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ABSTRACT

This article presents modifications to an existing technique for camera orientation estimation intending to make

it faster for use in real time applications and also for analysis of large image sets. The technique is based on

likelihood maximization of a probability function that has the image gradient as the observed data and the camera

orientation as parameter values. The camera orientation is inferred from the vanishing points of the image, and

the directions of the edges in the environment are assumed to be in three mutually orthogonal directions. The first

proposed modification is to substitute the expression that is calculated at each pixel by a computationally lighter

approximation. The second proposal is to take in consideration only a few of the pixel lines and columns of the

image during the calculations, performing a grid windowing of the image. This article presents the derivation and

reinterpretation of the likelihood function approximation and also a performance evaluation.
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1. INTRODUCTION

Camera localization is the Computer Vision problem

of inferring the position and orientation of a camera

in an environment from one or more pictures captured

by it. Camera localization problems are defined by

their different restrictions, specially the available data

and what parameters are to be estimated. As usual

in Computer Vision, it is an ill-posed problem of

parameter estimation, and solutions are often based

on procedures such as non-linear regression [SW89]

and robust estimation [CKY09, HZ03]. One specific

case of the localization problem is to estimate just

the camera orientation from a single image under

the restriction known as “Manhattan World”, or also

“LEGO Land”, that the edges in the environment are

in the directions of the coordinate axes. This article

presents modifications to existing techniques [CY03,

DIM02, SD04, DEE08] that solve this problem

using the Likelihood Maximization principle, with a

probabilistic observation model where the observed

data is the image gradient, and the parameters to be

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

estimated define the camera orientation in the world

reference frame. Two modifications are proposed:

the substitution of the expression calculated at each

pixel by a simpler one, and the use of a grid mask to

select pixels. The alternative expression caused great

speed gains (60 fold in one test) while exhibiting good

convergence. The subsampling technique also caused

a 10 fold speed increase with just a 10% reduction of

convergence probability in another experiment.

The proposed simplified expression can be seen as

the result of a windowing operation by a mask that

is calculated from the image gradient norm using

a sigmoid function. While the original expression

is strictly probabilistic, the proposal is similar to

techniques such as Fuzzy Logic and Neural Networks.

In the remainder of this section the problem is

further described and previous techniques are briefly

reviewed. In Section 2 the existing techniques on

which this proposal is based are better explained, and

so is the developed technique. This section also brings

results of experiments conducted with a database of

images with solved orientation parameters to evaluate

the proposal. Section 3 brings a few conclusions.

1.1 Problem geometry
The aim of the proposed technique is to obtain an

estimate of the spatial orientation of a camera from

a single image captured by it. The camera follows the

simple pinhole model [TV98, chap. 2][HZ03, chap.



6]. In this model there is a camera reference frame

whose origin is the focal point of the camera, and

the image plane is located at z = f , where z is the

direction that points outwards from the camera and

into the scene. Image coordinates can be converted to

this camera reference frame by a linear transformation

involving the pixel size and the location of the

image origin. The color of pixels are determined

by the color of objects that are projected onto the

image plane according to the classic perspective

transformation [TV98]. The environment is assumed

to be composed of rectangular parallelepipeds of faces

with different colors and with edges aligned to the

coordinate axes of the world reference frame.

The projections of the edges of these objects

create edges on the captured images. These image

edges typically produce gradient vectors with high

magnitude that point to the direction orthogonal to the

edge. Image gradients are approximately calculated

by linear filters such as the one used in the well

known Sobel detector [TV98, chap. 4]. In the present

research the Scharr filter was employed [WS02]. The

perspective projection causes the well known effect

of producing vanishing points in the image. Lines

that point to the same direction in the environment

create either parallel lines in the image, or lines that

converge to a vanishing point. The spatial orientation

of the camera determines the position of the vanishing

points, and the orientation can be therefore estimated

from the directions of the image edges [HZ03, sec.

