dependent axioms containing a conjunction of ground atoms for predi-
cate CannotPass and initial values of linked, next and towards. In particular,
we define the Fisherman’s Folly scenario, FOLLY, by adding to HST the sorts
in (10) and the domain dependent axioms (FF1), (FF2) and (FF3).

The following proposition shows that the method for labelling new segments
works as expected.

Proposition 8. Let M be an Equilibrium model of an HST scenario and let
L(s) = {i | M |= Defined(next(x, i), s)}, that is, the labels of “existing” seg-
ments at situation s. Then, if the antecedent of (PR) holds in M , the composed
label referred in its consequent succ(i) does not belong to L(s). The same hap-
pens for (NL) with new label pred(i) and for (1R) with the new labels mid1(i0, i1)
and mid1(i0, i1).

Proof sketch. This relies on the fact that we can establish a strict ordering
relation among labels that coincides with their sequence in the long object
for the initial situation, while for composed labels satisfies: if pred(i) < i,
i < mid1(i, j) < mid2(i, j) < j and i < succ(i). �

An important observation is that, axioms in an HST scenario can be seen
as logic program rules, as with the formalisation of the Yale Shooting scenario
in Example 1. Furthermore, HST also preserves the same dependence ordering
among situations: a predecessor situation s never depends on a successor one
do(a, s). So, a similar splitting technique can be used to prove the following
results.

Proposition 9. Let M be an equilibrium model of some HST scenario. Then,
M satisfies (18) for any situation s:

Holds(next(x, i), k, s) ∧ Holds(next(x, j), k, s) → i = j

In other words, we never get into a situation where two different crossings
point to the same long object segment x :k.

Proposition 10. Any HST scenario has at most a unique Equilibrium model.
Proof sketch. As with YALE, if we carefully look at all movements, it can

be checked that they induce a deterministic state transition system. �

In the case of FOLLY, the theory is consistent, and so has a unique equilibrium
model capturing the whole transition state system of the puzzle.
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The next section discusses the correspondence of the above formalisation
with respect to a model of the domain based on list manipulation. We argue that
this model guarantees the correctness of our rigorous account of the Fisherman’s
Folly puzzle.

6. The induced transition system: operations on lists of crossings

As we have seen the previous formalisation is not too far away from other
typical uses of Situation Calculus, except that classical Predicate Calculus has
been replaced by First-Order Equilibrium Logic as the underlying logical formal-
ism. The use of the Situation Calculus allows us to express non-trivial properties
of the system, while providing a high degree of flexibility and elaboration tol-
erance. In this way, our formalisation can cope with some simple modifications
of the scenario like adding new constraints, or defining new actions. On the
other hand, the use of Equilibrium Logic as the underlying logical formalism
allows us to inherit most of the typical constructs from action representations
using Answer Set Programming [46] (ASP), but removing the ASP restriction
to propositional theories. As a result, we get a compact representation of iner-
tia (INE), and we may naturally deal with indirect effects, like axiom (19), or
handle action disqualifications, as shown with respect to the predicate Imposs.

Analogous to our investigation of the Yale Shooting Scenario in Figure 5
(Section 4), we can also study the transition system induced by our logical rep-
resentation. This may help for a better understanding of the system behaviour,
and can also be used for an efficient implementation of a planning algorithm.
On the other hand, it must be taken into account that a transition system is
much less elaboration tolerant than the logical representation – for instance, it
cannot adequately represent default values, inertia or indirect effects, so that
small elaborations of the domain may drastically affect the transition system
configuration.

In order to describe the transition system states, we have a problem that did
not manifest in the Yale Shooting scenario, where all fluents were Boolean – we
have an infinite set of states and, furthermore, their representation is hard due
to the possibility of arbitrarily creating new segments. To avoid using segments
in the transition system representation, we adopt the approach we followed in
a previous work [16] (briefly introduced in Section 2) where a puzzle state was
represented as an ordered list of crossings for each long object. Transitions
were then specified as combinations of elementary transformations on these
lists, inducing a transition system for which a simple forward-driven planner
was designed. We will describe next the correspondence between the list-based
solution of the puzzle and our present formalisation, proving the correctness of
the planner.

In this section we use Greek letters α, β, γ, . . . to denote lists and adopt the
usual Prolog list notation. The expression α · β represents the concatenation of
lists α and β. Given an HST interpretation M and a situation s we will define
its corresponding state as a set of lists chain(x) for each long object x ∈ Long.
The formal definition of chain(x) will be done in terms of an auxiliary list
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cr(x, i), where i is one of the segment labels of x. This list cr collects all
the crossings that follow a given long object segment x : i (cf. the informal
definitions presented on Section 2 above).

