
Simultaneous Abstract and Concrete Reinforcement Learning 1

Author(s):
Tiago Matos

Yannick P. Bergamo

Valdinei F. da Silva

Fabio G. Cozman

Anna H. Reali Costa

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.



Simultaneous Abstract and Concrete Reinforcement Learning

Tiago Matos and Yannick P. Bergamo and Valdinei F. da Silva and
Fabio G. Cozman and Anna H. Reali Costa

Escola Politécnica, Universidade de São Paulo
São Paulo, SP, Brazil

{tiago.matos, yannick}@usp.br, valdinei.freire@gmail.com,
fgcozman@usp.br, anna.reali@poli.usp.br

Abstract

Suppose an agent builds a policy that satisfactorily
solves a decision problem; suppose further that some
aspects of this policy are abstracted and used as start-
ing point in a new, different decision problem. How
can the agent accrue the benefits of the abstract pol-
icy in the new concrete problem? In this paper we pro-
pose a framework for simultaneous reinforcement learn-
ing, where the abstract policy helps start up the pol-
icy for the concrete problem, and both policies are re-
fined through exploration. We report experiments that
demonstrate that our framework is effective in speeding
up policy construction for practical problems.

1 Introduction

In this paper we consider the following general question. An
agent builds a policy that solves a particular decision prob-
lem, say a policy that takes a robot from one point to a goal.
The agent now faces a similar problem: perhaps the robot is
in an adjacent building; or perhaps an online trader is fac-
ing a crisis that reminds her of last year’s crisis. The agent
wishes to abstract the policy produced for the first problem
so as to have a reasonable initial policy, possibly to be re-
fined, for the second problem. In this paper we consider ab-
stract policies that are encoded through relational represen-
tations: the concrete policy for the first problem is analyzed
and logical variables replace constants of the first problem.
The abstract policy must then be applied to the second prob-
lem. Our question is, How best to do that?

No matter how smart we may be in constructing the ab-
stract policy from the first problem’s concrete policy, a direct
application of the abstract policy in the second problem will
certainly generate sub-optimal behavior. Because we have
no guarantees as to the performance of the abstract policy,
we should refine the second problem’s concrete policy. The
obvious technique to use is reinforcement learning, where
the agent refines the policy by exploration of the task. We
can go a step further, recognizing that the abstract policy can
itself be quickly tuned through exploration, so as to max-
imize benefits from abstraction. The challenge is to create
a framework that both guarantees convergence to optimality

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and uses as much prior knowledge and experiments as possi-
ble. In this paper we propose a framework for simultaneous
reinforcement learning of the abstract and the concrete poli-
cies that does just that.

In doing so, we bypass some of the difficulties of rein-
forcement learning, namely the slow convergence to optimal
policy and the inability to reuse previously acquired knowl-
edge. The prior knowledge for the second problem is exactly
the abstract policy. We explore the intuition that generaliza-
tion from closely related, but solved, problems can produce
policies that make good decisions in many states of a new
unsolved problem. At the same time, we avoid the possible
bad performance of a known policy in a new problem, by
applying reinforcement learning as much as possible.

Our experiments show that such a framework produces
excellent results. An abstract policy can offer effective guid-
ance and benefit from exploration; moreover, learning in the
abstract level converges faster than in the concrete level.

The paper is organized as follows. Section 2 reviews basic
concepts of Markov decision processes and reinforcement
learning, including Relationally Factored MDP, the basis for
the concepts of abstract states and abstract actions. Section 3
discusses abstract policies, how to induce and use them. Sec-
tion 4 presents our proposals for knowledge transfer from a
source concrete problem to a target one, and for learning
simultaneously in abstract and concrete levels. Section 5 re-
ports experiments that validate our proposals, and Section 6
summarizes our conclusions.

2 Markov Decision Processes and

Reinforcement Learning

We assume that our decision problems can be modeled as
Markov Decision Processes (MDPs) (Puterman 1994). At
each (discrete) time step an agent observes the state of the
system, chooses an action and moves to another state. For
our purposes an MDP is a tuple 〈S,A, T, r〉, where:

• S is a discrete set of states;

• A =
⋃

σ∈S
Aσ is a discrete set of actions, where Aσ is

the set of allowable actions in state σ ∈ S;

• T : S × A × S 7→ [0, 1] is a transition function such that
T (σ, α, σ′) = P(st+1 = σ′|st = σ, at = α);



1 2

3

4

5 6

Figure 1: An example environment with 6 states.

• r : S×A×S 7→ R is a reward function, such that rt+1 =
r(σ, α, σ′) is the reward received when reaching state σ′

at t+ 1 having previously chosen action α at state σ.