8.6]. This principle is the basis of many different

techniques to estimate camera orientation.

1.2 Existing techniques
Many of the existing techniques for vanishing point

or camera orientation estimation are either based

on the Hough Transform [Shu99, CJRZ10] or on

robust estimators [Tar09, Fö10] for matching edges

extracted from the image and perform the desired

estimation. Extracting edges and defining parameter

space accumulators can be a nuisance for some

applications, and this is one of the main reasons to

look for alternative techniques. It is usually hard

to extract edges with good precision, and also to

match the edges that refer to the same direction.

The technique presented in this article is part of a

family of techniques that avoid these problems by

using probabilistic models to infer camera orientation

directly from pixel values, exploiting the vanishing

point restriction.

The probabilistic model is used to perform

maximum likelihood (ML) estimation to determine

the camera orientation ~Ψ from a given input image.

The differences between these similar techniques

lie in the expression used for the calculation of

the image likelihood given ~Ψ and the pixel values,

more specifically the image gradient, and in the

optimization procedure employed to find the optimal
~Ψ∗ that maximizes the likelihood expression.

The directions of the environment edges must

be known in order to infer camera orientation

from vanishing points. In the present research the

orientations are assumed to be in the directions of

the coordinate axes, so the edge directions in camera

coordinates are easily calculated from the rotation

matrix that gives the camera orientation in relation

to the world reference frame. Other than camera

orientation, most of these techniques can be modified

for other tasks such as discovering vanishing points

in unknown directions and also estimating intrinsic

camera parameters such as the focal distance f .

2. METHODOLOGY
This section brings more detailed explanations about

how the existing and the proposed techniques work.

They are all procedures that create an estimate of a

camera orientation ~Ψ from a given input image. This

orientation is a rotation matrix in three dimensions,

and as such can be parameterized in different ways.

The most popular alternatives are Euler angles, the

Rodrigues formula, and quaternions, which are used

in this work. But this representation is not relevant

for the following subsections, where the reader can

just assume ~Ψ is given as a 3D rotation matrix.

The next subsection describes the original

probabilistic technique for estimating camera

orientation from image gradient [CY03] and some

modifications. The following subsection brings the

new proposals. These techniques are all based on

the Maximum Likelihood principle. They are more

specifically maximum a posteriori (MAP) estimators,

that can be seen as regularized ML estimators. These

methods need a function called observation model,

which is a conditional probability density function

(PDF) of observing a measured data set given certain

condition parameters. This function is used as a

likelihood function, where the observed data is

taken from the image gradient, and the conditional

parameters are the camera orientation (related to the

vanishing points locations), image coordinates of

each pixel, and a pixel class that will be explained

below. Once the expression is defined and the data

collected, an optimization technique is used to find

the parameters that maximize this MAP estimator.

The ~Ψ∗ found by this optimization is the desired

camera orientation estimate.

2.1 Original observation model
In the first observation model proposed related to our

technique [CY03] the likelihood of the whole image

is factored as the product of the likelihoods of the



gradients ~E~u at each pixel ~u. These individual PDF

are also further factored as products of the likelihoods

of the gradient norms E~u and edge angles φ~u yielding

P ( ~E~u|m~u, ~Ψ, ~u) = P (E~u|m~u)P (φ~u|m~u, ~Ψ, ~u).
(1)

The edge angle φ~u is orthogonal to the gradient

direction 6 ~E~u. The formula has two important

characteristics. The first is that the PDF of the

gradient norm E~u depends only on the pixel class

m~u. This class can be one of five possibilities: class 1
means the pixel is not an edge, classes 2–4 are edges

on each of the three coordinate axes of the world

reference frame and class 5 is a non-aligned edge.

