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INTRODUCTION

Estimating the localization of a camera and a 
map of an environment at the same time is a 
problem that has been approached by research-
ers from two directions (Strasdat et al., 2010). 
In Computer Vision it is the Structure from 
Motion (SFM) problem, and in Mobile Robotics 
it is a case of Simultaneous Localization and 
Mapping (SLAM) where the sensor is a camera. 
Most of the existing techniques rely on some 
sort of image feature extraction to produce 
landmark observations that are further analyzed 
to estimate the camera track and landmark po-
sitions. This article demonstrates how simple 
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ABSTRACT
This article presents the problem of building bi-dimensional maps of environments when the sensor available 
is a camera used to detect edges crossing a single line of pixels and motion is restricted to a straight line 
along the optical axis. The position over time must be provided or assumed. Mapping algorithms for these 
conditions can be built with the landmark parameters estimated from sets of matched detection from multiple 
images. This article shows how maps that are correctly up to scale can be built without knowledge of the 
camera intrinsic parameters or speed during uniform motion, and how performing an inverse parameteriza-
tion of the image coordinates turns the mapping problem into the itting of line segments to a group of points. 
The resulting technique is a simpliied form of visual SLAM that can be better suited for applications such as 
obstacle detection in mobile robots.

image processing methods, similar to what is 
used in robot navigation and localization, can 
be used to perform environment mapping. The 
proposal takes in consideration some restric-
tions in the environment and motion that lead 
to simpler processes in the whole mapping 
system, from the image analysis to the data 
association and parameter estimation. Some 
performed tests demonstrate the possibility of 
applying this technique for obstacle avoidance 
based on monocular mapping, and also reveal 
the necessary steps for the development of a 
more elaborate system for 3D reconstruction 
of indoor environments.

This research concerns images taken from 
indoor and other man-made environments, 
from where large edges can be extracted. The 
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localization of robots in bi-dimensional maps 
under these conditions is a well-studied prob-
lem (Borenstein, 1996). The landmarks used 
are vertical edges, and their positions on the 
ground plane constitute the map. While local-
ization has been well studied, the problem of 
building maps using only cameras under these 
or other restrictions, but without the help of 
metric sensors, has only recently received more 
attention. Many researchers studied systems 
where a stereoscopic apparatus perceives visual 
landmarks with three-dimensional location and 
corresponding visual descriptors to perform 
visual SLAM (Sünderhauf & Protzel, 2007). 
These landmarks are usually detected using 
punctual feature extraction algorithms, and 
the stereoscopic rig is used as a metric sensor.

Stereo rigs are inherently wide, hard 
to build, and have limited precision. These 
problems motivate the research on monocular 
SLAM techniques that have been growing 
lately. Some recent developments in this area 
have been the use of edge landmarks (Eade 
& Drummond, 2009), the use of alternative 
parameterizations (Solá, 2010) and also the 
creation of maps with non-calibrated cameras 
that are correct up to scale parameters (Civera 
et al., 2007). The use of edge landmarks is 
very important to many application scenarios, 
especially indoor environments, and the alter-
native parameterizations make the problem 
more suited to filtering techniques such as the 
extended Kalman filter. The creation of scaled 
or otherwise transformed maps also makes 
the problem easier to approach, and makes the 
technique more generally applicable.

The research presented in this article relates 
to these recent trends. The features extracted 
from the input images are intended to be edges, 
and they are detected by a search for peaks in 
the image gradient over a line orthogonal to 
their direction. This kind of detection is very 
simple but has great application potential, and 
was inspired from an idea by Nourbakhsh 
(1997). One of its great advantages is making 
use of information that is frequently ignored in 
systems that only work with features that have 

low auto-correlation in all directions, which 
excludes edges.

This form of image analysis is not uncom-
mon in mobile robotics, but it has been usually 
limited to detecting obstacles at ground level 
by the segmentation of the ground in the lower 
portion of images (Howard & Kitchen, 1997; 
Ulrich & Nourbakhsh, 2000; Lenser & Veloso, 
2003). These techniques are not able to identify 
when the detected borders are the edges of walls, 
drop-offs or just drawings on the ground. They 
also can’t handle correctly suspended obstacles 
such as hanging signs, railings, tabletops and 
other furniture, and even underestimate their 
proximity. Our technique applied to the analysis 
of horizontal edges crossing the central column 
of input images overcomes these difficulties 
by measuring the distance and elevation of 
the features ahead, using measurements from 
multiple images.