The task of the agent is to find a policy. A general policy
π is a function from S into the power set of A that maps
a state into a set of actions: π : S 7→ 2A. If a policy
maps each state into a singleton (that is, into a single ac-
tion), we say the policy is deterministic. If a policy maps
some states into sets of actions containing more than one
action, we say the policy is nondeterministic. An optimal
deterministic policy π∗ (or, more compactly, an optimal pol-
icy) is a deterministic policy that maximizes some function
Rt of the future rewards rt+1, rt+2, . . . A common defini-
tion, which we use, is to consider the sum of discounted
rewards Rt =

∑∞

k=0
γkrt+k+1, where 0 < γ < 1 is the

discount factor.
We are particularly interested in a subclass of MDPs that

are episodic: there is a set G of goal states, and when the goal
is reached the problem is restarted in some initial state cho-
sen according to a probability distribution. We also define
(do Lago Pereira, de Barros, and Cozman 2008) a proba-
bilistic planning domain to be the tuple D = 〈S,A, T 〉, and
a probabilistic planning problem as the tuple P = 〈D,G〉.

Consider the environment depicted in Figure 1. Each ge-
ometric shape is a location that the agent can occupy, and
if two locations are connected by an edge it means that the
agent can reach one coming from the other. The state of the
environment is represented by the location of the agent. De-
fine S = {σ1, . . . , σ6}, where for instance σ2 represents
the configuration in which the agent is on the triangle with

the number 2. The set of actions is A =
⋃6

i=1
Aσi

=⋃6

i=1
{αij , j ∈ {1, . . . , 6}}, where for instance α12 means

that the agent chooses to go to the triangle 2 when on state
σ1. Note that the agent can stay in the state; such an ac-
tion is denoted by αii. Assume for simplicity that the en-
vironment is deterministic, then T (σi, a, σj) is equal to 1
if a = αij and zero otherwise. Our planning domain D is
fully specified. Now suppose that we would like to learn how
to reach state σ6. We could define r(s, a, s′) to be equal to
0 if s = s′ = σ6 and −1 otherwise; with the reward so
defined, the agent maximizes Rt if she reaches σ6 in the
smallest number of steps and stays there afterwards. Thus
the reward function implicitly defines G = {σ6}, and our
planning problem P is also specified. Because σ2 contains
two actions that are optimal, there are several possibilities
for the optimal policy. We have for example π∗(σ2) = α23

or π∗(σ2) = α24. We can encode this into a nondetermin-

istic policy as π∗(σ2) = {α23, α24}. To determine a partic-
ular action out of this nondeterministic policy, we can ran-
domize; for instance, we might select either α23 or α24 each
with probability 1/2.

Given an MDP, there exists a deterministic policy that
maximizes discounted rewards (Puterman 1994); there are
several methods for finding such a policy. When T is not
given, one may resort to Reinforcement Learning (RL) (Sut-
ton and Barto 1998). Within this framework it is common
to define a state action value function Qπ : S × A 7→ R

that for a given policy π gives an estimate of the expected
value Eπ[Rt|st = σ, at = α]. This function is learned by di-
rect interaction with the environment: at each time step the
agent performs an action, she observes the outcome and uses
some strategy to update the estimate of the Q function. With
a good estimate of the Q function, the agent can maximize
Rt by choosing at = arg maxα Q(σ, α).

Back to the example of Figure 1 and with P defined
as before, and assuming the discounted reward model, we

can easily see that for example Qπ∗

(σ4, α45) = −1 − γ
and Qπ∗

(σ4, α43) = −1 − γ − γ2. Note that α43 is not

an optimal action; this is not a problem since Qπ∗

tells us
the value of Rt that we expect to obtain by choosing the
action in the argument and then by following the optimal
policy. As an illustration of the challenges we face when
the goal is changed, suppose that now we want to reach
state σ1. The symmetry of the figure makes it clear that
the problem is very similar to the one we solved before,
but the reward function has now changed to r(s, a, s′) = 0
if s = s′ = σ2 and r(s, a, s′) = −1 otherwise. We

need to learn the Qπ∗

from scratch since now for example

Qπ∗

(σ4, α45) = −1− γ − γ2 − γ3.

At any given time, the agent must choose between ex-
ploring the environment, in order to improve its estimate of
Q, or exploiting her current knowledge to maximize his re-
ward. A difficulty of this whole enterprise is that if the goal,
specified through the reward function, is changed, the agent
must learn everything from scratch. Indeed, reinforcement
learning suffers from slow convergence to optimal policy,
and inability to reuse previously acquired knowledge. Two
directions can be taken in order to accelerate policy learn-
ing: i) choosing wisely which actions to be explored first and
ii) sharing experiences among states through abstraction. In
both case, either a priori domain knowledge must be intro-
duced or knowledge must be reused from previously solved
tasks in similar domains.