Definition 4 (crossing list). Given a model M of an HST scenario, a seg-
ment x : i, and a ground situation s, we define the list cr(x, i, s) recursively as
follows:

cr(x, i, s)
def
=

 [p] · cr(x, j, s) if M |= Holds(next(x, i), j, s)∧
Holds(towards(x, i), p, s)

[ ] if M |= Holds(next(x, i), End, s)

The list chain(x, s) just appends the left and right tip of x as first and last
element of the list obtained by cr(x, i, s), being x : i the first segment of x. This
is formally specified by:

Definition 5 (chain list). Given a model M of an HST scenario, a long ob-
ject x, and a ground situation s, we define the list chain(x, s) as:

chain(x, s)
def
= [x−] · cr(x, i, s) · [x+].

where i is such that M |= ¬Defined(from(x, i), s) ∧ Defined(next(x, i), s),
that is, the first segment label of x. �

With these rules, it is easy to see that the state corresponding to the initial
situation would be described by the pair of lists:

chain(Str, S0) = [Str−, Sphere1+, PostH+, Sphere2+, Str+],
chain(Post, S0) = [Post−, Ring+, Post+].

Now, we will show that the value of chain(x, do(a, s)) after a transition can
be directly computed from chain(s) using a pair of simple list transformation
operators, one for each action type: passing tips pass(t, p) and passing single-
holed objects pass(h, p).

Definition 6 (Operator opTt,p). Let x be a long object, t one of its tips t =
xv, p a face and p′ its opposite face. The transformation on list α = chain(x)

caused by the action pass(t, p), written opTt,p, is defined as: opTt,p
def
=

β · [y, p, x+] if t = x+, α = β · [y, x+], y 6= p′ (27)

β · [x+] if t = x+, α = β · [p′, x+] (28)

[x−, p′, y] · β if t = x−, α = [x−, y] · β, y 6= p (29)

[x−] · β if t = x−, α = [x−, p] · β (30)

where α · β denotes the concatenation of lists α and β. �
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It is easy to see that the four conditions (27)-(30) respectively correspond to
movements (PR),(PL),(NL) and (NR), introduced in Section 5.1. The remaining
movements of the puzzle can be stated as shown in Definition 7 below.

Definition 7 (Operator opHh,p). Let h be a hole, p a face and p′ the opposite
face of p. Given a list of crossings α = chain(z) for a long object z, the trans-
formation on α caused by an action pass(h, p), written opHh,p(α), is recursively

defined as: opHh,p(α)
def
=

[x] if α = [x] (31)
[x | γ] if α = [x, gv | β], g 6= h, γ = opHh,p([gv |β]) (32)

[x, p, hv, p′ | γ] if α = [x, hv, y | β], x 6= p′, y 6= p, γ = opHh,p([y|β]) (33)
[hv | γ] if α = [p′, hv, p | β], opHh,p([p | β])] = [p | γ] (34)

[x, p, hv | γ] if α = [x, hv, p | β], x 6= p′, opHh,p([p | β])] = [p | γ] (35)
[hv, p′, y | γ] if α = [p′, hv, y | β], y 6= p, γ = opHh,p([y | β]) (36)

�

After a careful reading, it can be observed that conditions (33)-(36) corre-
spond to movements (1R),(1L),(2R) and (2L). As we can see, opH operator
processes triples x, hv, y in the list whose central element is a crossing through
the moved hole h. Note that these movements exhaust all the possibilities: x
and y could be the target face p, its opposite face p′ or none of them, but all
the cases are covered in (33)-(36). Note also that the last element in a triple is
being used as the first element of the next triple. This means that elementary
movements can be combined, as shown by the following example, extracted14

from a similar puzzle explained in Appendix 7.

Example 3 (Combined movements). Assume we have the list α =:

[H1+, Ring−, H2+, Ring+, H1−, Ring−, H2+].

The result corresponding to pass(Ring,H2+), that is, opHRing,H2+(α), is com-
puted as shown below. We just show relevant steps involving some change in
the list. At each step, we show the movement to be applied embracing the three
involved crossings. The accumulated result is shown as a second appended list.
When new crossings appear, they are shown in boldface:

[H1+, Ring−, H2+, Ring+, H1−, Ring−, H2+︸ ︷︷ ︸
(2R)

] · [ ]

[H1+, Ring−, H2+, Ring+, H1−︸ ︷︷ ︸
(1R)

] · [H2+, Ring−]

[H1+, Ring−, H2+︸ ︷︷ ︸
(2R)

] · [H2+, Ring+,H2−, H1−, H2+, Ring−]

[ ] · [H1+, H2+, Ring−, H2+, Ring+, H2−, H1−, H2+, Ring−]

14List α is a portion of chain(Str) at state s3 in Figure 15.
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�

Conjecture 1. Let Γ be an HST scenario, M a model of Γ, x a long object
and s a ground situation such that chain(x, s) is defined wrt M . Then:

1. If M |= ¬Imposs(pass(t, p), s)
then chain(x, do(pass(t, p)), s) = opTt,p(chain(x, s));

2. If M |= ¬Imposs(pass(h, p), s)
then chain(x, do(pass(h, p)), s) = opHh,p(chain(x, s)). �

The conjecture 1 above shall be formally proved in a future work.
We have built a forward planner holestrings (see Appendix A) that tries

all action executions in an iterative deepening strategy, using operators opH
and opT and exclusively considering the lists of crossings for representing each
state.