The objective is to move away from the 
assumption that the detected points are at 
ground level, and perform something closer 
to more general mapping techniques. But the 
creation of precise maps is only a secondary 
goal, the technique is still useful without care-
ful measurements of camera parameters such 
as its focal length, or also its actual position 
or speed. The consequence is that the maps 
produced are accurate only up to two unknown 
scale factors, but still useful for tasks such as 
obstacle detection.

The next sections present a description of 
the geometry of the problem and of the necessary 
image processing steps. A technique to detect 
obstacles in mobiles robots is proposed, and 
there is also an analysis of detected evidences 
taken from an experiment with a video recorded 
at an indoor environment with a conventional 
camcorder. Ways to produce long-term maps 
from the evidences are finally suggested for 
future development.

PROBLEM GEOMETRY

Given two camera positions and orientations, 
and a pair of corresponding points projected 
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over the image plane of each camera it is pos-
sible to calculate the position of the projected 
point in space, as long as the point does not lie 
in the line over the two optical centers from the 
cameras (Trucco & Verri, 1998). If a number of 
images from a certain environment are avail-
able, and the positions of the camera for each 
image is known, and the image coordinates of 
a certain point is known in two or more images, 
it is possible to determine the location of the 
point in space. In the context of our problem 
the points in space are the landmarks, and 
their projections detected in the images are the 
evidences. To build a map is to calculate the 
space coordinates of the landmarks from the 
input image coordinates and camera positions.

More general image-based localization 
and mapping problems consider complete 6 
degrees of freedom camera movements in a 
three-dimensional environment, where land-
marks are three-dimensional points. In our 
case space is restricted to two dimensions. The 
points that are mapped are actually, most of the 
time, the loci where lines in three dimensions 
cross the plane defined by the focal point of 
the camera and the line over the image that is 
selected for analysis. The camera moves over 
this same plane where the landmarks are located, 
and their projections over the image planes are 
determined by only one coordinate: the location 
over the extracted line. A further restriction is 
that the camera moves along the optical axis.

Figure 1 displays how these entities relate 
to each other. Our problem consists in determin-
ing the coordinates x ,y

j j( )  of each landmark 

j given the image coordinates z
jk

 of the projec-

tion of the landmark detected over the image 
plane of a camera located at position p

k
 The 

camera has a focal distance of f, and the intrin-
sic parameters related to sensor size and resolu-
tion are not considered because they can all be 
modeled by a virtual f value that accounts for 
them.

The formula for the image coordinate z
jk

 
can be deduced by triangle similarities, and is:

z =
y f

x p
jk

j

j k
-

 (1)

Given the corresponding evidences from 
landmark j at images a and b, the formulas for 
the landmark coordinates are:

x =
p z p z

z z
j

b jb a ja

jb ja

-

-
 (2)

y =
p p

f

z z

z z
j

b a jb ja

jb ja

−

⋅

−

 (3)

Equations number 2 and 3 constitute the 
basis of all the mapping techniques presented 
in this article. They allow the construction of 
a map from a set of images obtained by mov-
ing a camera in the direction of its projection 
axis, provided that the position of the camera 
at each frame and the correspondence between 
the points on the different images are known. 
To create a coherent map taking into account 
more than two images is not simple, and dif-

Figure 1. Perspective view of three edges projected into one image plane (left), and relations 
between one landmark and two image planes, seen from above (right)
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ferent estimation techniques can be used for 
that. But given any two images an ad hoc map 
can be calculated containing the positions of 
the landmarks visible on both of them, even 
though noise and uncertainties may cause map 
changes from one pair of images to another.

One first interesting characteristic of these 
formulas is that x

j
 does not depend on f, but 

only on the disparity between the image co-
ordinates z z

jb ja
-  and on the difference of 

the products of the evidence parameters. On 
the other hand y depends on f, on the dispar-
ity and also directly on the difference of the 
locations p p

b a
- .

Another interesting fact from these for-
mulas is that z

jk
 as a function of p

k
 describes 

a hyperbole on space, so the inverse of z
jk

 

can be defined as a new value w
jk

 that is a 

linear function of p
k

. If the camera moves at 
constant speed, that allows the use of integer 
values for p

k
, taken from the index of each 

image on the sequence. A multiplicative con-
stant s can also be introduced to model the 
camera speed and frame rate. The formula for 
w
jk

 thus becomes:

w =
x

y f

s

y f
p = u v p

i

j

j j

i j j i
− ⋅ −  (4)

This formula means that, as the camera 
moves ahead in constant speed and direction, 
any landmark j produces a sequence of image 
coordinates z

jk
 whose inverse values w

jk
 are 

decremented at each frame by a constant 
value v

j
. Given a set of values w

jk
 and p

k
 

we can calculate u
j

 and v
j

 and determine 

the values of x
j

 and y
j

 up to the scaling 
factors f, related to the intrinsic parameters of 
the camera, and s related to the speed of move-
ment and to the frame rate of the camera.