Some proposals use of heuristic functions to select ac-
tions so as to guide the exploration process (Burkov and
Chaib-draa 2007; Bianchi, Ribeiro, and Costa 2008; Knox
and Stone 2010). Because it is possible that the heuris-
tic function does not work well, some random exploration
must also be done in order to guarantee convergence. Then,
even if an unfit heuristic function is chosen, the optimal pol-
icy can still be learned. Other proposals have similar states
(with respect to transition function, reward function, Q-value
functions, optimal policies) share experiences (Li, Walsh,
and Littman 2006). An interesting way to reuse knowledge
of previously solved tasks in the same domain is to em-



ploy temporal hierarchies (Barto and Mahadevan 2003). In
that approach, a task is divided into subtasks from which
optimal policies can be learned independently; the task is
solved by appropriately compounding subtasks. When a
subtask is learned, it can be transferred easily inter and intra-
task with the use of abstraction (Uther and Veloso 2002;
Drummond 2002).

There is also work towards representing abstract states
and actions in a relational form, an effort that is closely re-
lated to our concerns in this paper. Relational representations
facilitate formulating broad collections of related tasks as a
single domain, yielding natural abstraction between these re-
lated tasks. Taylor and Stone (2009) provide a thorough sur-
vey on the transfer of learning using propositional descrip-
tions of the states. In the domain of robotic navigation, Co-
cora et al (2006) propose to learn relational decision trees as
abstract navigation strategies from example paths, and then
the navigation policy learned in one environment is directly
applied to unknown environments. Based on samples expe-
rienced by the agent when acting optimally in a given deci-
sion problem, Madden and Howley (2004) show how propo-
sitional symbolic learners can generalize the optimal policy
for other problems. In Sherstov and Stone (2005) action rel-
evance is used in order to reduce the action set to be explored
in the target problem.

Our main interest is to abstract details of a previously
constructed policy, and to use this abstract policy in a new
problem. The abstract policy is here expressed in a relational
language. Hence we need a few definitions from first order
logic. For a more formal treatment we refer to Lloyd (1987).

A relational alphabet Σ = P ∪ C is composed of a set
of predicates P and a set of constants C. If t1, . . . ,tn are
terms, i.e. each one is a variable or a constant, and if p/n
is a predicate symbol with arity n ≥ 0, then p(t1 . . .tn)
is an atom. A conjunction is a set of atoms; in our discus-
sion each variable in a conjunction will be implicitly as-
sumed to be existentially quantified. We denote by vars(A)
the set of variables of a conjunction A. Background Knowl-
edge BK is a set of Horn Clauses. A substitution θ is a set
{X1/t1, . . . ,Xn/tn}, binding each variable Xi to a term ti;
it can be applied to a term, atom or conjunction. If A and
B are conjunctions and there is a substitution θ such that
Bθ ⊆ A, we say that A is θ-subsumed by B, denoted by
A �θ B. A term is called ground if it contains no variables;
in a similar way we define ground atoms and ground con-
junctions. The Herbrand base BΣ is the set of all possible
ground atoms that can be formed with the predicates and
constants in Σ.

A relationally factored Markov Decision Process (RMDP)
(van Otterlo 2004) is a tuple 〈Σ, BK, T, r〉, where Σ = D∪
P ∪A, is a relational alphabet such that:

• D is a set of constants representing the objects of the en-
vironment;

• P is a set of predicates used to describe relations and
properties among objects;

• A is a set of action predicates.

The set of states S of the RMDP is the set of all σ ⊆ BP∪D

satisfying the integrity constraints imposed by BK. The set

of actions is A = BA∪D. With S and A defined, T and r
have the same meaning as described for MDPs.

From the definition we can see that an RMDP is an MDP
where the states and the actions are represented (in fac-
tored form) through a relational language. All definitions for
MDPs are still valid here, and so are the methods of solution.

Consider again Figure 1, but now using an RMDP
model. There are many ways we can choose Σ; as
an example, D = {c1, t2, s3, s4, t5, c6};
P = {in/1, circle/1, square/1, triangle/1,
connected/2}; A = {goto/2, stay/1}. For in-
stance, if the agent is occupying location 1 in the map
(represented as object c1), we can describe the state
of the environment as σ1 = {in(c1), circle(c1),
connected(c1,t2), triangle(t2)}. If the agent
makes a choice to go from location c1 to location t2, we
write this by goto(c1,t2).

We note that OO-MDPs (Diuk, Cohen, and Littman 2008)
offer a similar formalism for relational representation of
MDPs. The difference between these formalisms lies in the
transition dynamics of the environment and in the attributes
representing states. In OO-MDPs, only information that can
be perceived by the agent is used; in RMDPs, predicates de-
fined by a designer is used instead.

3 Abstracting Policies
A relational representation for MDPs can be used to encode
aggregate states and actions. We start by defining a few use-
ful concepts:

• An abstract state σ̂ ∈ Ŝ is a conjunction over P , D and

BK; an abstract action α̂ ∈ Â is an atom over A and D.

• Denote by Sσ̂ the set of ground states covered by σ̂, i.e.,
Sσ̂ = {σ ∈ S|σ �θ σ̂}.