The second characteristic is that the PDF of φ~u also

depends on m~u, but also on the camera orientation ~Ψ
and the coordinates of pixel ~u. Whenm~u = 1 or 5 we
assume all gradient directions are equally probable,

so P (φ~u|m~u, ~Ψ, ~u) becomes a uniform distribution

in these cases. For m~u = 2, 3 or 4 we calculate

the probability of the measured direction. For that

we first use ~Ψ to calculate ~rm = (rmx , rmy , rmz ), a
vector in the direction of the edges of the class m~u

in the camera reference frame. The location where a

line extended from ~rm crosses the image plane is the

vanishing point. The vector can also be parallel to the

plane, in which case there is no actual vanishing point

but it is still possible to calculate the directions of the

edges. The direction on each pixel is:

~θm~u =

(

rmx
rmz

f + ux,
rmy
rmz

f + uy

)

. (2)

One way to calculate P (φ~u|m~u, ~Ψ, ~u) used in

previous techniques is to determine the vanishing

point direction angle 6 ~θm~u , then subtract it from the

edge direction φ~u, and this difference is then used

as parameter to the PDF of the observation error in

the measured edge directions. This PDF has been

assumed in previous works to be uniform [CY03],

triangular [DIM02], Gaussian [SD04] and a

Generalized Laplace distribution [DEE08].

Two different PDF are used to implement

P (E~u|m~u). For m~u = 1, Poff (E~u) is used, and

Pon(E~u) is used otherwise. Different assumptions

have been made about these functions too. Both

measured values [CY03, DIM02] and Gaussian

models [SD04] have already been used.

As previously mentioned, the likelihood of the

complete image is a product of terms given by

Equation 1. This product can be used to define a ML

estimator, but what is usually done is to improve it

by using the information of a priori probabilities of

P (m~u), to define a MAP estimator. The logarithm

of the resulting expression is also taken to replace the

product by a summation, what does not change the

location of the maximal points. Considering all this,

and using Mk for P (m~u = k), Φk for P (φ~u|m~u =

k, ~Ψ, ~u) we arrive at the expression:

L
(

~Ψ
)

=
∑

~u

log

(

Poff (E~u)Φ
1M1 + Pon(E~u)Φ

5M5

+ Pon(E~u)
∑4

k=2 Φ
kMk

)

(3)

The camera orientation estimate is therefore the

rotation ~Ψ∗ that maximizes the function L. In the

original proposal the summation is performed over

all the image pixels [CY03], but just like with the

PDF definitions, other researchers have proposed

different ways to select subsets of the image pixels

over which the summation should be performed,

hoping to make the calculation faster and also smooth

the estimator function. One proposal is to divide

the image in square tiles, and sample a single

pixel randomly from each one, a different pixel at

each calculation [DIM02]. Another possibility is

to select only a few of the pixels with the largest

values of E~u [SD04]. The probabilistic modeling

of the pixel being or not on an edge can be even

dropped and substituted by the use of an edge-finding

algorithm [DEE08]. In this case the argument of the

log in Equation 3 becomes simply
∑5

k=2 Φ
kMk, but

this technique depends on an initial edge extraction,

that did not exist in the original proposal.

Other aspects where the techniques differ is

the application of the Expectation-Maximization

algorithm, where values for Mk are also

iteratively estimated [SD04, DEE08], and the

optimization algorithms used. Alternatives

range from coarse-to-fine search at regularly

sampled points [CY03], stochastic importance

sampling [DIM02], and continuous non-linear

optimization methods [SW89] such as

Levenberg-Marquardt [SD04] and BFGS [DEE08].

2.2 Function approximation
This subsection describes the first major modification

investigated in this research, which is substituting

the original arithmetical expression for the likelihood

function by a computationally simpler approximation.

The following subsection covers the use of a grid

mask to select the pixels to be considered in the

calculations.

Tests performed with an implementation of the

original likelihood expression (Equation 3) revealed

that much of the computation time was spent

on functions to compute the logarithm and the

arc-tangent used to calculate 6 ~θm~u . A removal

from the program of the procedure calls related to

these operations, while keeping all the rest of the



calculations, resulted in an approximately ten fold

speed gain, showing experimentally that avoiding

these operations can be a good strategy to reduce the

calculation time. Arc-tangent was the most costly

operation of the three, considering both the time of

a single calculation and the number of calls at each

calculation iteration in the summation loop.