Notice that, from the planner point of view, the Fisherman’s Folly goal
consists now in checking that no lists of crossings contains a face like Ringv.
The planner cannot obtain any solution with less than six action executions.
Figure 11 presents the first solution obtained by the planner in six steps, and
shows the executed actions together with each intermediate state for the chain
lists15. A graphical representation is also included.

15For the sake of readability, we omitted the object tips x− and x+ which should respectively
occur as first and last element of each list chain(x).
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7. A second puzzle: Rope Ladder

In this section we briefly present a second strings & holes puzzle, named
Rope Ladder (Figure 12). Rope Ladder can be seen as a more complex variant
of Fisherman’s Folly, containing the same sort of objects, entangled in a rigid
U-shaped object. The ring in the initial state of this puzzle is trapped in the
horizontal edge of the U-shaped figure, whose vertical edges are holed posts,
each of which resembles the single post in the Fisherman’s puzzle. The string
makes a zig-zag from one post hole to the other (see state S0 in Figure 13),
crossing each hole twice in the initial state. There are two holed spheres (that
can slide through the string), initially lying near the tips of the string, each of
these tips is linked to a disk. The constraints are analogous to those stated in
the previous domain: the spheres cannot pass through either post-holes, where
the ring and disks have free passage, if the hole isn’t already crossed by another
object.

Figure 12: The Rope Ladder puzzle in its initial state.

A formalisation of the Rope Ladder puzzle, along with its automated solu-
tion, is analogous to that developed for Fisherman’s Folly. We have in this case
the sorts:

Regular = {Disk1, Disk2},
Hole = {Ring, Sphere1, Sphere2, H1, H2}, and
Long = {Str, Post}. (37)

where H1 and H2 stand for the two post holes, Post represents the U-shaped
object (without its holes) that is of long object sort. Instead of (FF1), (FF2)
and (FF3), we include now the domain dependent axioms:

Holds(linked(Str−, Disk1), T rue, S0)

∧Holds(linked(Str+, Disk2), T rue, S0)∧
∧Holds(linked(Post−, H1), T rue, S0)

∧Holds(linked(Post+, H2), T rue, S0). (RL1)

CannotPass(disk, sphere, ∅) ∧ CannotPass(disk,Ring, ∅)
∧ CannotPass(Post, sphere, ∅) ∧ CannotPass(Post, postH, ∅)
∧ CannotPass(sphere, postH, ∅) ∧ cannotPass(sphere, sphere′, ∅)
∧ CannotPass(sphere,Ring, {Post}) ∧ CannotPass(postH, sphere, ∅)

∧ CannotPass(Ring, sphere, ∅) (RL2)
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with disk varying on {Disk1, Disk2}, sphere, sphere′ on {Sphere1, Sphere2},
and postH on {H1, H2}.

Holds(next(Str, 0), 1, S0) ∧ Holds(towards(Str, 0), Sphere1+, S0)

∧ Holds(next(Str, 1), 2, S0) ∧ Holds(towards(Str, 1), H1+, S0)

∧ Holds(next(Str, 2), 3, S0) ∧ Holds(towards(Str, 2), H2+, S0)

∧ Holds(next(Str, 3), 4, S0) ∧ Holds(towards(Str, 3), H1−, S0)

∧ Holds(next(Str, 4), 5, S0) ∧ Holds(towards(Str, 4), H2+, S0)

∧ Holds(next(Str, 5), 6, S0) ∧ Holds(towards(Str, 5), Sphere2+, S0)
∧ Holds(next(Str, 6), End, S0)

∧ Holds(next(Post, 0), 1, S0) ∧ Holds(towards(Post, 0), Ring+, S0)
∧ Holds(next(Post, 1), End, S0) (RL3)

The reduced number of changes in the formalisation of Fisherman’s Folly to
account for Rope Ladder is an indication that our formal solution to the former
respects Elaboration Tolerance [22], at least in what concerns the representation
of different physical configurations.