• Similarly define Aα̂ = {α ∈ A|α �θ α̂}.

Regarding our running example, take two abstract states
as follows. First, σ̂1 = {in(X),connected(X,Y),
circle(Y)} represents all states in which the agent is in a
location connected to a circle, i.e. Sσ̂1

= {σ2, σ5}. Second,
σ̂2 = {in(X),circle(X)}, represents all states in which
the agent is in a location that is a circle, i.e. Sσ̂2

= {σ1, σ6}.
In σ̂1 the agent can contemplate the action goto(X,Y),

and in σ̂2 he can decide to stay on that set by taking action
stay(X).

We can now define an abstract policy (van Otterlo 2004)
as a list of abstract action rules of the form σ̂ → {α̂i}i for

σ̂ ∈ Ŝ , α̂i ∈ Â; that is, rules that map an abstract state into
a set of abstract actions.

Consider the RMDP for the example in Figure 1; an ab-
stract policy could be:

(1) in(X),circle(X) → stay(X)

(2) in(X),connected(X,Y),circle(Y) →

goto(X,Y)

(3) in(X),connected(X,Y),triangle(Y) →

goto(X,Y)

Note that order is important, as rule (1) applied to state σ1

would suggest action α11, while rule (3) would suggest α12.



3.1 Abstract policy from a given concrete policy

If we are given an RMDP, we can obtain an optimal abstract
policy through symbolic dynamic programming (van Otterlo
2004; Kersting, Otterlo, and Raedt 2004). In this paper we
“learn” an abstract policy by inducing a logical decision tree
(Blockeel and De Raedt 1998) from examples generated by
the previously produced concrete policy. The set of abstract
states is read off of this logical decision tree, as the union of
all conjunctions in a path from the root to a leaf, and the set
of abstract actions is the set of all abstract actions contained
in the leaves. The idea here is to learn an abstract policy
from a problem and then to use it as a starting point in a
new, different problem.

Take a set of examples E, where an example consists of
a state-action pair taken from a previously constructed pol-
icy. We use a variant of the TILDE (Blockeel and De Raedt
1998) algorithm to induce an abstract policy from E.

(ND-)TILDE is an inductive algorithm that produces an
abstraction of the given concrete policy, and represents
the abstract policy by a first order logical decision tree
(FOLDT) (Blockeel and De Raedt 1998). FOLDT is an
adaptation of a decision tree for first order logic, where the
tests in the nodes are conjunctions of first order literals. The
ND-TILDE algorithm is shown in Algorithm 1. ND-TILDE
creates a FOLDT based on the set of training examples E.
The tests candidates are created (step 2 of the algorithm)
from a set of refinement operators (Blockeel and De Raedt
1998) that are previously defined by an expert. Each refine-
ment operator generates a set of first order literals as can-
didate tests for division of the set of examples E. The best
test to divide the set E is the test that reduces the entropy.
The optimal test is chosen (step 3) using the default gain ra-
tio (Quinlan 1993). If the partition induced on E indicates
that the division should stop (procedure STOP CRIT in step
5), a leaf is created. The tree leaves created (step 6) con-
tain atomic sentences that represent abstract actions. If more
than one atomic sentence represent the remaining examples
in E, TILDE chooses the atomic sentence that represents
the largest number of examples, while ND-TILDE gener-
ates nondeterministic policies; that is, ND-TILDE associates
with a tree leaf the set of all abstract actions indicated by the
examples in E for the abstract state corresponding to the re-
spective leaf. If the partition induced on E does not indicate
that the division process should stop, for each one of the
partitions induced (step 8) the function ND-TILDE is recur-
sively called (step 9). An internal node is created using the
optimal test τ as test, and the two children are the sub-trees
induced by each call of ND-TILDE (step 9).

3.2 Case study: Abstract policies in a robotic
navigation problem

We now introduce our main testbed, to be further explored
in our experiments (Section 5). Consider a concrete robotic
navigation problem, where the environment is shown in Fig-
ure 2.

Suppose first the concrete specification of the problem
employs grounded predicates from the following vocabu-
lary: P = {isCorridor/1, isRoom/1, isCenter/1,

Algorithm 1 Algorithm ND-TILDE.