The modifications begin by replacing the logarithm

with the first-order approximation

log(b+ a) ≈
a

b
+ log(b), (4)

where a represents the terms that depend on ~Ψ,

and b the terms that remain constant during the

optimization. The log(b) term can therefore be

ignored as it does not influence the solution, and the

resulting approximation becomes

∑

~u

W ′(E~u)
4

∑

k=2

ΦkM
k

Φ1
, (5)

where the mask generating function

W ′(E~u) =

(

Poff (E~u)

Pon(E~u)
M1 +M5

)−1

. (6)

The function W ′ produces, at least with the

appropriate parameters, a sigmoid curve, similar to

the logistic or to the hyperbolic tangent functions.

The second approximation used was to replace this

function by W , the logistic function applied to E~u

translated by p1 and scaled by p2

W (E~u) =
(

1 + e−p2(E~u−p1)
)−1

. (7)

Replacing W ′ for W at Equation 5 and ignoring the

constantMk/Φ1, that only scales the function, finally

produces the proposed estimator:

L̃
(

~Ψ
)

=
∑

~u

W (E~u)
4

∑

k=2

Φk, (8)

Figure 1 displays, at the top, the probability

models of the gradient magnitudes with measured

values, provided by the authors of [CY03], and also

the Gaussian models from [SD04] (mean 8.28 and

standard deviation 6.21 for Pon , and respectively 1.13

and 0.77 for Poff ). On the bottom of the figure, the

continuous and dashed curves are W ′ obtained from

the two PDF models mentioned, and the red dotted

curves are W with two different sets of parameters

(p1 = 10 p2 = 0.4 and p1 = 3.1 p2 = 3.0).
Figure 2 shows an image from the YorkUrbanDB

image database [DEE08]. This image set has

102 indoor and outdoor images of man-made

environments, and the orientation of each image was

Figure 1: Original gradient magnitude likelihood

functions, resulting mask generating functions and

examples of the proposed function.

obtained from edges and with a manual labeling

process. Intrinsic parameters of the camera are also

provided, enabling interested researchers to test their

techniques and compare to others. Possible radial

distortions of the images were not taken in account

in this work, but the projection center coordinates and

focal distance that are provided were used.

The leftmost graphic of the figure displays the

input image. The next one displays the values of W
calculated over each pixel, with white representing

the zero level, (p1 = 20 and p2 = 0.2 were used).

The two graphics to the right display the horizontal

and vertical components of the normalized direction

vector. The red color denotes negative values, but

even in a monochromatic mode it is possible to see

how edges in the direction of the derivative vanish on

each graphic. The edge mask obtained with W has

been applied to these gradient images, clearing out the

noise that would be otherwise noticeable in the large

white areas of these images.

In the program created to implement this expression

the edge mask is calculated and stored in memory

before the optimization procedure starts, so only

memory accesses are needed to obtain the values

during the calculations. Something similar can be

done with other techniques, because P (E~u|m) does
not depend on Ψ, only Φm does.

The last modification done to the likelihood

expression was to substitute the calculations of

arc-tangents by dot products. Instead of calculating

the angles of the gradient and vanishing point

directions, these vectors are simply normalized and

multiplied by each other. Because the gradient is

orthogonal to the edge direction, this multiplication



Figure 2: Gradient of an YorkUrbanDB image. The second image is the edge mask calculated from the gradient

vectors absolute values. The two rightmost graphics are the masked gradient x and y components.

yields γm = sin(φ~u − 6 ~θm~u ). This is a good

approximation of the identity function for small

values, so the product result can be directly used in

the angle error PDF. The function used was therefore:

Φm =

{

2
p3

(

1− |γm|
p3

)

if |γm| < p3

0 if |γm| ≥ p3
, (9)

where we note that the 2/p3 multiplication can be

dismissed without affecting the optimization results.