The solution of the Rope Ladder puzzle is sketched in Figures 13 and 14
below, a list-based description of the states in this solution is shown in Figure
15.
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S0 s1 = do(pass({Str+, Disk2}, H2−), S0)

s2 = do(pass({H2, P ost+}, Ring−), s1)∧ s3 = do(pass({Sphere2}, Ring−), s2)

s4 = do(pass({Ring}, H2+), s3) s5 = do(pass({Sphere2}, Ring+), s4)

s6 = do(pass({Ring}, H2−), s5) s7 = do(pass({Ring}, H1−), s6)

Figure 13: Solution of Rope Ladder: first part.

34



s8 = do(pass({H1, P ost−}, Ring+), s7)∧ s9 = do(pass({H2, P ost+}, Ring+), s8)

s10 = do(pass({Sphere2}, Ring+), s9) s11 = do(pass({Ring}, H2+), s10)

s12 = do(pass({Sphere2}, Ring−), s11)

Figure 14: Solution of Rope Ladder: second part.
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8. Discussion

In this work we investigated a logic-based formalisation of a domain that
involves qualitative spatial reasoning about non-trivial physical objects (such
as strings and holes) and reasoning about actions and change on these objects.
The domain chosen is the spatial puzzle named Fisherman’s Folly, whose goal is
to find a sequence of actions that applied to the puzzle’s objects will disentangle
a ring from a complex arrangement of a string, rigid objects and holes through
them.

The endeavour of formalising the Fisherman’s Folly puzzle is in line with
the challenges for common sense reasoning16 such as the egg cracking problem
[47, 48, 49], whose logical formalisations were motivated by McCarthy’s seminal
papers [21, 17]. From a very abstract level, automated solutions to such domains
could be obtained from a simple search on a state space, resembling automated
solutions to classical domains such as the 8-puzzle [50]. However, this sort of so-
lutions carry a number of implicit (hard-wired) assumptions on reasoning about
the domain, which are brought to light by a logical representation. An exam-
ple of such assumptions is present in the so-called Yale Shooting Scenario [13],
a simple domain that proved to be an elusive problem in the formalisation of
commonsense knowledge, due to the fact that its formal descriptions allowed the
existence of counter-intuitive models. Nevertheless, it is possible to hand code a
correct state-transition solution for this scenario (such the one shown in Figure
5). However, it turns out that this solution is a consequence of sound reasoning
about the domain, as it is the intended model of a correct logical encoding of
the scenario. The problem here is how a logic could derive only the intended
models (and not possible counter-intuitive ones), a problem that has motivated
the development of non-monotonic logics [11]. We presented in Section 4 a for-
malism that solves this problem. In Sections 5 and 6 we used the proposed
formalism to solve the Fisherman’s Folly puzzle and, further, this solution is
illustrated with a list-based model of the logical reasoning process. The connec-
tion between the list-based model and the logic formalisation of the puzzle is
analogous to that relating the state-transition description of the Yale Shooting
Scenario with its formal description: the list-based solution of the Fisherman’s
Folly puzzle carry strong assumptions on reasoning about the domain, which
its logical description makes clear. In particular, the logic formalisation of the
puzzle solves the problem of defining which parts of a list are not changed, by
incorporating a commonsense law of inertia within the stable model semantics
underlying the formalism developed.

Another advantage of using logic (over the direct application of a state tran-
sition system) for problem solving is its flexibility in handling elaborations of
the domain: including a new transition in an automaton may imply on changing
completely its structure (let alone the inclusion of indirect effects or continuous

16A list of such challenges can be found in the Common sense problem page: “http://
www-formal.stanford.edu/leora/commonsense/ (last accessed in 10/12/2009)”.
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change, for instance), whereas – in principle – logic allows this to be done by
adding the related axioms. In fact, much research has been done to equip logic
with the proper tools to accomplish robust and efficient knowledge representa-
tion [7, 6, 8, 9]. In this paper we follow the streamline of this research that
tackles the solution of the various problems in knowledge representation assum-
ing Situation Calculus (handling fluents and actions) and Equilibrium Logic (for
correctly dealing with non-monotonicity) [18] as lingua franca.

Although the approach presented in this paper could solve a few puzzles of
distinct complexities, there are situations where a more complex treatment is
needed. For instance, the current approach has difficulties on the representation
of a holed object crossing another holed object. Instead we assume in this work
that the state of a hole crossing another hole is an intermediate state that exists
momentarily (i.e. the state transition is not complete until this crossing holds).
Relaxing this restriction is a matter for future investigations.

Another interesting subject for future work is how to relate the current for-
malisation to a lower-level representation based on spatial primitives, opening
questions like the “creation” and “destruction” of regions (crossings and seg-
ments) or how to deal with the concept of inertia for spatial change. Clarifying
the spatial properties of the puzzle’s objects, such as the string’s flexibility, and
providing the precise reification of holes as real objects is the subject of our
current research [25].