OBSTACLE DETECTION

This section describes how to apply the pre-
sented formulas to detect obstacles for mobile 
robot navigation, although other applications 
are possible. An initial image processing 
stage produces a set of evidences, which are 
the location of matching points in pairs of im-
ages obtained during camera movement. These 
matching points are then used to create a local 
map containing the distance and height of the 
objects ahead, and from the location of these 
points it is possible to infer that obstacles may 
exist ahead of the robot, specially suspended 
and negative obstacles.

Image Processing

The image processing stage of the proposed 
obstacle detection system begins with the 
acquisition of a pair of images from a camera 
fixed on a robot while it moves over a straight 
path. A sequence of images is analyzed by 
providing successive image pairs as inputs. If 
necessary, frames can be ignored (dropped) 
in order to obtain pairs of images taken from 
more separated positions. Once the image pair 
is available, the following steps are taken.

First, each input image can be filtered to 
reduce the noise and textures, but with care to 
preserve the edges. Some possible filters to be 
applied in this step are Gaussian blurs, moving 
averages, median filters and even non-linear dif-
fusion filters. Since only a strip of the image is 
analyzed, techniques that are usually considered 
very demanding in computational terms might 
be appropriate. It is also possible to apply a more 
intense smoothing on the direction of the edges 
that are being searched for. At the end of this 
step a single string of pixels is extracted from 
the image to be used in the next steps. For the 
obstacle detection application the edges are 
supposedly horizontal and the central column 
of the image is taken.

The next step is to locate the positions of 
the landmark projections on the image. The 
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extracted string of pixels is first filtered again 
to produce the derivative at each channel, and 
then the peaks of this derivative are located. 
This assumes that landmarks are junctions 
where objects of different colors meet. Colors 
should not vary much within object surfaces, 
but significantly between different objects. 
Multiple techniques can be used for finding the 
derivative peaks, one example is to calculate 
the successive differences and then sum the 
squared values of the derivatives of each chan-
nel. The local maxima of this sequence that are 
larger than a certain threshold are selected as 
the locations of the projections.

Given the assumed image coordinates of the 
landmarks projections calculated on the second 
step, the third step is to match the projections 
over image pairs. One possibility is to perform 
the previous detection only in one of the images 
and then search for the corresponding locations 
on the other image using a similarity function 
based on the pixel intensity values. For example, 
one can extract from the first image windows of 
a few pixels around the detected locations, and 
then compare them to patches of the same size 
from the second image. The patch that is elected 
as the matching position on the second image 
is the one that scores better on a similarity test 
such as the squared sum of differences (SSD) 
(Sünderhauf & Protzel, 2007; Barra et al., 2009).

This search can be done on just a single 
direction, since objects move away from the 
center as the camera moves ahead, and the sizes 
of the windows and the search regions depend 
on the application. Other possibilities are using 
a more accurate phase correlation search, or 
locating the points in the second image with 
the peak searching technique and then choose 
the best match comparing the pixel intensities. 
Regardless of this choice, at the end of this 
third step we have taken a pair of images and 
found matching image coordinates of landmark 
projections.

Map Creation

After the pairs of matching image coordinates 
are calculated Equations 2 and 3 can then be 

used to find the landmark locations in 3D-space 
(x
j

 and y
j

). If only a local map is desired, 
with the robot in the origin of the reference 
frame, we have p =

b
0  and p = s

a
- , and the 

formulas become Equations 5 and 6:

x = s
z

z z
j

ja

jb ja

⋅

−

 (5)

y =
s

f

z z

z z
j

jb ja

jb ja

⋅

−

 (6)

Figure 2 shows the landmarks detected on 
a sequence of images produced with a computer 
graphics program (Roosendaal, 2004). The 
images simulate what a small robot moving 
in uniform motion towards the edge of a table 
in a living room should see. At the right of the 
figure there are two sample frames from the 
sequence, showing how a carpet and also the 
baseboard over the joint between the wall and 
the floor are initially occluded by the table but 
eventually become visible.

The two graphics at the left of Figure 2 
show the inverse of the image coordinates 
detected by both methods described previ-
ously, one graphic for negative coordinate 
values (upper half of image, left if transposed) 
and the other for positive. The vertical axis of 
the two graphics is the index of each frame in 
the video. This index provides the p

k
 values 

used to apply Equations 5 and 6. The points are 
the detected location of the landmark projections 
in each image.