The normalization of ~E~u and 6 ~θm~u can be

performed quickly using a special rsqrt instruction

available in many modern processors that calculates

an approximation of the reciprocal of the square

root of numbers. This instruction was used in the

implementation tested, and so were SIMD (single

instruction, multiple data) instructions that allow

calculations to be performed simultaneously both for

the three vanishing points, and also for the three image

channels when possible. The three image channels

were independently considered in the calculations,

with just the pixel coordinates and ~θ~u in common. The

final likelihood value is therefore the summation of

likelihoods for each channel.

The program was implemented using

Cython [Sel09], with a few routines implemented

in C in order to make use of the special processor

instructions mentioned. Another implementation

was made based on [CY03], using arc-tangent

and logarithm calls inside the loop, but with some

similarities to the implementation of the proposal,

such as using SIMD instructions for some operations,

and caching constant values.

Tests were performed with the YorkUrbanDB

images at different values of Ψ to measure the

speed of the proposed function relative to this

implementation of the original. Speed gains

from 50 up to 64 times were found in one

computer (c1.xlarge instance from Amazon Web

Services [Ser]), where the mean time to calculate the

likelihood of one image using the classic function was

1.10 ± 0.06s versus 18.9 ± 2.4ms for the proposed

algorithm. Although these numbers naturally varied

according to the processor employed, accelerations of

more than 10 times were often detected in other tests.

The positive impact of these function modifications

on the calculation speed is not surprising. But the

impact of these modifications on the performance of

the optimization procedure must be now studied to

validate the proposed technique. This analysis will

be presented in Subsection 2.4. But it should be

noted that this proposed modification did not intend

to numerically approximate the original likelihood

function values. The original function serves more

as a theoretical foundation, and the modifications do

not seek to approximate it exactly, but only retain

characteristics such as the positions of the extremal

points and gradient directions.

When the logarithm of the likelihood is used

instead of the original function in an optimization, the

produced function does not approximate the original

numerically, but is still useful for the optimization.

So the performance of such modifications should

not be measured by looking at approximations

errors, but at the optimization results instead. In

the same way, because the modifications proposed

here include dropping some constant terms, the

resulting function cannot be compared to the original

function, so no error analysis was performed, only

performance analysis of the optimization procedure.

Despite of that, the modifications are in fact initially

based on first-order approximations of the original

function, justifying the use of the term approximation,

even though the final proposed function does not

approximate the original one numerically.

The proposed function also differs from the original

in that the parameters of the mask generating function

are only indirectly related to the gradient norm

probabilities. While it is possible to fit the parameters

to a mask function taken from histograms, it is better

to look for parameters that maximize the performance

of the final optimization procedure. The sensitivity of

the performance to these parameters, and also to the

gradient norm probabilities is a topic that the proposed

modifications bring up, but was not studied here.



Figure 3: Two example grids with spacing equal to 16

and 128 over the norm of the gradient of an example

image.

2.3 Grid mask
A sampling strategy was introduced to reduce the

number of pixels used in the calculations, and also

try to make the estimator smoother. The strategy is

to select only a few of the pixel lines and columns of

the image. These were selected at regular intervals,

with the spacing controlled by the parameter g. The

result is the same of applying a mask to the image

with the shape of a square grid, with a continuous line

or column at every g pixels, starting from the image

origin. When g = 1 all pixels are used. When g = 2,
3/4 of the pixels are used, and 7/16 when g = 4.