It is worth mentioning that the importance of reasoning about strings and
holes goes beyond pure theoretical interest, embracing application domains such
as: cabling, where reasoning about flexible and perforated objects is needed for
optimising the spatial arrangements of networks of cables; autonomous mainte-
nance of mechanical machines, from which devices have to be extracted without
damaging the surrounding parts. But, perhaps, the most challenging application
of reasoning about strings rely in the field of robotic surgery, where autonomous
machines have to deal (and plan how to handle) sutures in situations involving
very distinct and delicate structures.
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A. Planner

In this section we include the Prolog source for the planner. The program does not
contain any domain dependent data, so it is applicable to Fisherman’s Folly but also
to similar puzzles, like the one in the next section (the Rope Ladder). The additional
data for the Fisherman’s Folly scenario is omitted, as it can be easily deduced from
(FF1), (FF2) and (FF3).

The planner contains an additional action (currently commented) for cutting a
link. Of course, enabling this action allows shorter solutions, like for instance, cutting
the link between the post and its base and then passing Post− to Ring+.

% SORTS -------------------------------------------------------

object(X) :- long(X); regular(X); hole(X).

sign(+). sign(-).

opposite(X^ +,X^ -). opposite(X^ -,X^ +).

tip(X^V) :- long(X), sign(V).

pole(H^V) :- hole(H), sign(V).

action(pass_t(T,P)):- tip(T),pole(P).

action(pass_h(H,G^V)):- hole(H),pole(G^V), G \= H.

% action(cut(T)):-tip(T).

% UNFEASIBILITY -----------------------------------------------

crossedBy(_H,[],_S):-!.

crossedBy(H,[X|Xs],S):- member(chain(X)=L,S),

member(H^ _,L),!,crossedBy(H,Xs,S).

imposs1(pass_t(X^_,H^_), S):- crossedBy(H,A,S), cannotPass(X,H,A),!.

imposs1(pass_t(T,H^_), S):-

member(linked(T,Y)=true,S), cannotPass(Y,H,A), crossedBy(H,A,S), !.

imposs1(pass_h(H,H2^_), S) :- cannotPass(H,H2,A),crossedBy(H2,A,S), !.

imposs1(cut(T), S) :- member(linked(T,_)=false,S),!.

imposs2(pass_h(H,_), S) :- member(linked(_,H)=true,S),!.

imposs(A,S) :- imposs1(A,S),!; imposs2(A,S).

% EFFECTS -----------------------------------------------------

replace(S0,X=V,S1):- append(Pre,[X=_|Suf],S0), append(Pre,[X=V|Suf],S1).

trans(S0, cut(X^ V), S1):-

!, member(linked(X^ V,Y)=true,S0),

replace(S0,linked(X^ V,Y)=false,S1).

trans(S0, pass_t(X^V,P), S1) :-

!,member(chain(X)=A,S0), opT(X^V,P,A,B),

replace(S0,chain(X)=B,S1).
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trans([], pass_h(_,_), []):-!.

trans([chain(X)=A|S0], pass_h(H,P), [chain(X)=B|S1]):-

!, opH(H,P,A,B), trans(S0,pass_h(H,P),S1).

trans([Fact|S0], pass_h(H,P), [Fact|S1]):-

!, trans(S0,pass_h(H,P),S1).

opT(X^ +,P,A,G) :- !, append(B,[Y,X^ +],A),

(opposite(P,Y),!, append(B,[X^ +],G) % (PR)

; append(B,[Y,P,X^ +],G)). % (PL)

opT(X^ -,P,[X^ -,P|B],[X^ -|B]) :- !. % (NL)

opT(X^ -,P,[X^ -,Y|B],[X^ -,P1,Y|B]) :- !,opposite(P,P1). % (NR)

opH(_,_, [X],[X]) :- !.

opH(H,P, [X,G^V|B],[X|D]) :- G\=H,!,opH(H,P, [G^V|B],D).

opH(H,P, [X,H^V,Y|B],[X,P,H^V,P1|G]) :-

opposite(P,P1), X \= P1, Y \= P, !, opH(H,P, [Y|B],G). % (1R)

opH(H,P, [P1,H^V,P|B], [H^V|G]) :-

opposite(P,P1),!,opH(H,P, [P|B],L), L=[P|G]. % (1L)

opH(H,P, [X,H^V,P|B],[X,P,H^V|G]) :-

opposite(P,P1), X \= P1, !, opH(H,P, [P|B],L), L=[P|G]. % (2R)

opH(H,P, [P1,H^V,Y|B], [H^V,P1|G]) :- % (2L)

opposite(P,P1),Y \= P,!,opH(H,P, [Y|B],G).