1: function ND-TILDE (E: set of examples): returns a de-
cision tree

2: T = GENERATE TESTS FOL(E)
3: τ = OPTIMAL SPLIT FOL(T,E)
4: ǫ = partition induced on E by τ
5: if STOP CRIT(E,ǫ) then
6: return leaf(INFO FOL(E))
7: else
8: for all Ej in ǫ do
9: tj = ND-TILDE(Ej)

10: end for
11: return inode(τ, (j, tj))
12: end if
13: end function

isNearDoor/1, in/1, isConnected/2} and
A = {gotoRDRD/2, gotoCDCD/2, gotoCCCC/2,
gotoRCRD/2, gotoRDRC/2, gotoRDCD/2,
gotoCDRD/2, gotoCCCD/2, gotoCDCC/2}. The
meaning of each predicate should be clear; for instance,
if the agent is occupying location 1 in the map (rep-
resented as object l1), we can describe the state as
σl1 = {in(l1), isCorridor(l1), isCenter(l1),
isConnected(l1,l5), isCorridor(l5),
isNearDoor(l5) }. If the agent makes a choice
to go from location l1 that is isCorridor(l1)

and isCenter(l1), to location l5 that is
isCorridor(l5) and isNearDoor(l5), we write
this action by gotoCCCD(l1,l5). The abbreviations RC,
CD indicate respectively (isRoom/1,isCenter/1),
(isCorridor/1,isNearDoor/1), and so
on. The precondition of gotoXXYY(Li,Lj) is
(in(Li) ∧ isConnected(Li,Lj)) and both lo-
cations Li and Lj attend the required conditions XX and
YY.

Suppose the goal is l2; that is, the reward function indi-
cates that reaching l2 from any possible initial position is
the only valuable purpose for the agent.

Suppose also that we take this concrete MDP and we find
the optimal policy for it. We now run ND-TILDE from ex-
amples generated by the optimal policy (that is, the opti-
mal policy for navigation from any location to l2). Figure 3
shows the abstract policy induced using ND-TILDE from
examples generated by the optimal policy for the robot nav-
igating from any location Li to l2 in the environment in
Figure 2.

3.3 Grounding abstract policies

An abstract policy π̂a can induce a policy πa in a given con-
crete MDP. We propose to do so as follows. Given a state σ,
we find the first1 σ̂ such that σ �θ σ̂. We then have a set
of abstract actions α̂i. Note that an abstract action may be

1Note that the abstract policy was defined as a list of action
rules, i.e. order matters. In the case of a tree this mapping is also
unambiguous.



l1

l2

l3

l4

l5

l7

l8
l15

l18

Figure 2: Relational representation for the problem used
to induce the abstract policy. Squares denote centers of
rooms, e. g. (isRoom(l2) ∧ isCenter(l2)), tri-
angles denote doors in rooms, e. g. (isRoom(l3) ∧
isNearDoor(l3)), circles denote doors in corridors,
e. g. (isCorridor(l5) ∧ isNearDoor(l5)), and
black pentagons denote centers of corridors, e. g.
(isCorridor(l1) ∧ isCenter(l1)).

Figure 3: Abstract policy induced by the ND-TILDE algo-
rithm for the navigation problem in the environment de-
picted in Figure 2; goal is to reach l2 from any location.
The conjunction of predicates in a path from the root to
the leaf defines an abstract state. Here con/2 stands for
isConnected/2. Tree leaves define abstract actions.

mapped into a set of concrete actions for the underlying con-
crete decision problem. Therefore, we have a policy where a
state is mapped into a set of actions. To produce a particular
concrete sequence of actions, we select randomly (with uni-
form probability) an abstract action from the set of possible
abstract actions, and again we select randomly (with uni-
form probability) a concrete action from the set of concrete
actions associated with the selected abstract action. Obvi-
ously, other schemes may be used to produce a sequence of
concrete actions.

It is important to note that, depending on how the abstract
policy was obtained, there might be no σ̂ in the list for a
given σ. In this case we could select randomly from Aσ .

As an example, consider again the robot navigation prob-
lem described in Section 3.2 and the corresponding abstract
policy π̂a (shown in Figure 3) for the goal of reaching l2. If
the robot were in state σl1 (see Section 3.2) and we applied
the abstract policy of Figure 3, we would have:

• θ = {A/l1,B/l5}, and (in(l1),
isConnected(l1,l5), isCenter(l5),
isCorridor(l5)) is FALSE.

• θ = {C/l5}, and (isNearDoor(l5),
isCorridor(l5)) is TRUE.

• θ = {A/l1}, and (isCenter(l1),
isCorridor(l1)) is TRUE.

• π̂a = {gotoCCCD(A,C)}, and α̂ =
gotoCCCD(A,C) = {gotoCCCD(l1,l5)}, re-
sulting in the indication of α = gotoCCCD(l1,l5) to
be applied in σl1.

We now explain how the abstract policy can be combined
with a learning algorithm to speed up the learning process.

4 Simultaneous Reinforcement Learning

Recall that we have a given concrete decision problem, that
we henceforth refer to as the source problem, for which we
have a policy, and we have generated an abstract policy from
the latter. We now have another decision problem, the target
problem, for which we can instantiate the abstract policy.
The hope is that by using the abstract policy, we obtain a
reasonable policy for the target problem. However, we have
no guarantees. Therefore we must refine this initial policy
through exploration: we must apply reinforcement learning
to the concrete target problem. From the point of view of
reinforcement learning, the appeal of this scheme is that we
are speeding up convergence, as the abstract policy provides
a sensible start for the process. Later we report on experi-
ments that do show this to happen in practice.