The grid masking is proposed here as a theoretically

more suited way to subsample images when edges

are the target features. Other subsampling techniques

simply regard edges as a kind of pixel, and not

as a geometric entity without area. Some authors

quote statistics such as “10% of the image pixels

are edges”, but such statements miss some important

points about image edges. The number of pixels of

an image increases with the square of resolution, but

the number of pixels that lie over and edge should

increase linearly. New edges may be introduced

as resolution increases, affecting positively this

proportion of edge pixels to image size, but the

relative number of pixels of an existing edge still

decreases linearly with resolution, and subsampling

strategies should take this effect in consideration.

As image resolution increases the number of edge

pixels found over a grid line or column should remain

constant, while non-edge pixels increase linearly

with resolution — assuming that no new edges are

introduced, and that edge directions are not exactly

aligned to the grid. One interesting characteristic of

grid masking is that if the edges have a minimum

length, the grid spacing can be made small enough

as to guarantee that a minimum number of points over

any edge in the images is sampled. Grid masking also

avoids sampling groups of neighboring pixels, what

is generally thought to be good because pixels are

assumed to be independent in the probabilistic model.

Figure 3 shows the grid lines and columns overlaid to

the gradient of the three channels of an image from the

YorkUrbanDB database. The top graphic has the grid

spacing parameter g = 16, and the lower g = 128.

Figure 4: Successful and failed optimizations.

2.4 Optimization

With the likelihood function and sub-sampling

technique defined, an optimization technique can

now be used to produce orientation estimates from

input images. The algorithm used was the modified

Powell’s method from SciPy [JOP+ ]. Figure 4

displays a successful optimization, obtained with g =
200, and a failed one with g = 400. This is

an 800x600 pixels image captured with a consumer

digital camera. Line segments in the directions of

the three vanishing points obtained form the solution

were plotted in regularly spaced points over the

images, and it is possible to see how the edges are

aligned to the objects in the environment. In the

failed optimization the solution found was not much

far from the initial condition, which was no rotation.

The parameterization used for the rotations was

quaternions. The vector ~Ψ has three dimensions,

and are the three quaternion parameters that are

directly related to the direction of the rotation axis.

The fourth parameter, related to the rotation angle,

is calculated as

√

1− ||~Ψ||2. If ||~Ψ|| > 1 no

quaternion can be directly produced. In this case

the quaternion is obtained from −~Ψ/||~Ψ||. It should

be noted that no symmetries were taken in account

in this parameterization, so multiple ~Ψ values are

equally acceptable solutions, and can be obtained

from each other by 90 degrees rotations around the

axes. The problem of associating the axes properly,

when possible, was not considered in this research.

As in previous works, optimization is initiated from

different starting points [DEE08], although only two

were used in the present experiments. One point

considers no rotation, and the other a 45 degrees

rotation around the vertical axis. This explores

the tendency of the camera to be upright, and the

ambiguity resulting from 90 degree turns. After the

two optimizations are performed, the solution with the

highest likelihood is picked as the best estimate.

Figure 5 shows an evaluation of this optimization

for different grid spacings g. The parameters used for

L̃ in this experiment were p1 = 20, p2 = 0.2 and

p3 = 0.1. There is a compromise between calculation

speed and the quality of the solutions obtained.

The decreasing green curves show the probability p,
estimated from the N=102 images, of the obtained



Figure 5: Speed of the calculations as a function of

the grid spacing, and two quality evaluations.

solution lying at 10◦ or 5◦ of the orientation provided
in the database [DEE08]. The 10◦ curve is naturally

above the 5◦ one. The uncertainty interval plotted is a
single standard deviation above and below the points,

calculated as
√

p(1− p)/N .

The speed estimate is the number of times L̃
can be calculated per second as a function of g.
To calculate this, the elapsed time and number of

function calculations performed were first stored for

both optimization runs of all test images. The speed

was then estimated for each optimization run by

dividing the number of calculations by the elapsed

time. The mean number of iterations was 276 for

all optimization trials with all g values, with a 89.3
standard deviation. The increasing blue continuous

line in the graphic is the mean and 6σ interval of

this speed for all optimizations performed for each g.
It should be noted this experiment was performed in

a slower machine compared to the one used for the

measurement reported in Subsection 2.2.