% TEMPORAL PROJECTION -----------------------------------------

execute(S,[]) :- !,write_state(S).

execute(S,[A|As]) :- !,

write_state(S),nl,write(’ACTION: ’),write(A),nl,

(imposs1(A,S),!,write(imposs(A)),nl,fail

; trans(S,A,S1),execute(S1,As)

).

% PLANNING: DEPTH-FIRST ITERATIVE DEEPENING -------------------

find_plan(MinDepth,MaxDepth,Sol):-

initial(S0),iterate_depth(MinDepth,MaxDepth,S0,Sol).

iterate_depth(N,Limit,_,_):-N>Limit,!,fail.

iterate_depth(N,Limit,S0,Sol):-

write(’Trying depth ’),write(N),nl,

get_plan(N,[S0],[],Sol)

; M is N+1, iterate_depth(M,Limit,S0,Sol).

get_plan(_N,[S0|Ss],Plan,([S0|Ss],Plan)):- is_goal(S0),nl.

get_plan(N,_,P,_):-length(P,M),M>=N,!,fail.

get_plan(N,[S0|Ss],Plan0,Sol):-

action(A),

check_undo_actions(A,Plan0),

\+ imposs(A,S0),

check_linked_action(S0,A,S1,A2),

trans(S1,A,S2),
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\+ violated_constraint(S2),

get_plan(N,[S2,S0|Ss],[A2|Plan0],Sol).

% If we passed an object tip linked to a hole, we pass the hole too

check_linked_action(S1,pass_t(T,P),S2,pass_t(T,P)+pass_h(H,P)):-

member(linked(T,H)=true,S1),hole(H),!,trans(S1,pass_h(H,P),S2).

check_linked_action(S1,A,S1,A).

% Reject states with two repeated crossings... h+,h+

violated_constraint(S) :-

member(chain(_Y)=L,S), append(_Pre,[X,X|_Suf],L).

opposite_action(pass_t(T,P),pass_t(T,P1)):-opposite(P,P1).

opposite_action(pass_h(X,P),pass_h(X,P1)):-opposite(P,P1).

check_undo_actions(A,[A1|_]):-!,\+ opposite_action(A,A1).

check_undo_actions(_,_).

write_solution((T,P)):-

reverse(T,T1),reverse(P,P1),

write_states(T1,P1).

write_states([],_):-!.

write_states([S],[]):-write_state(S).

write_states([S|Ss],[A|As]):-

write_state(S),write_action(A),write_states(Ss,As).

write_state(S):-member(chain(X)=L,S),write(chain(X)=L),nl,fail.

write_state(_):-nl.

write_action(A):-write(’ACTION: ’),write(A),nl.

goal :- find_plan(0,7,K),write_solution(K).

B. Proofs

For proving Proposition 7 we will first use some properties of QEL that will allow
us to convert YALE into an equivalent theory with the syntactic form of a normal
logic program containing function symbols and variables. This normal program can be
transformed afterwards into an infinite ground program that can be inductively split
to compute the transition system shown in Figure 5.

Proof of Proposition 3. Proved in [51]. �

Proposition 11. For any interpretation 〈(D,σ), H, T 〉 and any formula ϕ, we have
〈(D,σ), H, T 〉 |= ϕ implies 〈(D,σ), T 〉 |= ϕ. �

Proof. It easily follows by structural induction. �

Proposition 12. 〈(D,σ), H, T 〉 |= ¬ϕ is equivalent to 〈(D,σ), T 〉 |= ¬ϕ.

Proof. By simply checking the conditions for satisfaction in HT . �

Lemma 1. The formula α : (ψ → ϕ)→ ¬(ψ ∧ ¬ϕ) is an HT-tautology.
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Proof. For any interpretation M = 〈(D,σ), H, T 〉 we must prove both 〈(D,σ), T 〉 |= α
and that M |= (ψ → ϕ) implies M |= ¬(ψ ∧ ¬ϕ). The first condition follows from the
fact that α is a classical tautology. Assume now that M |= (ψ → ϕ). This implies
〈(D,σ), T 〉 |= ψ → ϕ in classical logic, and this is equivalent to 〈(D,σ), T 〉 |= ¬(ψ∧¬ϕ)
which, in its turn, is equivalent to M |= ¬(ψ ∧ ¬ϕ) by Proposition 12. �

Lemma 2. The following formula is an HT-tautology:

ϕ ∨ ¬ϕ → ( (ψ → ϕ)↔ ¬(ψ ∧ ¬ϕ) ) (38)