However, just applying reinforcement learning to the con-
crete target level is not the best possible use of the available
exploration data. One of the challenges of the abstraction
process is to capture whatever is “useful” from the source
problem; surely the target problem may be such that rec-
ommendations by the abstract policy are incorrect for some
particular states.

The idea then is to use reinforcement learning to refine the
abstract policy as well. Because the abstract policy is sim-
pler (less states, less actions) than the concrete target policy,
convergence to optimality can be expected to be faster in
the abstract level than in the concrete level. We should thus
have a framework where the abstract level gives an initial
policy to the concrete level; then the abstract level is quickly
refined, and continues to provide guidance to the concrete
level; and then the concrete level is finely tuned to the target
problem, finally leaving the guidance of the abstract level.
The challenge is to create a framework where this process is
guaranteed to reach optimality in the concrete target prob-
lem. We do this in this section.

Hence the abstract level works as the generous mother
who, having learned a few lessons with the first baby, now
applies her knowledge to the second baby to the extent that
it is possible, quickly learning from her new mistakes, until
this second baby grows to optimality and leaves the nest.

We now turn these intuitions into reality, and in the next
section we show that the framework works in practice.



We start with some additional notation. Because we are
dealing with planning problems, we can consider that each
task is represented by a tuple 〈σ0, σg〉, where σ0 ∈ S and
σg ∈ G. Define

T (π, 〈σ0, σg〉) = {s1s2 . . . sn for some n|

s1 = σ0, sn = σg,

T (si, ai, si+1) 6= 0 for some ai
such that π(si) 6= ∅},

the set of all possible transition histories that start on state
σ0, and, by following policy π, reach at some time step the
goal state σg .

For instance, with P and π∗ defined for the example
of Figure 1, we have T (π∗, 〈σ3, σ6〉) = {σ3σ5σ6} and
T (π∗, 〈σ2, σ6〉) = {σ2σ3σ5σ6, σ2σ4σ5σ6}.

In the following discussion π∗ is the optimal policy for the
set of tasks {〈σ0, σg〉} such that the goal σg ∈ G is fixed and
σ0 ∈ S; πr is a random policy that at each state σ chooses
an action with uniform distribution over the set Aσ; πa is
a (deterministic) policy induced in the ground MDP by a
(non-deterministic) abstract policy π̂a. Also define πQ to be
the (deterministic, concrete) policy that uses the estimates in
the Q function to choose an action according to πQ(σ) =
arg maxα Q(σ, α).

The agent’s interaction with the environment clearly
occurs in the concrete level, however the experience
〈σt, αt, σt+1, rt+1〉 is used in both, abstract and concrete,
so that values can be updated in both levels. We propose that
both learning processes, abstract and concrete, follow an ǫ-
greedy exploration/exploitation strategy.

In the abstract level we have:

π̂a(σ̂) =

{
π̂as

(σ̂) with probability ǫa,

π̂at
(σ̂) with probability 1− ǫa,

(1)

where: π̂as
is an abstract policy obtained using the concrete

source policy, π̂at
= arg maxα Q(σ̂, α̂) is a policy learned in

the abstract level, and 0 ≤ ǫa ≤ 1 is a parameter that defines
the exploration/exploitation tradeoff in the abstract level of
our framework.

In the concrete level we have:

πc(σ) =





πa(σ) with probability ǫ1(1− ǫ2),

πr(σ) with probability ǫ1ǫ2,

πQ(σ) with probability 1− ǫ1,

(2)

where: πc is the deterministic policy applied by the agent in
state σ; πa is a deterministic policy induced from π̂a(σ̂) with
σ �θ σ̂ , 0 ≤ ǫ1 ≤ 1, 0 ≤ ǫ2 ≤ 1 are parameters that define
the exploration/exploitation tradeoff in the concrete level of
our framework; and πr is a random policy where an action
a ∈ Aσ is chosen randomly.

That is: in the concrete level, learn by using policy πa and
gradually replace it with πQ, while using πr less often, just
as to guarantee exploration and convergence to optimality.
In the abstract level, learn by using policy π̂as

and gradually
replace it with π̂at

as the learning process evolves.
When the agent starts learning, πQ is equal to πr, since

the Q function is usually initialized with the same value

Figure 4: Target problem: initial locations are: l1 and l4;
goal location is l25.

to all state-action pairs. In this case for some task 〈σ0, σg〉
the agent will consider all transitions in T (πr, 〈σ0, σg〉). On
the other hand we have T (πa, 〈σ0, σg〉) ⊂ T (πr, 〈σ0, σg〉),
and if we assume that πa was learned considering a similar
task, the actions the agent will consider have the property
that they used to be good to solve a similar problem before.
Therefore he should be able to obtain a better initial perfor-
mance, i.e. a higher value of Rt in the first episodes.