The circles were detected with the first 
method, and are the peaks of the derivative of 
the pixel intensities. The crosses were found by 
searching for matches of these detected points 
on the next image in the sequence using the 
SSD score. The matching technique applied 
was very simplistic, and as a consequence only 
a few of the crosses are precisely on top of 
corresponding points in the same frames. But 
this result is good enough for a simple obstacle 
detection system.

The values of the detected points were 
normalized so the image edges are the -1.0 and 
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1.0 coordinates, and then inverted to produce 
the w

jk
 values used in the graphics. Because 

of the normalization, all of the w
jk

 have abso-
lute values larger than 1. The left side of the 
image has the negative values, and the origin 
is the center of the picture, assumed to be the 
projection center. As we move away from the 
origin in the horizontal axis of the graphics, we 
start looking at landmarks projected closer to 
the center of the image. The detection of these 
landmarks is too noisy, so the plotted range 
refers to just part of the way from the edges to 
the center of the image.

The detected line inclinations v
j

 for the 
further and lower landmarks, related to the 
baseboard and the carpet, are lower than the 
inclination of the curve related to the table edge, 
indicating that this landmark is potentially the 
edge of a negative obstacle. The initial occlu-
sion of the further landmarks is another evidence 
of that, all supposing the floor is neither trans-

lucent or reflexive. This identification of drop-
offs from the detection of non-occluded low 
features on the environment is related to Mu-
rarka et al. (2009).

EXPERIMENT WITH 
REAL IMAGES

This section describes the analysis of a video 
recorded with a portable device to evaluate 
the applicability of the proposed technique in 
this practical case, and show the most relevant 
imperfections that should be considered when 
using this kind of data source. The camera used 
was a standard miniDV consumer camcorder, 
a Samsung SC-D391. The video was recorded 
in the camera as it was carried down a hallway 
pointing roughly towards the vanishing point, 
and analyzed afterward. To avoid the excessive 
shaking of the camera it was tied to a stabiliza-
tion mount, similar to what is widely used by 
professionals of cinema and television.

Figure 2. Experiment with a CGI simulation of a robot approaching a desk edge. The left graph-
ics show how the w

jk
 values decrease linearly with time drawing lines of different parameters 

for each landmark. The frames at the right show the initial occlusion of the carpet and baseboard. 
They produce lines that stem from the table one, accordingly. The leftmost graphic shows the 
approaching of the edge between the wall and the ceiling.
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Detected Features

Figure 3 displays two frames from the recording, 
and two graphics with the normalized inverse 
of the detected coordinates, like in Figure 2. 
The camera was pointing approximately to the 
direction of movement, and closer to the right 
wall than to the left. The section displayed in 
the graphics was recorded over a 15 meters 
movement. The dots in the graphics are the 
observations, with different colors and symbols 
for detections with positive and negative gradi-
ent value on the green channel. The lines are 
the result of a simplistic optimization procedure 
to fit landmarks parameters to the observa-
tions. Each of these landmarks were estimated 
individually from initial estimates chosen by 
hand, and the optimization found points that 
are local minima of a loss function that is the 
sum of absolute prediction errors considering 
all observations, limited to 10 pixels. This is 
similar to function used in, for example, MLE-
SAC (Choi et al., 2009).

Despite the oscillations due to the shaking 
of the camera it is possible to detect some in-
teresting features on the graphic at the left of 
Figure 3. There is a moment when a landmark 
occluded by a column becomes visible at 
(p=130, w=1.6), and also a region where objects 
inside a room can be seen through an open door, 
near (p=240, w=1.1). The curves on the left 
side of the graphics are also less steep as a 
function of p

k
, indicating that these landmarks 

are further from the camera track.
In spite of the oscillations at the graphics 

of Figure 3, the result points to a way to create 
maps from environments given a recording 
like the one done for this experiment. Once all 
detections are obtained, the problem of creating 
a map becomes the identification of the param-
eters of the lines that interpolate the points. The 
matching of the detections between the images 
becomes the problem of determining to what 
line each point belongs, and the calculation of 
the landmark coordinates is the determination 
of the best parameters for the lines. To solve 

Figure 3. Experiment with images recorded with a camcorder. The two frames at the right are 
samples taken from the recording. The curves in the graphics at the left are not straight as in the 
simulation because of imperfections such as slow changes in the orientation of the camera and 
accelerations. It is nonetheless possible to identify individual curves drawn by each landmark, 
notice occlusions by walls and verify the relative positions of the landmarks.
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this problem a system designer might apply 
techniques such as the Hough transform, k-
means, RANSAC (Choi et al., 2009), or the 
expectation-maximization algorithm. (Nguyen 
et al., 2007)

Sensitivity of Image 
Coordinates to Imperfections

The theory developed here assumes many condi-
tions that while reasonable and not uncommon, 
are hard to attain with perfection. And while 
in robots or other fast moving vehicles the 
results might be satisfactory, this is definitely 
not the case for portable devices being carried 
by people. But even so Figure 3 displays some-
thing very close to what it was expected from 
our theory, the landmark projections formed 
approximately straight lines on the graphic.