Proof. For any interpretation M = 〈(D,σ), H, T 〉 we would have to prove that both:
〈(D,σ), T 〉 |= (38); and M |= ϕ ∨ ¬ϕ implies M |= (ψ → ϕ) ↔ ¬(ψ ∧ ¬ϕ). The first
condition is trivial, since (38) is a classical tautology. To prove the second condition,
assume M satisfies ϕ∨¬ϕ. By Lemma 1, the left to right direction of the equivalence
(ψ → ϕ)→ ¬(ψ∧¬ϕ) is an HT-tautology. For the right to left direction, it is clear that
〈(D,σ), T 〉 |= (ψ → ϕ) ← ¬(ψ ∧ ¬ϕ) since this is a classical tautology. Assume now
that M |= ¬(ψ∧¬ϕ). By Proposition 12 this is equivalent to 〈(D,σ), T 〉 |= ¬(ψ∧¬ϕ)
that in its turn is equivalent to 〈(D,σ), T 〉 |= (ψ → ϕ). We remain to prove that
M |= ψ implies M |= ϕ. Assume M |= ψ but M 6|= ϕ. From the latter and M |= ϕ∨¬ϕ
we conclude M |= ¬ϕ. By Proposition 12 this is equivalent to 〈(D,σ), T 〉 |= ¬ϕ and,
as we had 〈(D,σ), T 〉 |= (ψ → ϕ) we get 〈(D,σ), T 〉 6|= ψ that by Proposition 11
implies M 6|= ψ reaching a contradiction. �

Proof of Proposition 5. Since (DE) asserts that equality satisfies the excluded
middle x = y ∨ ¬(x = y), we can apply Lemma 2 to obtain that ϕ → x = y is
HT-equivalent to ¬(ϕ ∧ x 6= y). But, by Proposition 4, the latter is HT-equivalent to
ϕ ∧ x 6= y → ⊥. �

Proof of Proposition 6. Independently shown in [43, 44]. �
Proof of Proposition 7. Note first that YALE has the form of a logic program

excepting for the use of an existential quantifier in (INE), (DV) and (DV0) and the
use of conjunction in (8) and (9). Using the propositions in Section 3 and previous
results in this Appendix, we can transform YALE into a logic program, we can then
consider Π = grD(YALE), that is, the (infinite) ground logic program resulting from
replacing variables by all terms in the Herbrand universe D. An important observation
is that this program can be split in the sense of the Splitting Theorem in [52], as any
ground atom for Holds or Imposs indexed by a situation s never depends17 on an
atom indexed by do(a, s). Furthermore, atoms for do(a, s) and do(a′, s) with a 6= a′ do
not even depend on each other. This allows us to construct an inductive proof on the
structure of situation terms. For instance, the initial state for situation S0 is uniquely
fixed by (9). Then, by the splitting theorem, we can independently compute the states
for do(load, S0), do(wait, S0) and do(shoot, S0) considering their corresponding ground
rules.

We have implemented these 1-transition programs into lparse/smodels. The re-
sulting programs can be seen in Figures 16 and 17. From their execution we ob-
tain all possible single transitions leading to the successor states of S0 in Figure 5.
Then we could move to consider all situations with two actions do(wait, do(load, S0)),
do(load, do(load, S0)), . . . , and so on. The complete formal proof would actually con-
sist in assuming that the correspondence to the figure holds for all situations terms

17An atom p depends on an atom q if there exists a rule with p occurring in its head and q
in its body.

42



with n actions do(an, do(an−1, . . . , do(a1, S0) . . . )) and applying splitting to prove it
for terms with n + 1 actions. Finally, note that we get a unique state for S0 and all
transitions are deterministic. This shows that YALE has a unique equilibrium model.

�
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% Equilibrium Situation Calculus (ESC) -------------------------
#domain situation(S).
#domain fluent(F).
#domain inertial(IF).
#domain noninertial(NIF).
#domain action(A).

% Types of fluents
fluent(IF).
fluent(NIF).

% We only consider 1 transition
situation(s0).
situation(do(A,s0)).

% Unique value (UV)
:- holds(F,S,V), holds(F,S,W), V != W,

range(F,V), range(F,W).

% Inertia (INE)
holds(IF,do(A,s0),V) :- not imposs(A,s0),
holds(IF,s0,V),
not released(IF,s0),
not ab(IF,V,A,s0),
range(IF,V).

ab(IF,V,A,s0) :- holds(IF,do(A,s0),W), W!=V,
range(IF,V), range(IF,W).

% Default values (DV)
holds(NIF,S,V) :- not ab2(NIF,S,V), default(NIF,V), range(NIF,V).
ab2(NIF,S,V) :- holds(NIF,S,W), W!=V, range(NIF,V), range(NIF,W).

% Default values for inertial fluents (DV0)
holds(IF,s0,V) :- not ab3(IF,s0,V), default(IF,V), range(IF,V).
ab3(IF,s0,V) :- holds(IF,s0,W), W!=V, range(IF,V), range(IF,W).

% ’defined’ predicate
defined(F,S) :- holds(F,S,V), range(F,V).