As to why the agent needs to gradually change to πQ note
that we may not have T (π∗, 〈σ0, σg〉) ⊂ T (πa, 〈σ0, σg〉),
i.e. πa could lead to non-optimal actions, or could not be
able to solve the task. With this, the standard proofs for con-
vergence of reinforcement can be adapted to prove conver-
gence to optimality, because there is always a guarantee of
full exploration (using πr).

5 Experiments

We have run a set of experiments focused on the robotics
navigation domain discussed in Section 3.2.

Initially we considered a source problem where the robot
navigated from any location Li to the goal location l2 in
the environment shown in Figure 2. The policy that solved
this problem was abstracted into the abstract source policy
π̂as

depicted in Figure 3.
Experiments focused on a target problem in which the

robot navigates in the environment shown in Figure 4.
Two tasks are executed: task1 = 〈σ1, σ25〉 and task2 =
〈σ4, σ25〉. In the first task, task1, the abstract source pol-
icy can guide the robot to the goal, albeit in a sub-optimal
manner; in the second task, task2, the abstract source policy
cannot guide the robot to the goal. We defined the reward
function as follows: a reward of 1 is granted when the robot
gets to the goal; otherwise a reward of 0 is granted.

Tasks were repeatedly solved when performing reinforce-
ment learning. For each task, at most 4000 steps were run,
where a step is a transition from one state to another. A se-
quence of steps that takes the robot from an initial location
to the goal is an episode. Every time the robot reaches the
goal, it is placed again at the initial location; that is, the ini-
tial state of each task.



Table 1: Abstract states defined for abstract level.
in(A),con(A,B),con(A,C),con(A,D),con(A,E),

isCorridor(A),isNearDoor(A),isRoom(B),

isNearDoor(B),isRoom(C),isNearDoor(C),

isCorridor(D),isCenter(C),isCorridor(E),

isNearDoor(E)

in(A),con(A,B),con(A,C),con(A,D),

isCorridor(A),isNearDoor(A),isRoom(B),

isNearDoor(B), isCorridor(C),

isNearDoor(C), isCorridor(D),isCenter(C)

in(A),con(A,B),con(A,C),con(A,D),

isCorridor(A),isNearDoor(A),isCorridor(B),

isNearDoor(B),isCorridor(C),isNearDoor(C),

isRoom(D),isNearDoor(D)

in(A),con(A,B),con(A,C),con(A,D),

isRoom(A),isNearDoor(A),isRoom(B),

isNearDoor(B),isCorridor(C),isNearDoor(C),

isRoom(D),isCenter(D)

in(A),con(A,B),con(A,C),con(A,D),

isCorridor(A),isCenter(A),isCorridor(B),

isNearDoor(B),isCorridor(C),isNearDoor(C),

isCorridor(D),isNearDoor(D)

in(A),con(A,B),con(A,C),con(A,D),

isRoom(A),isNearDoor(A),isRoom(B),

isNearDoor(B),isRoom(C),isNearDoor(C),

isRoom(D),isCenter(D)

in(A),con(A,B),con(A,C),isRoom(A),

isNearDoor(A),isRoom(B),isNearDoor(B)),

isRoom(C),isCenter(C)

in(A),con(A,B),con(A,C),isRoom(A),

isNearDoor(A),isRoom(B),isCenter(B),

isCorridor(C),isNearDoor(C)

in(A),con(A,B),con(A,C),isRoom(A),

isCenter(A),isRoom(B),isNearDoor(B),

isRoom(C),isNearDoor(C)

in(A),con(A,B),con(A,C),isCorridor(A),

isCenter(A),isCorridor(B),isNearDoor(B),

isCorridor(C),isNearDoor(C)

in(A),con(A,B),isCorridor(A),isCenter(A),

isCorridor(B),isNearDoor(B)

in(A),con(A,B),isRoom(A),isCenter(A),

isRoom(B),isNearDoor(B)

For each task, three approaches were compared. The first
one, denoted by ALET, is a straightforward Q-learning algo-
rithm with ǫ-greedy where the exploration policy is random;
that is, π1

Q(σ) is followed with probability 1−ǫ1 while π1
r(σ)

with probability ǫ1. The second one, denoted by ND, is a Q-
learning algorithm with ǫ-greedy where the exploration pol-
icy is produced by switching between the random policy π2

r

and the policy induced by the abstract source policy π2
a:

π2
c (σ) =





π2
a(σ) with probability ǫ1(1− ǫ2),

π2
r(σ) with probability ǫ1ǫ2,

π2
Q(σ) with probability 1− ǫ1.

The third approach, denoted by QSA, follows our pro-
posal (Equations (1) and (2)). While ALET and ND run Q-
learning only at the concrete level, we emphasize that QSA

uses our machinery to obtain reinforcement learning both at
the concrete and the abstract levels.