An analysis of the sensitivity of the tech-
nique to the possible sources of imperfections 
can show why the results looked that way, and 
also point at how one should proceed to try to 
detect the sources of error and eliminate them. 
The main conditions are that the camera must 
move at a constant speed and orientation in the 
direction of the optical axis while detecting 
along the way the bearings of edges orthogonal 
to the path. Let’s consider what happens when 
each of these conditions is not met:

Variable speed: If the camera accelerates the 
factor s is increased, and the inclination 
v
j

 of the line relative to each landmark 
also increases, making the curves more 
horizontal. When the speed decreases the 
curves become more vertical, and a full 
stop would produce perfectly vertical 
curves, because the landmark positions 
would not change with time.

Imperfect orientation: Our technique involves 
analyzing a single line on the image plane. 
This line and the focal point of the camera 
define a plane in the three-dimensional 
space. The measured evidences are the 
points where this plane crosses the edges 
on space that are orthogonal both to the 
motion direction and this plane. Because 

the landmarks are long straight lines, it 
makes little difference whether the plane 
tilts a little. What happens is just a scaling 
of the coordinates of the landmarks, but 
they are still detected.

Suppose a corridor with vertical lines and 
a camera moving along its center. If the image 
plane rotates around the horizontal axis the 
estimated x

j
 will be scaled up, and the land-

marks will appear to be more distant. If the 
camera rolls, rotating around the optical axis, 
the y

j
 will be scaled. Moving the camera up, 

while keeping orientation, doesn’t change 
anything, and moving to the sides only trans-
lates the y

j
. It is also important to notice that 

picking up an image line that does not go 
exactly through the projection center has the 
same effects of rotating the camera in these 
axes, but the value of f is affected directly. It 
is only the rotation of the camera around the 
vertical axis that offers greater challenges, and 
should be specially avoided.

Imperfect edges on space: If the edges on 
space are not perfect straight lines or-
thogonal to the motion direction, and 
the camera is moving perfectly, then 
there is no problem. The only problem 
in this case is that curved surfaces on 
the environment will not be properly 
detected, their w

jk
 will generate curves 

instead of straight lines. But if the cam-
era starts shaking negative effects can 
be perceived. First of all, tilted lines will 
not have their landmark locations scaled 
the same way as straight lines. Another 
important issue is that short lines will 
be detected or not as the projection plane 
crosses them or not.

In practice all lines are limited, and if 
the optical axis is not aligned to the motion 
direction a system designer might consider 
not taking the central line or column for the 
analysis, but instead searching for a line that 
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defines a plane that is more normal to the en-
vironment edges. This alignment will provide 
more and better detections, and the only effect 
is a scaling of the landmarks parameters. The 
principal point of the image is less strategic 
as a starting point for searching edges than 
the vanishing points or the epipoles (Trucco 
& Verri, 1998).

CONCLUSION

This article presented a technique to create 
bi-dimensional maps from visual features 
detected over lines on a pair of images as a 
camera moves in a straight path with either 
constant speed or known positions. The neces-
sary operations are very easy to carry out, and 
should be suitable for use in many real-time 
applications.

As a tool for obstacle detection, the 
technique presents the qualities of being able 
to identify suspended and negative obstacles. 
These are important elements in indoor envi-
ronments but are rarely considered by the most 
simple obstacle detectors. The disadvantages 
of the technique are having to compare images 
taken from two different positions, and not be-
ing able to detect objects that are not directly 
in the path of the robot. But these limitations 
still fit the needs of many applications.

The theory presented here also offers a 
starting point for the development of more 
sophisticated mapping applications, and not 
just a local obstacle detection based on image 
pairs. The problem has many similarities to 
the classic one of fitting line segments to a set 
of non-associated points, and one possibility 
of research already being explored is the ap-
plications of classic techniques, such as the 
Hough, transform to perform mapping in the 
conditions described in this article (Werneck 
& Costa, 2010). Other possibilities being 
investigated is the independent estimation of 
camera orientation from the image gradient 
of only a few lines and columns of the image, 
and also edge extraction using this orientation 

estimate and the same selected pixels (werneck 
& Costa, 2011).
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