Figure 16: Axioms of ESC for a single transition, from S0 to do(A,S0),represented in an
lparse/smodels program.
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% YALE SHOOTING SCENARIO -----------------------------
% We define sorts for fluent values.
% In this case, just Boolean fluents
boolean(true;false).

% We define the fluents
inertial(loaded).
range(loaded,Bool) :- boolean(Bool).
inertial(alive).
range(alive,Bool) :- boolean(Bool).

% We define the set of actions
action(load).
action(shoot).
action(wait).

% Executability axioms
imposs(load,S) :- holds(loaded,S,true).
imposs(shoot,S) :- holds(loaded,S,false).

% Effect axioms
holds(loaded,do(load,s0),true) :- not imposs(load,s0).
holds(alive,do(shoot,s0),false) :- not imposs(shoot,s0).
holds(loaded,do(shoot,s0),false) :- not imposs(shoot,s0).

% Initial state generation
1 { holds(F,s0,VAL) : range(F,VAL) } 1.

hide.
show holds(X1,X2,X3).

Figure 17: YALE represented in an lparse/smodels program.

C. A third puzzle: the Tricky Dick

The Tricky Dick c© is a puzzle designed by Richard Earson that was presented in
the International Puzzle Party, London 1999. The puzzle, shown in Figure 18, consists
of:

• two wooden cylinders of different length connected in their bottom by a tiny
piece of string,

• a pair of metallic rings of different diameter (the large one cannot pass through
the small one),

• a string loop linked to the top of the small cylinder and embracing the large
cylinder,
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Figure 18: The Tricky Dick puzzle.

• and finally, a string linked to the top of the large cylinder, crossing through the
small ring and linked to the large ring.

As in the other puzzles, the goal is removing the small ring, so it gets free from the
rest of the puzzle.

In order to formalise the puzzle we will make several simplifying assumptions. For
instance, although the cylinders can pass through the large ring, after playing a while
with the puzzle we may soon discover that the real role of this piece is to be a top for
the small ring. Thus, for the sake of simplicity, we will consider the large ring as a
regular object, ignoring its hole.

A second simplifying assumption is considering the two cylinders and the tiny
string that links them in their bottom as a single piece. In fact, the mobility of this
part of the puzzle is practically null and so, is equivalent to a single ‘U’-shaped wooden
piece.

Finally, the role of the string loop is quite different from the way in which we
handle the longest string. Since this loop is permanently fixed, it can be actually seen
as a (flexible) holed object18.

To sum up, the sorts for this scenario would correspond to:

Regular = {LargeRing},
Hole = {Ring, Loop}, and

Long = {Str, Post}. (39)

where Post represents the U-shaped object formed by the cylinders and the tiny string.
the initial state of the puzzle can be schematically represented by situation S0 in
Figure 19.

The domain dependent axioms would be:

Holds(linked(Str−, Post+), T rue, S0)∧Holds(linked(Str+, LargeRing), T rue, S0)

∧ Holds(linked(Post−, Loop), T rue, S0). (TD1)

CannotPass(LargeRing,Ring, ∅)∧
CannotPass(LargeRing, Loop, ∅) (TD2)

Holds(next(Str, 0), S0, 1) ∧ Holds(towards(Str, 0), S0, Ring
−)

∧ Holds(next(Str, 1), S0, End)

∧ Holds(next(Post, 0), S0, 1) ∧ Holds(towards(Post, 0), S0, Loop
+)

∧ Holds(next(Post, 1), S0, End) (RL3)

18In fact, this is directly related to one of the topics we are currently considering for imme-
diate future work: linking the two tips of a string or making a knot in it forms a string loop
that can be handled as a holed object (we can define two faces, pass objects through the loop,
etc).
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The solution is shown in Figures 19 and 20, that respectively contain the graphical
representation and the complete intermediate states (in terms of chain lists).

The real interesting feature of this puzzle is that state s5 is not actually feasible in
the real device due to rigidness of the post (i.e. the cylinders). The real puzzle solution
implies a combined movement: the right side of the ring is rotated pivoting on its left
side and simultaneously embracing Post+ and the Loop. However, the effects of this
combined movement exactly correspond to state s6 where we “virtually” decompose
this action into first passing the loop and Post−, and then passing Post+ in a second
step.

S0 s1 = do(pass({Ring}, Loop+), S0)

s2 = do(pass({Str−, P ost+}, Ring+), s1) s3 = do(pass({Ring}, Loop−), s2)

s4 = do(pass({Loop, P ost−}, Ring−), s3) s5 = do(pass({P ost+, Str−}, Ring−), s4)

s6 = do(pass({Ring}, Loop+), s5) s7 = do(pass({P ost+, Str−}, Ring−), s6)

Figure 19: Solution of Tricky Dick.
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