The abstracted problem is encoded by the states indicated
in Table 1. Note the reduced size of this state space (the
cardinality is just 12). We used ǫ1 = 0.5, ǫ2 = 0.3, and
ǫa = 0.7.

Results for task1 and task2 are summarized respectively
by Figures 5 and 6. Each task was repeated 40 times. At
each 250 steps in the learning process, the current policy was
evaluated in a validation phase. 30 episodes were executed in
each evaluation using a greedy policy. Therefore, each point
in these graphics is an average of 1200 episodes.

In task1 the ND approach already attains the best abstract
policy possible, while the QSA approach gets to this abstract
policy through the learning process. Both approaches have
better performance than ALET in task1. QSA clearly wins
over ALET and ND in task2, due to the combined effect of
abstract and concrete reinforcement learning.

Table 2 shows the average number of learning steps (and
the standard deviation) to get to the optimal policy for each
task.

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

Learning steps

A
rit

hm
et

ic
 m

ea
n 

st
ep

s 
(v

al
id

at
io

n)

 

 
ALET
ND
QSA

Figure 5: Average steps to reach the goal. l1 is the robot
initial location and the goal is to reach the location l25.

Table 2: The mean number of learning steps to attain the
optimal concrete policy.

task1 task2
ALET 1872 ± 762 1426 ± 590

ND 1548 ± 654 1220 ± 553

QSA 1597 ± 453 946 ± 413

6 Conclusions

In this paper we have proposed a framework for simultane-
ous reinforcement learning over abstract and concrete lev-
els of a target decision problem, where the abstract level



0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Learning steps

A
rit

hm
et

ic
 m

ea
n 

st
ep

s 
(v

al
id

at
io

n)

 

 
ALET
ND
QSA

Figure 6: Average steps to reach the goal. l4 is the robot
initial location and the goal is to reach the location l25.

is inherited from a previously solved source decision prob-
lem. We have contributed with a variant of the TILDE al-
gorithm, ND-TILDE, for generation of nondeterministic ab-
stract policies. But more importantly, we have contributed
with a scheme for simultaneous update of abstract and con-
crete policies that takes into account prior knowledge, explo-
ration data, and that guarantees convergence to optimality.

These contributions are valuable to the theory of abstrac-
tion, as they show how abstraction can be useful in practice
— indeed our experiments confirm that our framework has
better performance than competing approaches. The con-
tributions are also valuable to the theory of reinforcement
learning, as they show how to speed up learning using pre-
viously acquired policies and abstraction.

A variety of further results can be pursued. We are par-
ticularly interested in examining schedules for gradual re-
duction of ǫ in learning (so that exploration data eventually
takes over completely), and in a larger set of practical prob-
lems that show the limits of policy transfer.

Acknowledgments

This research was partially supported by FAPESP
(08/03995-5, 09/04489-9, 09/14650-1, 10/02379-9) and by
CNPq (475690/2008-7, 305395/2010-6, 305512/2008-0).

References

Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dy-
namic Systems 13(4):341–379.

Bianchi, R. A. C.; Ribeiro, C. H. C.; and Costa, A. H. R.
2008. Accelerating autonomous learning by using heuristic
selection of actions. Journal of Heuristics 14(2):135–168.

Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1-2):285–297.

Burkov, A., and Chaib-draa, B. 2007. Adaptive play q-
learning with initial heuristic approximation. In Int. Conf.
on Robotics and Automation, 1749–1754.

Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proc. of 25th Int. Conf. on Machine Learning.

do Lago Pereira, S.; de Barros, L.; and Cozman, F. 2008.
Strong probabilistic planning. In Mexican Int. Conf. on Ar-
tificial Intelligence, volume 5317 of LNCS. 636–652.

Drummond, C. 2002. Accelerating reinforcement learning
by composing solutions of automatically identified subtasks.
Journal of Artificial Intelligence Research 16:59–104.

Kersting, K.; Otterlo, M. V.; and Raedt, L. D. 2004. Bell-
man goes relational. In Proc. of 21th Int. Conf. on Machine
Learning, 465–472.

Knox, W. B., and Stone, P. 2010. Combining manual feed-
back with subsequent MDP reward signals for reinforcement
learning. In Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for mdps. In Proc. of 9th
Int. Symposium on Artificial Intelligence and Mathematics,
531–539.

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York: John
Wiley & Sons.

Quinlan, J. R. 1993. C4.5: programs for machine learning.
San Francisco, CA, USA: Morgan Kaufmann.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction (Adaptive Computation and Machine
Learning). The MIT Press.

Uther, W. T. B., and Veloso, M. M. 2002. Ttree: Tree-
based state generalization with temporally abstract actions.
In Proc. of Symposium on Abstraction, Reformulation, and
Approximation, 260–290.

van Otterlo, M. 2004. Reinforcement learning for relational
MDPs. In Proc. of Machine Learning Conf. of Belgium and
the Netherlands, 138–145.