The increasing black dashed line in Figure 5 shows

how speed should increase if it depended only on the

reduction of the number of pixels, where speed gain

should be g2/(2g − 1) . The smaller speed values

that were measured are coherent with the addition of

a constant time to the calculation time, the reciprocal

of the speed value.

This analysis only considers the individual

performance of the proposed target function and

the effects of the grid sampling. Another test was

performed in order to validate the proposed function.

The objective was to find out if the modifications

were causing the extremal points to be located in

positions further from the true solutions than the

points produced by the original function.

To perform this test the solution found with

the proposed method was used as initial estimate

for a second optimization on the original function.

The error of the first and the second optimizations

compared to the estimate in the database were then

analyzed. The modifications would be considered

destructive if the errors in the first optimization were

higher than the errors from the second, i.e. the second

optimization would “fix” the first one. On the other

hand, if the modifications are acceptable the second

optimization should not improve the solutions much.

The result was that from the 102 YorkUrbanDB

images 53 had their errors reduced after the second

optimization. From these, 5 were improvements from

more to less than 10◦ away from the correct solution.

On the other hand, from the 49 cases where the second
optimization ended with a larger error, there were 6
cases where the initial solution was below 10◦ but

the second was beyond. So there is no indication

that using the original expression can be critical to

improve the performance obtained with the proposed

function, at least with the optimization algorithm that

was used and with no subsampling performed.

3. CONCLUSION

This article demonstrated modifications made to

existing techniques for camera orientation estimation

to attain higher calculation speed. The techniques

are based on the optimization of a MAP estimator

that has the image gradient values as observed data,

and the camera orientation as estimated parameter.

It works by finding the orientation that causes the

best alignment of the image gradient to the vanishing

points created by the directions of the three mutually

orthogonal axes of the world reference frame.

The original expression to calculate the likelihood

was modified by an approximation that avoids the

calculation of arc-tangents by using dot products,

and also replaces the logarithm of a summation

at the expression for each pixel by a summation

where all the terms are strictly dependent on the

gradient directions and camera orientation. These

pixel summations are weighed in the total image

summation by a coefficient calculated by applying a

sigmoid function to the gradient norms.

This coefficient takes the role performed originally

by the likelihoods Pon and Poff , and also the a priori

probabilitiesM1 andM5. The need to measure these

parameters is replaced by having to choose just p1
and p2. The third parameter p3 shapes the likelihood

of gradient directions. More tests still have to be

conducted to determine the best parameters, but the

technique seems to be robust to variations on them.

Outside of these parameters, the other parameters that



must be set in order to use the technique are the ones

related to the optimization.

A grid masking technique was also proposed to

select a subset of the image pixels to take in

consideration in the calculations. It was inspired in

the usual curve tracking technique of searching for

edges over spaced lines normal to an initial estimate

of the curve location[BI98, chap.5 ], and also on

the Canny edge extractor [TV98]. It subsamples the

image in a deterministic and more reliable way, and

has been proven effective.

Some planned extensions to this research are to

better choose the function parameter values and turn

the grid masking into a search of maximal points of

the derivative in the direction of the line or column.

The gradient calculations can also be restricted to

the grid vicinity to speed up calculations. Other

subsampling techniques can also be applied together

with a grid mask. For example, random sampling

could be performed only within the mask pixels,

or a random sampling could be performed in the

whole image initially, but instead of picking just a

single pixel from each trial, picking a whole group of

pixels inside a cross or square mask centered at each

generated pixel.

This fast orientation estimation algorithm is

planned to be used in real time to track the orientation

of a camera with a Kalman filter or a similar

technique. An attempt will be made to reuse the

data remaining from the grid masking to also extract

edges. The resulting edge observations will be fed to

a monocular simultaneous localization and mapping

(SLAM) system [NDL08] that exploits the restrictions

on the edge directions.
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